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Transport of OCs to Antarctica
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eSnowpack includes three phases: solid ice, water and airs

*Three main parameters determine behavior of chemical in snowpack:
vapor pressure, water/air partition coefficient (Henry law constant) and
ice surface/air partition coefficient

» One of possible reason of the enrichment in the warm glacier may be
dissolution of the gases in meltwater percolating through the underlying
firn layers, subsequent refreezing of the enriched solution during cold
season and repeating of the melt-freeze cycles

*The dependence of CO, enrichment factor on age of the ice reflects the
number and intensity of repetitive melt-freeze cycles, the enrichment has
maximum in young ice and this correlates well with climatic history of
coastal Western Antarctica

*However, the enrichment for most other species decreases as this value
grows for CO,. Even corrected on the solubility in meltwater, the content
of the species is in large excess in comparison with their atmospheric level






Simulation of enrichment for soluble impurities in
snowpack
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Dependence of CO, enrichment coefficient on age of the ice
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High enrichment in firn and snowpack interstitial air
was discovered during 1998-2008 years for many
Inorganic and organic compounds

. NO, NO,, HONO, (C1-C4)-RONO,, CH,C(O)OONO,
. 0, OH, HO,, H,0,

« CO, HCHO, CH,CHO, (CH,),C=0, C,H:C(O)CH,,
HCOOH, CH,COOH

e CH,=CH,, CH;CH=CH,, CH,CH,CH=CH,
 BrO, CH,Br, C,H.Br, CH,Br,, CHBr,;, CHBrCl,,
CHBr,CI, CH,l, C,H:I, CH,CII

Most of processes for the products formation are
photochemically driven




F. Domine, P. Shepson,
Nature, 2002, v. 297, p. 1506
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Reactants in firn and snowpack

 Inorganic aerosols (terrigenous, sea salts)— NO;-, S=, CI, Br, I; Fe"*,
Mnn*, Cu™, Co"*

* Organic aerosols from surface oceanic layer — phenols,
hydroxyacetophenones, hydroxybenzaldehydes, carbohydrates, C8 -
C18 — monoacids, C5 — C11 - diacids, amino acids, proteins

* Phytoplancton, ice microalgae, microbes
« O, 05 OH, HO,, HOCI, HOBr, HOI, CIO, BrO, 10, CI, Br, |

Pathways for the products formation:

e Direct and indirect photolysis
* Radical reactions

e lonic reactions

e Biochemical reactions

* Redox-reactions



Phenomena occur in freezing of aqueous solutions and
In snowpack:

freeze — concentration (segregation of reactants)
freezing potential (up to 100 V)
pH change (up to 4 pH units)
concentration diffusion
cage effect in recombination of ions and radicals
formation of H-bonds, solvation and formation of ion pairs
temperature and matrix effects (restricted diffusion and
conformational mobility)
high photochemically active medium — low activation
barriers for photochemical formation of reactive species
dispersion Kinetics



Acceleration of chemical reaction by freeze-

concentration in polycrystalline ice

Very concentrated solution




Processes in snowpack
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Direct and indirect photolysis, radical reactions

R(C=0)CH,CH,CH,+ v — RC=0 + -CH,CH,CH,
RC=0 + -CH,CH,CH, — R(C=0)H + CH,=CHCH,
R(C=O)R’ + v — [RC=0 + R’]

[RC=O + R’] + R”SH — R”’S + RC=0 + R’H
R”S + RC=0O — RC=0-SR”

RC=0-SR” + kv — R-R” + COS

CH,SCH,CH,CH(NH,)COOH + v — CH,SCH,CH,CHO + NH, +
Cco,

CH,SCH,CH,CHO + OH — CH,=CH, + CH,S + HCOOH

CH,S + CH,S + M — CH,SH + CH,S + M

CH,S + v — HCS + H

CH,S + OH — HCS + H,0

HCS + 02 — COS + OH-

HSCH,CH(NH,)C(=0)OH + O, + hv— HSCH,CHO +
NH, + CO,

HSCH,CHO + OH — HCS + CO,

2HCS — CS, + CH2:

HCS + O, —» COS + OH



Direct and indirect photolysis, radical reactions

CH,;SCH; + OH: — CH,;SCH, + H,O
CH,;SCH, + O, + M — CH,;SCH,O, + M
CH,;SCH,O, + NO — CH,SCH,O: + NO,
CH,;SCH,0O- — CH,S + CH,O

CH,S + CH,;S — CH,;SSCH,

CH,SCH,0O:- + O, - CH,;SCHO + HO,
CH,;SCHO + OH — COS + CH3- + H,0

CS,+ OH — COS + HS:

N,O; + NaCl — NaNO; + CINO,,

CINO, + NaCl — NaNO, + Cl,

NO; + NaCl — NaNO; + CI-

CINO, + hv — Cl + NO,

Cl, + hv — 2CI

R + Cl — RCI (R =CH,, C,H;, CH=CH,)
R’(C=0)CH;+ Av —» R’C=0-+ CHS3

OH- (RO, ROO) + Br - OH" (RO, ROO") + Br:
CH; + Brr— CH3Br

CH,SCHO + OH: — CH,;S(OH)CHO!
CH,;S(OH)CHO: + Br- — COS + CH;Br + H,0



lonic and biochemical reactions

(CH,),S*CH,CH,COO" + enzyme — (CH,),S + CH,=CH-CHO
(CH3)25+CH,CH,CO0O- + OH— CH,SCH,CH,COO- + CH,0OH
CH,;SCH,CH,COO" + H* —» CH;SH + CH,CH,COOH

(CH,),S + (H*,OH") - CH,;SH + CH,0OH

2 CH,;SH + OH" — CH,SSCH; + H,0

(CH,;),S*CH,CH,COO" + CI- — CH,CI + CH,;SCH,CH,COO
HOOCCH(NH,)CH,CH,S*(CH,) -adenosine + ClI-— CH,CI +
HOOCCH(NH,)CH,CH,S-adenosine
NH,C(COOH)CH,CH,S*(CH,;), + ClI- — CH,CI +
NH2C(COOH)CH,CH,SCH,

H,O, + Cl- + chloroperoxidase — H,0 + OCI-

OCI + H*— HOCI — HO" + (CI*)

R’(CO)RH + (CI*) - RCI + R’(CO)H + (R = CH,4, C,H;, CH,=CH)
R-C(=0O) + enzyme + Br + H,0,—- R-COOH + CHBr,
R-S(0O,)CH; + Br®*) — R-S(0O,)CBr,

R-S(O,)CBr; + OH  — RS(=0)OOH + CHBTr,



Redox reactions

CnHanul + ¥ — = O Haeq + |
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reducad Faﬁ"
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Organic matter + Me™ + X- — R-X + M-+
(Me = Fe, Co, Mn, Cu; X=CI, Br, I; R = CH,;, C,H., CH,=CH)



e Chlorofluorocarbons and thei{( replacements, chloro-containing solvents
Anthropogenic origin
Tetrafluorocarbon: anthropogenic (50%) + emission from granites (50%0o)

M --.' +5.2.CH,SF +'—>CHSS
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Sources of the impurities in ice samples of coastal glacier

CH,CI, C,H:Cl, CH,=CHCI: biosynthesis from algaes and phytoplankton, radical substitutio
In organic matter

chlorroperoxydase + CI"+H,0, + R*(CO)RH — R-CI
SO, (NO,, OH) + CI- + R~M— R-CI
CH4Br: biosynthesis from algaes, photolysis and redox — reactions of organic matter in
presence of Br-ions
bromoperoxidase + CI- + H,0, + R’(CO)HCH; — CH4Br
R’(C=0)CH3 + Av + Br —» CH;Br + R’C=0
PhOCH; + Fe**+ Br-— CH,Br + Fe?* + Ph=0
CH,Br,, CHBr;: biosynthesis from algaes :
R-C(=0O) + Br + H,0, + enzyme — CH,Br,(CHBr;) + R-COOH i
CH,l, C,H:Il, CH,=CHI: biosynthesis from algaes, photolysis and redox — reactions of
organic matter in presence of I- ions




C,H:Cl vs CH,CI
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Interface Processes between the Ocean, Atmosphere,
Sea Ice, and Snow in Antarctica

In the near future climate change is predicted to be at a significantly
faster rate in Western coastal Antarctic than for the planet as a whole,
due to the influence of feedbacks related to the changing surfaces of
glaciers and Southern Ocean

Numerous recent observations indicate that the exchange of
atmospherically important chemical species with this surface is driven
by physical and photochemical processes occurring on the surface of
the snowpack and sea ice, and that this exchange significantly impacts
the concentrations of chemical species such as ozone and mercury

Biologically-mediated processes have also been observed to impact the
Interactions between ocean, ice, and/or snow and the atmosphere

Both dynamic (movement) and thermodynamic (temperature)
processes in the marine cryosphere affect the exchange process of mass
and energy, and the latter are being affected by global scale climate
variability and change



Interface processes between the Ocean,

N+ enlh Chan I~ nA CrAwars s DAl
I“\ || |J| ,OCC[ |bC allu JDI1UVV 111 T UI

Regions

How the lower atmosphere in the Polar regions
will change as climate and the nature of the
iIce volume change?

Nnlar
vlidl

« OASIS (Ocean-Atmosphere-Sea Ice and Snow exchange
processes)

e AICI (Atmosphere-lce Chemical Interactions),
« ASCOS (Arctic Summer Cloud Ocean Study)
« POLARCAT (Polar Study using Aircraft, Remote Sensing,

Surface Measurements and Models, of Climate, Chemistry,
Aerosols, and Transport)



Future effects of snowpack reactions on lower
atmosphere, stratosphere and climate over Antarctic




Increase of air temperature and UV-B radiation
leads to:

Acceleration of photochemical, thermal and biochemical
processes of the impurities formation in snowpack, firn and
oceanic surface layer

Acceleration of the impurities evaporation from snow surface

Growth of water content in the snow and increase of water-
soluble impurities content in the snowpack and firn

Anr\nlnrnflnn nf fha nlnmnrc nhlnflnn molflnn nf fhn

wVuLuiuvil LALivVil 1 H UNMNIULIVIL T, T11V1] LIIIH (9 A Slr\o N aC
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Vp
and washing of the impurities with snow melt water in ocean
and their evaporation in atmosphere

Growth of icebergs amount and their melting




laciers melting
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Influence of the impurities on stratospheric and tropospheric

ozone and radiation balance of Antarctic atmosphere

« CH,CI - 13% of organic Cl in stratosphere
* C,HCl+ CH,=CHCI - > 1% Cl in stratosphere

31 atoms are more effective catalysts in depletion of ozone layers (50-60 times)
omparison with Cl atoms

C H_Br3 80% of organic Br in stratosphere &
e mg hydrocarbons are responsible for 40% 1 o

e halo lytic cycles
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Since 1960s, persistent semi- or low-volatile organochlorine
compounds (OC), such as pesticides (aldrin, dieldrin,
endrin, chlordane (CHL), heptachlor, DDT and its
metabolites (DDE and DDD), toxaphenes, mirex,
hexachlorobenzene (HCB) and hexachlorocyclohexanes
(HCH)), polychlorinated biphenyls (PCBsS),
polychlorinated dibenzo-p-dioxins (PCDDs) and
polychlorinated dibenzofurans (PCDFs) were found In
abiotic compartments of Antarctica and its biota.

The Antarctic region acts:as.a.form of chemical sink for
these contaminants.

The strong temperature dependence of gas
phase/condensed phase partitioning together with the
spatial temperature gradients on a global scale can lead to
relative enrichment of highly persistent OCs in Antarctica
by “cold condensation” (CC hypothesis).

The other mechanism is the high persistence of OCs in cold
Antarctic environment.
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Transport pathways for OCs to Antarctica

Latitudinal, seasonal and spatial variations of OCs
levels in air — agreement with CC hypothesis

Temporal variations of OCs In air, seawater, snow
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sea ice — agreement with CC hypothesis

uence of temperature on partition coefficients
distribution of OCs between ablotlc

compartments of -Antarctic envi

Directionand strength-of OCs fitixes between the -~
compartmentsss ==
Impact of-e@rrent and-fuure climate:.changesion

transportand re-emission-of the contaminants.ia
Antarctica




Transport of OCs to Antarctica
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« Comparable levels of OCs in seawater and its biota from
north and south of the Antarctic Convergence, which
separates sharply<eefined and distinct water masses,

= Indicated that the atmosphere, not the-water, was the™ -

~ dominant pathwag/ for the transport of the OCs to the
— Antarctica .

e Tracer (black car m}h‘eral dust) transport over the
ocean Is fastest int -troposphere. The typical age Is
about 5.5 d for trac Im Patagonia to Central
Antarctica, 6.5 d for allanttracers and about 8.5 d for
advection from Southe frica




Scenarios for “global fractionation” of OCs in the

environment

* “Primary source”: After release from a primary source,
the contaminant is deposited and subsequently prevented
from volatilizing through permane retent .
environmental reservoirs. differentlong-range

——— ) -
— - - ——

potential of OCs in air would res
contaminants mixture away from the prin :
Absolute amounts would therefore be’ expected to decrease
with latitude/distance from the source.

“Secondary source: Emission of OCs from the
environmental reservoirs would control levelssinsthes=
atmosphere. Repeated air-surface exchange would see the
OCs move in a series of “hops” (“grasshopper effect™).
This would also result in fractionation, becoming more
pronounced over time, absolute concentrations.of some
contaminants may became higher at higher latitudes, and
more volatile OCs becoming more abundant over time In
higher latitudes.
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Major modes of OCs transport in range 25-0°C

multiple hoppers

single hoppers

(F. Wania, 2006)
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Latitudinal variations

(Data from Montone et al, 2005 and Lohmann et al, 2001)
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Fcontribution of heavy congeners drops
ese trends are consistent with the global fractionation

e The strong latitudinal gradients for the OCs in air toward the
Antarctic coast are comparable with similar gradients for such
components of atmospheric aerosols as particulate organic matter,
elemental carbon and sea salts




Seasonal variations

y-HCH in air

-3
C,pgm

Data from Larsson et al, 1992

60- > DDT in air

Data from Tanabe et al, 1983






Spatial variations

Maximum concentrations for the pesticides and PCBs In
alr were observed near Western Antarctica Peninsula,
King Georg e Island®61.16 °S, 55.7 °W and Signy Island,
60°, 72’ S, 45° 60" W )] in comparison with more eastern
locations (Halley Station, 73° 35 S, 26° 30" W; Neumayer
Station, 70°38" |

this west-east
gradlent may be explained by prevailingnorthwest winds
and west-east direction of cyclones in coastal Antarctica,
more short time for transport of OCs from South America
In comparison withsthae 'South Africa or
Australia/New Zealand, and gradual decrease for level of
OCs from the west coastal area to east of inland area




Temporal variations in air
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Temporal variations in seawater
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Temporal variations in snow and sea ice
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decomp03|t|on halT-m § as &

result of their OH radical degradatlon in air, h droly5|s
and microbial decomposition in water and se

The temporal declines in OCs level In the mobile
compaktments of Antarctic environment reflect the glo )
- aecl leS--ﬁiJse and emlssmn of the OCs |_;,_




* All from the OCs show a strong tendency to partition between the
compartments of Antarctic environment. This partitioning is
controlled by their physico-chemical properties, the characteristics of
the compartments as well as temperature.

« The partition coefficients (octanol/air (Ky,), octanol/water (Koy,),
water/air (K, ), air-water interface/air (K,,)) are used to estimate the
water/air, snow/air, soil/air and sediment/water partitioning of the

OCS as well as their sngw/air scavengjt ,ﬁtm and atmospherlc
particle- bound fractions. %

Generally alr terﬁﬁérature is varied‘in A\t-arctlc@ frqm —-‘_‘

- 20 OCﬁ(.traI Plateau) and figpom =30 °C.10 05°C (Coasta1 areas)
Seawater temperature-is NeaHe: =2E. ThewpartitiogCOCTHEIERISIOROCS

; at these temperat@es were estimated usig the reﬁtlonsmp&hﬁeen -
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Partitioning of the OCs between abiotic
compartments

Plot AH_, versus log K, at 298.15 K

Plot AH_, versus log K (298.15 K)
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Influence of temperature

Particle-bound fraction
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Alir-seawater exchange

Fluxes of HCHSs by gas exchange

Air/water exchange of HCHSs

between air and water along the Western Antarctic Peninsula
0.00 0.000
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Southern Latitude %, -0.004-
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I o-HCH £ -0.008 -
0.154 - 'Y'HCH 8):
0.20 L’ .0.012-
0.25
-0.016
-0.30-
Caand C,, values from C,and C,, values from
Lakaschus et al, 2002 Dickhut et al, 2005

These fluxes indicate on net deposition of HCHSs in seawater
near to equilibrium



Air/snow flux, pg m’s™

Flux, pgm?s™

Alir-snow exchange
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Indicated by fugacity fractions > 0.5 and <0.5 (Harner et al,

2001)
For 11 soils from East Antarctica (Negoita et al, 2003)

Air-soil exchange

A plot of log Cq versus log [OM] will have a slope of 1 at
equilibrium between soil and air (Gouin et al, 2004)
Soil-air equilibrium is indicated by fugacity fraction = 0.5.
Net volatilization and deposition of gas-phase OCs are
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Air-soil exchange

Several pathways of soils contamination with OCs in

Antarctica are suggested (Negoita et al, 2003):

(a) Long-range transport by air from the continents of

South Hemisphere, where OCs were extenswely used in the

past. =

(b) Local contamination by PCBs (are ,_,..u NO reds of

meters) due to human activities - i

(c) Local focusing of OCs, due to bio i

eggs, carcasses). These activities are res

transport of OCs to the Antarg EPTL VIS

birds ——

Different directions of air- 30|I fluxes for the OCs confirm

those suggestions. It is shown that soils are far from the

equmbrlum with the atmosphere. They.have been ’
“oversupplied” with the chemicals and* hammable

guantities by evaporation.

g




Seawater-sediment exchange

By analogy with soil-air equilibrium, seawater-sediment
equilibrium is indicated by fugacity fraction = 0.5.

Net desorption from sediments and deposition of
dissolved OCs are indicated by fugacity fractions > 0.5

and <0.5
Data from Montone et al, 2001 Data from Bondar et al, 2000
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~ Finalsinks for OCs in Antarctic environment
"”""*SQ.H"s' -firn-ic ents and burial in

=

____deep ocean watersar PO nal sinks for OCs in
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 The Weddell and Ross Seas in Southern Ocean represent
main deep-water formation sites of the world ocean.
Estimated mean OCs total fluxes associated with the
formation of deep oceanic waters in the seas are: 1.5t yr!
DDTs, 74 tyrt HCHs, 21 tyrt HCB, 3tyrt CHLsand 7 t
yr PCBs.




Relation of climate change in Western Antarctic Peninsula to
the release of OCs from retreated glaciers
« \Weather records in the Antarctic Peninsula indicate a 2.5
°C warming trend in mean annual air temperature over
the last 50 years. For example, on Faraday (Vernadsky)
station this warming record is + 5.7+2.0 °C 100 a‘!, mainly
due to winter warming (+ 11+9 0 °C 100 al). Each degree
of warming will result in a snow-accumulation rate of 12.5 _

mnTyeer Lalobalaarming is ——

theréfore increased atmospheric cyclmg of OC:s. —

Melting of glaciers under current global warming is to be
essential source of OCs secondary emission into the
aquatic ecosystems.

Upper limits for-total ameunts of the-POPs released from
glaciers.into.coastal waters of Antarctic Peninsula during

1980 — 2030 years are: 0.8 t DDTs, 0.3t PCBsand 4.5t
HCHes.




Conclusions

The temporal variations of OCs in Antarctica are
Inconsistent with “second sources” scenario for global
fractionation of OCs

The air/seawater and air/snow fluxes indicate on net
deposition of OCs from air to these mediums near the
equilibrium at present

The fugacity fractions faraikiSalland seawate _-.n r

— g = e

exchanges of OCs testify that moSTSC o S=a o

contaminated from local sources of OCs due to human
activities and biotic activities of seabirds, or this is
consequence of the “global distillation for OCs In
Antarctica

The firn-ice cover in Antarctica and burial in deep waters of
Ross and Weddell Seas are to be important final sinks for
OCs

Melting of glaciers of Antarctic Peninsula under current and
future global warming is to be essential source of OCs
secondary emission into the aquatic ecosystems
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