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A COMPLEX MODEL OF ATMOSPHERIC STATE

Fundamental equations of atmosphere circulation are
based on the universal physics laws:

« of conservation of mass
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PROBLEM DEFINITION

Therefore problem of atmosphere circulation involve systems
of convection-diffusion equations as a main constituent. It
Is the following vector form:
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—+Vi_—+Vo —+Vg_—=F+
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e with initial condition
3(X0)=n(X), o0<X<L
e and boundary conditions
S\X:O:oc(t), S\X:L:B(t), t>0



|. PROBLEM-SOLVING NUMERICAL
PROCEDURE OF MACROSCALE FORECAST ON

BASIS OF UPSTREAM FINITE-DIFFERENCE
SCHEME

» Recently in weather forecast problems for numerical integration of
hydro-dynamical heat/mass transmission equations more often are
applied methods of a finite element and spectral methods. Yet we
will consider one more finite-difference method what is explained by
following reasons:

* basic concepts, underlying theory and main features for numerical
applications (such as approximation, convergence and stability) are
well understood and developed for finite-difference methods;

 these methods are treated universally in many applications areas;

« they allows decomposition of a complex multidimensional problem
by reducing a numerical solution uniformly through spatial splitting
Into temporal sequence of one-dimensional problems;

« the last feature is quite appropriate for parallelizing algorithms and
their efficient parallel implementation in multiprocessor computer
software.



SOLVING THE THREE-DIMENSIONAL
EQUATION BY OPERATOR SPLITTING

The technigue is based on directional operator splitting, which results
in one-dimensional advection-diffusion equations for t € ((k —1)t,kr]
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A FINITE-DIFFERENCE SCHEME FOR THE
ADVECTION-DIFFUSION PROBLEM

Consider the one-dimensional advection-diffusion equation

8§+V8§:@(H@§\+F pnz0 0<x<I t>0
ot ox ox\ ox)

with initial condition
E(x,0) =n(x) 0<x<|
and boundary conditions

0,t)=alt)  &(I,t)=p() t>0

where
vix,t) pxt) n(x) alt) Bt

are known functions, while the function ¢(x,t) Iis unknown.



A FINITE-DIFFERENCE SCHEME FOR THE
ADVECTION-DIFFUSION PROBLEM

: : 1 :
Integrating equation at X from t" to t yields

vt _on Y0 ok
E” _E" I[ OX 8x( 5Xj ldt

t

Approximating the integral on the right-hand side by the
mean-value theorem, we obtain
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where t"<og<t"™



A FINITE-DIFFERENCE SCHEME FOR THE
ADVECTION-DIFFUSION PROBLEM

» For the approximation of the derivatives (¢/ax)"" and
[0(n aa/ax)/ax]\tj:e we will use the following difference relations:
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A FINITE-DIFFERENCE SCHEME FOR THE
ADVECTION-DIFFUSION PROBLEM

The unilateral difference expressions (¢, -¢)/h.
and (g, -¢,_,)/h,_, In derivatives of order 1 and 2
will be taken at different time levels (n and n +1).
For construction of approximations only by two
points it is natural for physical reasons to have
on the (n+1)-th layer a point x. as central, and
to select the second one from that side from
where ¢ Is transferred by advection to the
central point. In this manner we gain the
following form:



A FINITE-DIFFERENCE SCHEME FOR THE
ADVECTION-DIFFUSION PROBLEM

1. for v >0
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A FINITE-DIFFERENCE SCHEME FOR THE
ADVECTION-DIFFUSION PROBLEM

2. for v <0
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A FINITE-DIFFERENCE SCHEME FOR THE
ADVECTION-DIFFUSION PROBLEM

Difference scheme for the one-dimensional advection-diffusion
problem in the following form:
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A FINITE-DIFFERENCE SCHEME FOR THE
ADVECTION-DIFFUSION PROBLEM

for v<0O
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A FINITE-DIFFERENCE SCHEME FOR THE
ADVECTION-DIFFUSION PROBLEM

Templates of difference networks: a) of the scheme v >0;
b) of the scheme V <0

b)

n+l




A FINITE-DIFFERENCE SCHEME FOR THE
ADVECTION-DIFFUSION PROBLEM
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A FINITE-DIFFERENCE SCHEME FOR THE
ADVECTION-DIFFUSION PROBLEM

v<0 v >0
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Geometric illustration of the flow velocity reversal
from v<0 to v>0



A FINITE-DIFFERENCE SCHEME FOR THE
ADVECTION-DIFFUSION PROBLEM
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A FINITE-DIFFERENCE SCHEME FOR THE
ADVECTION-DIFFUSION PROBLEM

v >0
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A FINITE-DIFFERENCE SCHEME FOR THE
ADVECTION-DIFFUSION PROBLEM
Numerical viscosity of difference scheme is

. !_vhj+2,u\52q_ 629
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A FINITE-DIFFERENCE SCHEME FOR THE
ADVECTION-DIFFUSION PROBLEM

The scheme stability condition is satisfied if

\2
)
V2
J

1+2q; sin’ ¢/2 +qusin2 o

1+ 2p, sin’ ©/2, + pj2 sin’ o

We have g, < o It means that II’I’PQHP(‘TI\IP of a ratio of arid

steps h and t from this expression the inequality ﬂ<1
takes place It follows from here the stability requirement
condition of a difference grid steps h, and .



A NUMERICAL EXPERIMENT

For experimental estimation of such important characteristics
of difference schemes like: accuracy, stability and efficiency
we consider a problem of propagation of some physical
quantity q(x,,X,,X,,t) in viscous continuum p = ﬁ,/tl,uz,u?)}

u =sin’(x,)  u, =sin’(x,) gy = Xo0

that moves with a speed V ={v ,v,,v,}

V, = %sin(le) vV, =%sin(2x2) v, = axga_l
A function L
[2-0°) ( X, ) ( o) | bxy
a(x;. %, %5, 1) =€ tg tg| —= sin
1072173 2 ) 2 ) _(a—1)_

IS a precise solution of the problem:



THE RESULTS OF A NUMERICAL

EXPERIMENT
t,, 0, .,
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THE RESULTS OF A NUMERICAL

EXPERIMENT
t Maximum fractional error of the task solution
1=4.7124.10° 1 =2.3562-10° 1=4.7124.107 | 1=4.7124.10"
0.2 0.12307 6.3636-10-2 5.2971-10-3 1.7102-10-4
0.4 0.12307 6.3636-10-2 5.2972-10-3 1.7106-10-4
0.6 0.12307 6.3636-10-2 5.2972-10-3 1.7107-10-4
0.8 0.12307 6.3636-10-2 5.2972-10-3 1.7108-10-4
1.0 0.12307 6.3636-10-2 5.2972-10-3 1.7108-10-4
1.2 0.12307 6.3636-10-2 5.2972-10-3 1.7108-10-4
1.4 0.12307 6.3636-10-2 5.2972-10-3 1.7108-10-4
1.6 0.12307 6.3636-10-2 5.2972-10-3 1.7108:-10-4
1.8 0.12307 6.3636-10-2 5.2972-10-3 1.7108-10-4
2.0 0.12307 6.3636-10-2 5.2972-10-3 1.7108-10-4




Il. PROBLEM-SOLVING NUMERICAL
PROCEDURE OF MESOSCALE FORECAST ON
BASIS OF MULTIPLE NODES INTERPOLATION

TECHNIQUE

 Regional atmospheric processes are influenced by
macroscale atmospheric circulation where modeling
meteorological values in restricted area is considered as
a part some whole with time dependent, transitional
boundary conditions. To achieve demanded level of
accuracy of the solutions for a model in places of heavy
gradients of related functions it is often needed to have
variable grid step of numerical solution for restricted
terrains. However common techniques of mathematical
physics often can not satisfy these requirements
because of low accuracy, slow divergence and suffering
from stability problems, so some dedicated numerical
rr}?d_eling are needed to make computational methods
efficient.



INTRODUCTION

» For forecasting of values of meteorological quantities
(components Vvq.v,.,v3 of velocity v, pressure p,
temperature 0, specific humidity p, specific liquid water
content g, concentration of pollutants v and others) of
an atmosphere above the limited territory we will follow
basics of the method of "unilateral influence" where
results of analysis and forecast received within

macroscale (hemisphere or global) model are used as

boundary conditions for a regional model.



PROBLEM STATEMENT AND A METHOD OF
ITS NUMERICAL SOLUTION

e Let a state of atmosphere in space r =(x,¢,6) Of
macrospace area c(r)->G(r) IS defined by a vector
of meteorological quantities %(r,t) of discrete values
of the analysis and forecast iRE)r,th)n: R ™)
received on a basis of macrospace model at the
moment of time t=t"" (m-o0,1...M) With a step

1‘_:tm+1_tm .

* Then for definition of a state of atmosphere in the

limited territory ¢ at wte|t™ ™| we will solve a
task of following kind in vector representation:



PROBLEM STATEMENT (continuation)

M _pw, Vte[tm,tmﬂ} vr eG

ot

m(r,tmﬂ)ziﬁmﬂ(r)’ m=0,1..M

where
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APPROXIMATION OF DIFFERENTIAL
OPERATORS BY GRID ONES

« Computation of grid values of partial derivative of the first
order y; =(o6%R/on); and of the second order ¢; =(625R/an2)_
included in the differential operator D, will be performed”
on the basis of relations:

e first order n h
\Vi+1+2(1+h_l ]‘Vi Ho g =
1-1 -1
r 2 2 Y
_3 R -1 h R — e R. L
h- I+1 h | h =
| -1 -1




APPROXIMATION OF DIFFERENTIAL
OPERATORS BY GRID ONES (continuation)

e second order

h_q|hig(, hig) |
n {h- [1 n )+l}§l+l+

+ £1+ N —1\{hi = (3 + by + 1}; + P"—l [1+ Mgl 1}@1 =
hi L h hi ) h hi )




APPROXIMATION OF DIFFERENTIAL
OPERATORS BY GRID ONES (continuation)

It is obvious, that the derived relations have the third order at

hj # hi_y and fourth order at h =h _,. These systems are the
algebralc equations with three- dlagonal matrixes, so
solutions can be found with boundary conditions:

h Ry — R
——1(§2—§1)+\V1+\|12=2 2h1 1

Chn o -1 RN — RN

6

EN —EN_1)FWN_1FYN =2
JINI]

The main advantage of the offered method of approximation
of derivatives. As a solution of the system of algebraic
equations in all points depends on values in other points, it
depends on %; globally instead of locally that means smooth
filling up and apprOX|mat|on of differential operators by grid
ones.



PROPOSED PROBLEM-SOLVING PROCEDURE

Enﬂ
mn+1
D(mn) D(mnn) = it
-jkf f — tn+1
& ] t _ t
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PROBLEM-SOLVING PROCEDURE

o After computation of values of right parts

f(Ttml\:fm*l:Dm(tml):mam*l, m=12,...M in all nodes
of the‘grid (n;,¢y,0/), 1<j<J, 1<k <K, 1<i<L, we will

search for a solution of the problem for with the help of
Hermite polynomial like above for number of points:

t—t"
Rt)=R" + [rfm+
o T
+t—'[ [ 4(ERm+1_2€Rm +mm—1)_ T(f m+1_fm—l)+
41
m

+t—t 5 ﬂ%m+1—9%m_1)—t(fm+l+8fm+fm_1)—
41
m

_t—t 5 iRm+1_29%m +9%m_1j—r(fm+l—fm_1 N
4t
m

A o)y g1 ]] ]




PROBLEM DEFINITION

A function
u = sin(rnt + ¢)exp(at)

IS a precise solution of the problem:

(zl—l:—au = nexp(at)cos(nt+¢)  te[2,3]

ult. )=u. =123,

where a =0.2, ¢=1.4 are known constants



THE RESULTS OF A NUMERICAL EXPERIMENT
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PROGRAMMIC INTERFACE




PROGRAMMIC INTERFACE
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PROGRAMMIC INTERFACE
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PROGRAMMIC INTERFACE

I Ukraine_Forecast - [Graphic1]
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PROGRAMMIC INTERFACE

Il Ukraine_Forecast - [Graphic1]
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EXAMPLE WEATHER FORECAST
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VERTICAL PROFILE OF WEATHER QUANTITY
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