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16.1 INTRODUCTION
Multiwavelength astronomy provides a huge amount of
data from different sources over the whole electromag-
netic spectrum. Recently it has been supplemented with
data from neutrino astronomy and gravitational wave
astronomy (multimessenger astronomy). Since the end
of the 20th century the all-sky and large-area obser-
vational surveys as well as their catalogued databases
enriched and continue to enrich our knowledge of the
Universe. Astronomy has entered the Big Data era, when
these data are combined/compiled into numerous
archives. Each archive contains the observational data
that were obtained in a specific spectral range, for which
ground-based or space-born telescopes were developed
(see, for example, Chapter 5 in this book and commen-
taries by Brunner et al. (2002) on the nature of astro-
nomical data). However, modern astrophysics forces
to study astrophysical objects across the whole electro-
magnetic spectrum, because different physical processes
make themselves felt at different wavelengths (differ-
ent substructures of celestial bodies radiate at different
wavelengths). An identification of such substructures
and processes requires a very wide knowledge from
high-energy astrophysics to the radio decameter astron-
omy, wherein X-ray, gamma ray, and radio sources need
to be identified with their optical counterparts.

16.2 THE AUTOMATED MORPHOLOGICAL
CLASSIFICATION FOR THE SDSS
GALAXIES

Since 2000, the Sloan Digital Sky Survey (SDSS) (York
et al., 2000) has collected the most data that have been
amassed in the entire history of astronomy.1

1See Chapter 5 in this book.

Now, its archive contains about 170 terabytes of in-
formation, with most of these data about galaxies. As-
tronomers who are directly involved in the SDSS identi-
fied the problem of morphological galaxy classification
“as one of the most cumbersome areas in celestial clas-
sification, and the one that has proven the most difficult
to automate” (Kasivajhula et al., 2007).

Sense of galaxy morphological classification. Such
substructures of galaxies as the central region with ac-
tive nucleus and supermassive black hole, bulge and
bar, spiral arms, halo with a dark matter component,
star formation regions, intergalaxy medium, jets, disk,
rings, and others features compose the important build-
ing blocks, which are related to galaxy morphology, dy-
namics (mass distribution) and kinematics, and have
a decisive role in our understanding of galaxy forma-
tion and evolution. Galaxy morphological classification
on large-scale datasets allows us to reduce classification
errors and to improve statistics of the known morpho-
logical types of galaxies at different redshifts. A good
introduction to the classification algorithms for astro-
nomical tasks, including the machine learning methods
for galaxy morphological classification, one can find in
works by Buta and McCall (1999), de la Calleja and
Fuentes (2004), Feigelson and Babu (2006), Ball and
Brunner (2010), Ivezić et al. (2014) as well as in Chap-
ters 12 and 13 of this book.

To imagine better this interesting scientific problem,
we remind in Table 16.1 the numerical morphologi-
cal Hubble stage, which was introduced by G. de Vau-
couleurs in 1959 and improved by him later in “Global
Physical Parameters of Galaxies” in 1994. Various mor-
phological types of galaxies are illustrated in Fig. 16.1,
where images in optical range were taken from the
SDSS. It is important to underline that morphological
type (T) of a galaxy correlates with stellar population
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TABLE 16.1
Numerical Hubble stage.

Hubble stage T −6 −5 −4 −3 −2 −1 0 1 2
de Vaucouleurs class cE E E+ S0− S00 S0+ S0/a Sa Sab

Hubble class E S0 S0/a Sa Sa − b

Hubble stage T 3 4 5 6 7 8 9 10
de Vaucouleurs class Sb Sbc Sc Scd Sd Sdm Sm Im

Hubble class Sb Sb − c Sc IrrI I rrI

and star formation history, bulge/disk luminosity ratio,
mass concentration, interstellar media (chemical abun-
dance), and nuclear activity properties.

A very good pedagogical review with discussion
of the major methods in which galaxies are studied
morphologically and structurally is given by Conselice
(2014) that “includes the well-established visual method
for morphology; Sercic fitting to measure galaxy sizes
and surface brightness profile shapes; non-parametric
structural methods including the concentration (C),
asymmetry (A), clumpiness (S) (CAS method), the
Gini/M20 parameters, as well as newer structural in-
dices.” We remind that concentration C index (the log-
arithmic ratio of the radii containing 90% and 50%
of the light, R90/R50) is tightly related to morphology,
A (asymmetry) to merging, and S to star formation rate
(CAS parameters).

Visual and automated classification. Notwithstand-
ing, below we would like to underline briefly several
works, where different approaches were developed and
great efforts were made to identify the morphological
types of galaxies, first of all, from the SDSS, in the vi-
sual and/or the automated modes. We note that many
machine learning methods were actively involved to dis-
entangle this problem.

During the 1990s, the artificial neural network
(ANN) algorithm was widely used for automatic mor-
phological classification of galaxies since the very large
extragalactic datasets have been constructed. The clas-
sification accuracy (or the success rate) of the ANN
ranged from 65% to 90%, depending on the mathemat-
ical subtleties of the applied methods and the quality of
galaxy samples. One of the first such works was made by
Storrie-Lombardi et al. (1992) with a feedforward neu-
ral network and dealt with classification of 5217 galaxies
onto five classes (E, SO, Sa-Sb, Sc-Sd, and Irr) with a
64% accuracy. A detailed comparison of human and
neural classifiers was presented by Naim et al. (1995),

who used principal component analysis to test vari-
ous architectures to classify 831 galaxies: the best result
was obtained with an r.m.s. deviation of 1.8 T-types.
Summarizing the first attempts, Lahav et al. (1996) con-
cluded that “the ANNs can replicate the classification by
a human expert almost to the same degree of agreement
as that between two human experts, to within 2 T-type
units” (see Table 16.1).

Later de la Calleja and Fuentes (2004) developed
a method which combines two machine learning al-
gorithms: Locally Weighted Regression and ANN. They
tested it with 310 images of galaxies from the NGC cata-
logue and obtained an accuracy of 95.11% and 90.36%,
respectively. Ball et al. (2004) using the supervised ANN
derived that it may be applied without human inter-
vention for the SDSS galaxies (correlations between pre-
dicted and actual properties were around 0.9 with r.m.s.
errors of order 10%). Andrae et al. (2010) classified
the SDSS bright galaxies with a probabilistic classifica-
tion algorithm and obtained that it produces reasonable
morphological classes and object-to-class assignments
without any prior assumptions.

As for the visual morphological classification con-
ducted during the last years, we note a very powerful
study by Banerji et al. (2010), where galaxies classified
by the Galaxy Zoo Project into three classes (early types,
spirals, “spam” objects) have formed a training sam-
ple for morphological classifications of galaxies in the
SDSS DR6 (http://data.galaxyzoo.org). These authors
convincingly showed that using a set of certain galaxy
parameters, the neural network is able to reproduce the
human classifications to better than 90% for all these
classes and that the Galaxy Zoo catalogue (GZ1) can
serve as a training sample.

Totally, hundreds of thousands of volunteers were
involved into the Galaxy Zoo project to achieve visual
classification of a million galaxies in the SDSS. Most of
their results have found good scientific application. For

http://data.galaxyzoo.org
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FIG. 16.1 Galaxies of different morphological types from the SDSS sample.

example, using the raw imaging data from the SDSS that
was available in the GZ1, and the hand-picked features
from the SDSS, Kates-Harbeck (2012) applied a logistic
regression classifier and attained 95.21% classification
accuracy. Willett et al. (2013) issued a new catalogue
of morphological types from the Galaxy Zoo Project
(GZ2) in synergy with the SDSS DR7, which contains
more than 16 million morphological classifications of
304,122 galaxies and their finer morphological features

(bars, bulges, and the shapes of edge-on disks, as well
as parameters of the relative strengths of galactic bulges
and spiral arms). Another approach was developed by
Nair and Abraham (2010), who prepared the detailed
visual classifications for 14,034 galaxies in the SDSS
DR4 at z < 0.1, which can be used as a good training
sample for calibrating the automated galaxy classifica-
tion algorithms. A morphology catalogue of the SDSS
galaxies was generated with the Wndchrm image analy-
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sis utility and nearest neighbor classifier by Kuminski
and Shamir (2016). These authors pointed out that
about 900,000 of the instances classified as spiral galax-
ies and about 600,000 of those classified as elliptical
galaxies have a statistical agreement rate of about 98%
with the Galaxy Zoo classification.

“One approach to automated classification is to ask
what set of analytic or empirical components (bulge,
disk) best represent a galaxy’s detected image, and what
the expected errors (say in the χ2 sense) are. The lim-
itation here is that even in perfectly ordinary galaxies,
the fitted forms for these components vary, and many
galaxies have images that overlap with neighbors or are
dotted with brilliant star-forming regions. A quite differ-
ent approach is taken by neural-network schemes. Here,
one defines a set of input values based on the galaxy
image, and trains the code using a large set of galaxies
classified by eyeball (usually by several sets of eyeballs
for a consistency check). The code then finds the set of
hidden connections needed to give these outputs, and
can apply this mapping to any further data desired. This
is thought to be an analog of what the human brain
does in learning to recognize patterns, though working
backwards, it is not particularly clear just what the code
is responding to in the image, except that it looks most
like the typical image that it was taught to classify in this
way. Neural net classifiers seem to be statistically about
as good as human ones, which is especially impressive
if one considers that people may fold in all sorts of out-
side knowledge as to redshifts and pass bands in their
estimates” (Keel, 2007).

Recently Murrugarra and Hirata (2017) evaluated
the convolutional neural network to classify galaxies
from the SDSS onto two classes as ellipticals/spirals
using their images and achieved an accuracy around
90%–91%. Using convolutional neural networks, es-
pecially the inception method, Wahaono and Azhari
(2018) conducted classification into three general cat-
egories: ellipticals, spirals, and irregulars. They used 710
images (206 E, 320 Sp, 184 I rr) and obtained that
images which underwent image processing showed a
rather poor testing accuracy compared to not using any
form of image processing. Their best testing accuracy
was 78.3%. Both supervised and unsupervised methods
were applied by Jain et al. (2016) to study the Galaxy
Zoo dataset of 61,578 preclassified galaxies (spiral, el-
liptical, round, disk). They found that the variation of
galaxy images is correlated with brightness and eccen-
tricity, the random forest method gives a best accuracy
(67%), meanwhile its combination with regression to
predict the probabilities of galaxies associated with each
class allows to reach a 94% accuracy.

Examples on binary and ternary morphological
classification of the SDSS galaxies. Let us use the well-
known fact that galaxy morphological type is correlated
with the color indices, luminosity, de Vaucouleurs ra-
dius, inverse concentration index (R50/R90), etc. For ex-
ample, let us combine visual classification and the two-
dimensional diagrams of color indices g–i and one of
the aforementioned parameters as “color-absolute mag-
nitude,” “color-inverse concentration index,” “color-
de Vaucouleurs radius,” and “color-scale radius” for
each galaxy with redshifts 0.02 < z < 0.06, visual mr <

17.7, and absolute −24m < Mr < −17m magnitudes
from the SDSS DR9. Photometric and spectral parame-
ters of each object as well as their images are available
through the SDSS web site. As a result, we can discover
possible criteria for separating the galaxies into three
classes (Melnyk et al., 2012), i.e., early types (E) – el-
liptical and lenticular; spiral (S) – Sa − Scd types; late
spiral (LS) – Sd − Sdm types and irregular Im/BCG

galaxies. One can see in Fig. 16.2 that the “color indices
vs inverse concentration indexes” diagrams allow mak-
ing a ternary morphological galaxy classification with
a good accuracy (98% for E, 88% for S, and 57% for
LS classes). The combinations of (1) color indices g–i
and inverse concentration index R50/R90 and (2) color
indices g–i and absolute magnitude Mr gives the best re-
sult: 143,263 E class, 112,578 S class, 61,177 LS class for
the sample of the SDSS galaxies at z < 0.1 (Dobrycheva
et al., 2017).

We can apply different machine learning methods2

for providing a binary automated morphological classi-
fication for the same sample of the SDSS DR9 galaxies
as in the above case of photometric diagrams. Why is
it binary one? Because (1) S and LS classes of galaxies
could be considered as one class of the late type galaxies
L at the Hubble stage and (2) an accuracy for classifica-
tion of late spirals LS was low enough (57%).

The first step is to prepare a training galaxy sample
based on the SDSS DR9 and selected randomly with
different redshift and luminosity from the total sam-
ple for the following visual classification. The second
step is a training of the classifier. With this aim, we can
use the absolute magnitudes Mu, Mg , Mr , Mi , and Mz,
all the kinds of color indices Mu–Mr , Mg–Mi , Mu–Mg ,
Mr–Mz, and inverse concentration indexes R50/R90 to
the center in each photometric band.

Using our own code in Scikit Learn Python3 to pre-
dict correctly the galaxy morphology (late and early
types) we verified several machine learning methods

2See, for example, Chapter 12 in this book.
3https://scikit-learn.org/.

https://scikit-learn.org/
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FIG. 16.2 (Left) The dependence of the morphological types T on the color indices g–i for 730 galaxies
from the SDSS DR5. (Right) The inverse concentration index R50/R90 as functions of color indices for these
galaxies; the red circles correspond to early types (−2 to 0), the blue circles to spirals (1–6), and the green
circles to late type spiral and irregular galaxies (see, also, Table 16.1). The lines define regions into which a
maximum (more than 90%) number of galaxies of morphological types (−2 to 0), (1 to 6), and (7 to 10),
respectively, fall (or with a minimum number of the missclassified morphological types.

FIG. 16.3 Dependence of prediction accuracy for different machine learning methods of the automated
morphological classification with training SDSS galaxy sample: (left) for the random forest classifier on the
parameter “max depth”; (right) for the support vector machine classifier on the “C” parameter.

for binary morphological classification of the SDSS
galaxies. With this aim we used the sample of 60,561
galaxies from the SDSS DR9 survey with a redshift of
0.02 < z < 0.06 and absolute magnitudes of −24m <

Mr < −19.4m. Among the machine learning methods
were the following: naive Bayes, random forest, support
vector machines, logistic regression, and the k-nearest
neighbor algorithm. Prediction accuracy was evaluated
for each of these methods for the training galaxy sam-

ple and reached the following values (all the above-
mentioned classifiers include the k-fold cross-validation
method):

naive Bayes classifier: 0.89 (E – 0.92, L – 0.82) ±
0.01;

k-nearest neighbors classifier: 0.945 (E – 0.9389, L –
0.958) ± 0.006;

logistic regression classifier: 0.949 (E – 0.968, L –
0.911) ± 0.006;
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FIG. 16.4 Images of SDSS galaxies. Left: With correctly classified morphology. Top: Early type. Bottom:
Late type. Right: with the misclassified morphology. Top and left bottom: Late types, which are classified as
early types. Right bottom: gravitational lens classified as early type galaxy.

random forest classifier: 0.955 (E – 0.967, L –
0.928) ± 0.003;

support vector machine classifier: 0.964 (E – 0.961,
L – 0.969) ± 0.006.

It turned out (Fig. 16.3) that the methods of random
forest and support vector machine provide the highest
accuracy (Vasylenko et al., 2019). Examples of images
of galaxies with a correct classification on the early and
late types are given in Fig. 16.4 (left panel).

The problem points arise when we have cases of the
face-on and edge-on galaxies (Fig. 16.4, right panel).
Most of these galaxies are misclassified as elliptical
galaxies (early type). The good thing is that this ap-
proach allow us to recover gravitational lenses (point-
like sources, arcs) and most of such misclassifications
are also among elliptical galaxies. So, we have overesti-
mated the number of elliptical and underestimated the
number of spiral galaxies (about 10%).

But this problem can be solved when we form
training samples through several steps (pretraining,
fine-tuning, and classification). The step of fine-tuning
should include the limitations on the axes-ratio for el-
liptical galaxies and additional photometry parameters
for the face-on galaxies, as well as trainings with im-
ages and spectral features of galaxies which requires a
specific algorithm with deep learning methods.

The distribution of the SDSS galaxies at 0.02 < z <

0.1 with the automated morphological binary classifica-
tion (early and late types) is given in Fig. 16.5.

Last remarks. The machine learning methods are in-
dispensable assistants in solving morphological classi-
fication since their first application to tackle this prob-

lem with the ANN algorithm (Storrie-Lombardi et al.,
1992). They are also effective for reconstruction of the
Zone of Avoidance, distance modulus for local galaxies,
gravitational lenses search, and other important tasks.
The race in accuracy of machine learning methods leads
to the search for the most effective among them and
to the selection of the most reliable galaxy parame-
ters (photometry, spectra, images), which can be used
to determine galaxy morphology. Note that the diver-
sity of the morphological types (Hubble stage, optical
range), which we discussed in this subsection, is ob-
served at redshifts z < 3; at larger redshifts the other
approaches and algorithms should be applied. Also, an-
other frontier in classification problems is approaching
when we consider galaxies in the ultraviolet, infrared,
or radio ranges (see, for example, Buta et al., 2010;
Bell and Salim, 2011; Banfield et al., 2015; Smith and
Donohoe, 2019), when their parameters and images
should be complemented or cross-matched with opti-
cal counterparts.

16.3 ZONE OF AVOIDANCE OF THE MILKY
WAY

The data incompleteness in dependence on the wave-
length at which galaxies are sampled says that there are
important problems in the sky area obscured by our
galaxy. This sky area is the so-called Zone of Avoidance
(ZoA) of the Milky Way (see, for example, Fig. 16.5,
where several large-scale structures as the SDSS Great
Wall, SDSS voids (Mao et al., 2016), CfA2 Great Wall,
Great Attractor, and the Zone of Avoidance are pointed
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FIG. 16.5 Distribution of 48,651 galaxies from the SDSS DR9 at 0.02 < z < 0.1 (δ = ±5◦) with determined
morphological classification. Red dots, elliptical galaxies and lenticulars (E − S0a, N = 24916); blue dots,
spirals, late spirals, and irregulars (Sa − Irr, N = 23735). Several large-scale structures (SDSS Great Wall,
SDSS voids, CfA2 Great Wall, Great Attractor) and the Zone of Avoidance of the Milky Way are pointed out.
At distances of more than 200 Mpc, the Universe becomes “gradually” homogeneous and isotropic.

out). “Why is it of interest to know the galaxy distribu-
tion behind the Milky Way, and why is it not sufficient
to study galaxies and their large-scale distribution away
from the foreground “pollution” of the Milky Way? To
understand the dynamics in the nearby Universe and
answer the question whether the dipole in the Cosmic
Microwave Background (CMB) and other velocity flow
fields (e.g. towards the Great Attractor) can be fully ex-
plained by the clumpy galaxy/mass distribution, whole-
sky coverage is essential” (cited by Kraan-Korteweg and
Lahav, 2000).

Brief history. The English astronomer Proctor (1878)
firstly noted the Zone of Avoidance of the Milky Way as
a Zone of Few Nebulae. Later, in papers by Stratonoff
(1900), Easton (1904), Sanford (1917), Charlier (1922)
and other authors, who used mostly isopleths as a cos-
mographic method (contour maps “number of galaxies
per the sky area”), the presence of this zone in the distri-
bution of galaxies became obvious. A first definition of
the Zone of Avoidance was proposed by Shapley (1961)
as the region delimited by “the isopleth of five galax-
ies per square degree from the Lick and Harvard sur-
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veys” (compared to a mean of 54 galaxies/square degree
found in unobscured regions by Shane and Wirtanen,
1967).

Due to the incomplete sampling in the area of ab-
sorption, on the basis of which the velocity field is con-
structed, we cannot determine its homogeneity, which
gives an error in the definite direction of motion of our
Galaxy by this method. We can assume that there are a
significant number of galaxies in this zone (Fig. 16.5)
based on discrepancy between the vectors of movement
of galaxies of the Local Group relative to the coordi-
nate system associated with the cosmic microwave back-
ground (CMB) radiation. The Zone of Avoidance is also
heterogeneous because the Solar System is not located
in the center of our Galaxy.

Due to the small number of known objects, decreas-
ing the brightness of the extragalactic objects when we
approach the galactic equator, increasing the concen-
tration of stars on the line of sight, which results in
increasing the overlap of the extragalactic object with
the star, the extragalactic astronomers usually avoid this
area (Kraan-Korteweg and Lahav, 2000).

The problem can be solved by either direct or indi-
rect techniques. Under direct methods we understand
the observations of whole-sky surveys in different spec-
tral ranges near the galactic equator (b ∈ [−20◦,+20◦]).
Indirect methods consist in applying the mathematical
simulation and data mining methods to fill the Zone
of Avoidance as well as to determine the gravitational
potentials of the nearest galaxies in order to predict the
positions of galaxies and galaxy systems in the area of
Milky Way absorption. Great attention is also focused
on the machine learning technique.

Multiwavelength observations. Direct methods.
Since the 1970s the Zone of Avoidance has decreased
significantly due to studies in the infrared and radio
spectral ranges (due to the decrease in the amount of
light absorption with increasing wavelength, the Zone
of Avoidance becomes more transparent in these spec-
tral ranges).

First of all, on 29 September 1967, Italian as-
tronomer P. Maffei discovered the elliptical galaxy Maf-
fei 1 together with the spiral galaxy Maffei 2 in the Zone
of Avoidance. He used a hypersensitized I-N photo-
graphic plate for the infrared range and exposed it with
the Schmidt telescope at Asiago Observatory (see the
paper by Maffei, 2003 for a review of his own works).
Maffei 1 is located 0.55◦ from the galactic plane in the
middle of the Zone of Avoidance (α = 02h 36m 35.4s ,
δ = +59◦ 39′ 19′′, m = 11.14 ± 0.06 in the V-band). Maf-
fei 1 would be one of the largest and brightest elliptical
galaxies in the sky (about 3/4 the size of the full moon)

FIG. 16.6 Galaxies Maffei 1 (down right) and Maffei 2 (top
left), discovered by P. Maffei in the Zone of Avoidance.

if there were no 4.7m of extinction (a factor of about
1/70) in the visible range (Fig. 16.6).

Maffei’s discovery promoted a lively discussion in
those times about possible membership of these galax-
ies to the Local Group. In 1970 Spinrad suggested that
Maffei 1 is a nearby heavily obscured giant elliptical
galaxy and estimated the distance to Maffei 1 as 1 Mpc
(Local Group member?). In 1983 this estimate was re-
vised up to 2.1+1.3

−0.8 Mpc by Buta and McCall (Maf-
fei 1 is outside the Local Group!). In 2001, Davidge
and van den Bergh used adaptive optics to observe the
brightest AGB stars in Maffei 1 and concluded that the
distance is 4.4+0.6

−0.5 Mpc. A latest determination of the
distance to Maffei 1 is 2.85 ± 0.36 Mpc, which is based
on the recalibrated luminosity/velocity dispersion rela-
tion for E-galaxies and the updated extinction. It proves
that Maffei 1 is a key member of a nearby galaxy group
named Maffei Group, where among other members are
the giant spiral galaxies IC342 and Maffei 2. Maffei 1
has also a small satellite spiral galaxy Dwingeloo 1 as
well as a number of dwarf satellites like MB1. The IC
342/Maffei Group is one of the closest galaxy groups to
the Milky Way (Huchtmeier et al., 1995; Karachentsev
et al., 2003). The larger (≥ 3 Mpc) distances reported in
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FIG. 16.7 Distribution in galactic coordinates of the 1036 galaxies detected in the deep HI ZOA survey.
Open circles, Vhel < 3500; circled crosses, 3500 < Vhel < 6500; filled circles, Vhel > 9500 km/s
(Kraan-Korteweg et al., 2003, Open Astronomy).

the past 20 years would imply that Maffei 1 has never
been close enough to the Local Group to significantly
influence its dynamics.

The current notion of the Zone of Avoidance has
changed in the 1990s and was connected with explo-
ration of the infrared satellite IRAS and the releases of
2MASS survey as well as with several projects in the ra-
dio range. If it was previously believed that this area
closes an observer about 20% of the spatial distribution
of galaxies in the optical range, which leads to an in-
complete catalogue of galaxies near the Galactic Plane,
then this value is now about 10%. Completeness of
Zone of Avoidance galaxy catalogues as a function of
the foreground extinction is as follows: optical Zone of
Avoidance surveys are complete to an apparent diame-
ter of D = 14′′, where the diameters correspond to an
isophote of 24.5 mag/arcsec2 for extinction levels less
than AB = 3.0m.

Because of the transparency of the galaxy to the
21 cm radiation of neutral hydrogen, systematic HI-
surveys are particularly powerful in mapping large-scale
structures in this part of the sky. The redshifted 21 cm
emission of HI-rich galaxies are readily detectable at
lowest latitudes and highest extinction levels and the
signal will furthermore provide immediate redshift and
rotational velocity information. Observations of the
neutral hydrogen (21 cm) in the frame of the DOGS
project revealed the Dwingeloo 1 (Kraan-Korteweg et
al., 1994) and Dwingeloo 2 (Burton et al., 1996) galax-
ies in this zone (see, for example, Huchtmeier et al.,
1995; Buta and McCall, 1999; Karachentsev, 2005 on
the estimates of their kinematic and dynamic parame-
ters). Supplementary to these surveys, the Parkes Multi-
beam HI ZOA Survey as a systematic deep blind HI
survey of the Southern Milky Way was begun in 1997
with the Multibeam receiver at the 64 m Parkes tele-

scope. Surveys were centered on the Southern Galactic
Plane: 196◦ ≤ l ≤ 52◦, |b| ≤ 5◦. The coverage in redshift
space was −1200 < Vhel < 12700 km/s (see, for example,
Saurer et al., 1997). Distribution of the 1036 galaxies in
galactic coordinates detected in the deep HI ZOA survey
is shown in Fig. 16.7.

It should be noted that the absence of a signal does
not always indicate the absence of a galaxy, but may be
associated with a low HI content (Lahav et al., 1998).
This method is slow and requires a lot of time, but the
conjunction of HI surveys and 2MASS will greatly in-
crease the current census of galaxies hidden behind the
Milky Way. In 2000, Jarrett et al. (2000) reported on
the detection of newly discovered sources from 2MASS.
There were also identification results of the HI spectra
of galaxies which were observed by the IRAS (Lu et al.,
1990).

The Milky Way is transparent to the hard X-ray emis-
sion above a few keV, and because the rich clusters
are strong X-ray emitters. Since the X-ray luminosity is
roughly proportional to the cluster mass as LX ∝ M3/2

or M2, depending on the still uncertain scaling law be-
tween the X-ray luminosity and temperature (see, for
example, Babyk and Vavilova, 2012; Babyk and Vavilova,
2013; Babyk and Vavilova, 2014 and references therein),
the massive clusters hidden by the Milky Way should
be gravitationally stable through their X-ray emission
(Kocevski et al., 2004; Ebeling et al., 2001). The clusters
are primarily composed of early-type galaxies, which are
not recovered by infrared galaxy surveys or by systematic
HI surveys; that is why the method is particularly inter-
esting (see Fig. 16.8).

The inhomogeneous distributed mass of matter in
the Zone of Avoidance surrounding the Local Group
may cause the unbalanced gravity toward the Local
Group in one direction. Despite the fact that the result-
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FIG. 16.8 Distribution in galactic coordinates of the 76 by Ebeling et al. (2002) so far spectroscopically
confirmed X-ray clusters (solid dots) of which 80% were previously unknown. Superimposed are galactic HI
column densities in units of 1020 cm−2 (Dickey and Lockman, 1990). Note that the region of relatively high
absorption (NHI > 5 × 1021 cm−2) actually is very narrow and that clusters could be identified to very low
latitudes (Kraan-Korteweg and Lahav, 2000, Open Astronomy).

ing vector of velocity of the Local Group lies within 20◦
of the observed cosmic background dipole, the calcu-
lations remain ambiguous (Karachentsev et al., 2013;
Kashibadze et al., 2018), partly because galaxies in the
Zone of Avoidance are not taken into account (Vavilova,
2000; Erdoǧdu and Lahav, 2009).

A dipole known by CBM studies is the asymmetry of
the radiation temperature. It is the heating of 0.1% of
CMB radiation in comparison with the average in one
direction and in the same cooling in the opposite direc-
tion. The COBE (1989–1990) studies indicated that the
Milky Way and the Local Group are moving at a veloc-
ity ∼ Vp = 627 km/s to (l = 276◦, b = 30◦), towards the
Hydra constellation (Kogut et al., 1993). This motion
determines the distribution of matter Mi in the Local
Group and the cosmological parameter �0 (Giovanelli

and Haynes, 1989): 	Vp ∝ �0.6
0
b

∑
i

Mi

r2
i

ri . Filling the zone

|b| ≤ 20◦ by galaxies changes the direction of move-
ment measured in the volume of 6000 km/s by 31◦
(Kolatt and Dekel, 1997; Vasylenko and Kudrya, 2017).
Nearby unknown galaxies in the Zone of Avoidance can
make a larger contribution to the definition of a vector
of collective velocity than whole clusters over long dis-
tances: 	Vp ∝ ∑

i 10−0.4mri .
This discrepancy between the direction on the dipole

and the expected velocity vector made it necessary to
introduce the concept of “attractors” (the Great Attrac-
tor at a distance of about 60 Mpc; see also Fig. 16.5).
Perseus-Pisces and the Great Attractor overdensity lie at
similar distances on opposite sides of the Local Group
and are partially obscured by the Zone of Avoidance.

The Zone of Avoidance is fully incomplete at low galac-
tic latitudes in the larger Galactic Bulge area (l ≈ 0◦ ±
90◦). Even if the obscured galaxies can be identified, it
is very difficult to determine their redshifts because of
the higher extinction levels. Since the method involves
uniform filling of the sky by the galaxies of the field,
and chaotic filling them with nonreal objects leads to
the formation of nonexistent fields, attempts to solve
the problem of the incompatibility of the vector apex
motion of the Local Group determined by the CMB and
the velocity field did not give a positive result.

So, the multiwavelength surveys of the Zone of
Avoidance in the last decades were aimed at address-
ing such key problems as the cosmological questions
about the dynamics of the Local Group, the possible
existence of nearby hidden massive galaxies, the dipole
determinations based on luminous galaxies, the conti-
nuity and size of nearby superclusters, and the mapping
of cosmic flow fields (a very comprehensive review is
given by Kraan-Korteweg and Lahav, 2000).

Machine learning. Indirect methods. The solution
of these problems is possible also by indirect methods,
which include the methods of signal processing applied
to obscured and incomplete data; indirect estimates of
averaged variables; the mask inversion using Wiener fil-
tering in spherical harmonic analysis; reconstruction of
the projected galaxy distribution in infrared, radio, and
X-ray spectral ranges; two-dimensional Wiener recon-
struction to three dimensions; methods of Voronoi mo-
saic, cluster, and fractal analysis; and machine learning
techniques.



CHAPTER 16 Multiwavelength Extragalactic Surveys: Examples of Data Mining 317

The last successful results of analysis of the spa-
tial distribution of galaxies and their systems in the
areas surrounding the Milky Way Zone of Avoidance
based on the 2MASS Tully–Fisher Survey and the HI
observational surveys are presented in works by Said et
al. (2014, 2016b, 2016a), where the optimized Tully–
Fisher relation for measured distances and peculiar ve-
locities is developed for dust-obscured galaxies. But it
remains a complex and unresolved problem, as well as
the estimation of the “invisible” content of the spatial
galaxy distribution

The problem of Zone of Avoidance reconstruc-
tion is related to dealing with gaps in the spectro-
scopic observations to restore homogeneous sky cov-
erage. Classical three-dimensional reconstruction of
the extragalactic objects behind the Milky Way to pre-
serve the coherence of the large scale structure was
triggered by the search of the Great Attractor in the
1990s (Kraan-Korteweg, 2005). And reconstruction of
missing information could be oriented towards the
observations of galaxies and their systems that sur-
round the Zone of Avoidance (Courtois et al., 2012;
Sorce et al., 2017).

The existence of unobserved zones in scale compa-
rable to the size of investigated zones can have a seri-
ous impact on the study of galaxy properties and local
environments. In this case, the local and deterministic
recovery of the missing data is needed (Cucciati et al.,
2006). For small-scale reconstruction techniques such
as the following are common: direct cloning (Elyiv,
2006), wavelet analysis (Vavilova, 1997), cluster anal-
ysis (Gregul et al., 1991; Vavilova and Melnyk, 2005),
randomized cloning of objects into unobserved areas
or application of Wiener filtering (Lahav et al., 1994;
Branchini et al., 1999), Voronoi tessellation (Melnyk et
al., 2006; Elyiv et al., 2009; Dobrycheva et al., 2014).
Cucciati et al. (2014) proposed two algorithms that use
photometric redshift of target objects and assign red-
shifts based on the spectroscopic redshifts of the nearest
galaxies. A Wiener filter applied in this work was very
efficient also to reconstruct the continuous density field
instead of individual galaxy positions. These methods
can clearly separate underdense from overdense regions
on scales of 5 h−1 Mpc at moderate redshifts 0.5 < z <

1.1, which is important for studies of cosmic variance
and rare population galaxy systems.

There are limits of optical observations of extended
objects due to random and systematic noise from de-
tector, the telescope system, and the sky background.
Schawinski et al. (2017) estimated a possibility to re-
cover artificially degraded images with a high noise
using state-of-the-art methods of machine learning,

namely, deep learning – generative adversarial net-
works (GANs). It works better than simple deconvo-
lution.

Generative adversarial neural networks as the type of
unsupervised machine learning algorithms were first in-
vented by Goodfellow et al. (2014). The main idea of
these classes of algorithms are two neural networks con-
testing with each other. First, a neural network called
“generative” (typically a deconvolutional one) gener-
ates candidate images and a second neural network
(a convolutional discriminative one) evaluates them.
The generative network trains to transfer from a space
of features to a particular data distribution. At the same
time the discriminative network discriminates between
the produced candidates and real examples. Schawinski
et al. (2017) applied the GAN to 4550 galaxies from the
SDSS DR12. The authors have proved that this method
can reliably recover features in images of galaxies and
can go well beyond the limitation of deconvolutions.
As the training sample they used image pairs: one orig-
inal image of a galaxy and the same image artificially
degraded (convolved with PSF). In general, the GAN
learns how to recover the degraded image by mini-
mizing the difference between the recovered and true
images. With this purpose, the authors used a second
neural network, whose aim was to distinguish the syn-
thetic recovered image from the true image. These two
neural networks are trained simultaneously. Therefore,
by training on higher-quality images, the GAN method
can learn how to recover information from the lower-
quality data by building priors. Such approach has a
potential for recovering partially damaged images with
gaps and dead CCD chips. The algorithm of reconstruc-
tion of three-dimensional structures behind the Zone of
Avoidance with the modified GAN method is presented
in Fig. 16.9 and described by Vavilova et al. (2018).

We have just one unique sample of galaxies, i.e., just
one set for training, which is a principal problem. In
the approach described above we cannot use a set of
many images for training. One solution could be to pre-
pare the mock catalogues from numerical simulations,
which reproduce a target sample. In this case we may
generate as many pairs as possible – a real survey and
a survey with Zone of Avoidance. Additionally, the po-
sition of the Zone of Avoidance could be randomized
over the survey field. A goal of generative ANN will be
to generate galaxy distributions and their properties in
the Zone of Avoidance from a latent space of features.
At the same time, a discriminative network will com-
pare the obtained survey with the real one and evalu-
ate how realistic it is. The generative network produces
better surveys with iteration, while the discriminative
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FIG. 16.9 Scheme of the data preparation, the training and testing phases for the Zone of Avoidance
recovering by the GAN method. The input is a set of mock surveys from which the artificial Zone of
Avoidance was generated to train the GAN. A generative ANN is used to recover surveys in the at the
testing phase (Vavilova et al., 2018).

one becomes more experienced at labeling the synthetic
ones. In such a way the system learns the sophisti-
cated loss functions automatically without its predefi-
nition.

To apply the algorithm, we should prepare a sam-
ple of galaxies surrounding the Zone of Avoidance,
which is complete by stellar magnitudes. To get a three-
dimensional spatial distribution of galaxies in this sam-
ple, we must obtain their photometric redshifts and to
divide this sample on the slices by coordinates, tak-
ing into account the cosmological parameters. Each of
these slices should contain a real distribution and the

damaged image (part of the Zone of Avoidance region),
which will require darning. The preliminary step how
the algorithm works and restores a galaxy distribution
should be conducted and tested with subsamples of real
galaxies selected from the nondamaged regions.

16.4 FLUX VARIABILITY OF THE BLAZAR
3C 454.3

Another good example for illustration of the data min-
ing from multiwavelength astronomical databases is re-
lated to the active galactic nuclei (AGNs). We explain it
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with the blazar 3C 454.3 (see, all-sky view taken with
Fermi/LAT in Fig. 5.16), which is one of the brightest
AGNs at all frequencies.4

This blazar is located in direction of Alpha Pe-
gasi (Markab) at the distance of 7.7 Gly (redshift
z = 0.859001 ± 0.000170); right ascension is α =
22h 53m 57.7s , declination δ = +16◦ 08′ 53.6′′. It
has a strong flux variability at all wavelengths from
gamma ray to radio. The spectral energy distribution
of 3C 454.3 displays the two peaks typical for AGNs,
one in the infrared and optical, and the other in the
X-ray and gamma ray. The spectral characteristics of
these peaks are determined by two radiation mecha-
nisms – synchrotron radiation by relativistic electrons
and inverse-Compton scattering of “soft” photons on
relativistic electrons.

Observations have also established that a single radi-
ation mechanism operates from the radio to the optical
spectrum. This was first confirmed directly when corre-
lations were found between flux variations at different
frequencies during the development of a major flare in
2005–2006 (Volvach et al., 2007). Variations in the flux
of 3C 454.3 were observed on scales from days to a year,
which were repeated in the optical and radio spectra. It
was shown that both the duration of the flare (about a
year) and individual features of the flare were the same
in these two frequency ranges. This is possible only if
a single mechanism is generating the radiation in these
different ranges. Thus, it was established that both radio
and optical emission is produced by the jet. The delay
between the flares in the optical and millimeter ranges
was about ten months, with about the same delay ob-
served for centimeter wavelengths. The frequency de-
pendence of the delays and the intervals between flares
can be used to predict future flares in this object in var-
ious frequency ranges.

For example, the three flares in the blazar 3C 454.3
were observed during 2005–2010 and allowed to deter-
mine their locations in the jet from gamma ray to radio
range and to estimate a size of the Stromgren zone for

4Blazar is an active galaxy nucleus, which is located at the center of the
elliptical galaxy and has a relativistic jet oriented close to the line of sight
with the observer. The name blazar was coined in 1978 by E. Spiegel to
denote the combination of BL Lac objects and of optically violently vari-
able quasars. Being one of the powerful sources of emission, blazars are
characterized by high polarization and very rapid fluctuations in bright-
ness. Among well-known blazars are BL Lacertae, 3C 454.3, 3C 273, PKS
2155-304, S5 0014+81 (TeV Blazar with the most supermassive black
hole, 109 �), and others. The unique blazar TXS 0506+056, which is a
source of high-energy neutrinos, was discovered in the frame of the Ice-
Cube project (icecube.wisc.edu) in July, 2018 (see, for example, Overbye
Dennis, “It Came From a Black Hole, and Landed in Antarctica – For the
first time, astronomers followed cosmic neutrinos into the fire-spitting
heart of a supermassive blazar,” 12 July 2018, The New York Times).

FIG. 16.10 Light curves for the blazar 3C 454.3 at various
frequencies from radio to gamma ray ranges, obtained for
the observational period of 2004–2010 (Volvach et al., 2011).

sources of ionization associated with a binary super-
massive black hole in the central region (Volvach et al.,
2011).

Light curves for the blazar 3C 454.3 in spectral
ranges from radio to gamma ray obtained for the ob-
servational period of 2004–2010 years are presented in
Fig. 16.10.
• Radio observations were conducted at 22.2 and

36.8 GHz with the 22 m radio telescope of the
Crimean Astrophysical Observatory using modula-
tion radiometers (Efanov et al., 1979). Observations
at 4.8, 8, and 14.5 GHz were carried out on the
26 m telescope of the University of Michigan Radio
Astronomy Observatory (Aller et al., 2001). Observa-
tions at 37 GHz were obtained using the 14 m tele-
scope of the Metsahovi Radio Observatory of Aalto
University. The data for radio range obtained with
different telescopes are in good agreement and sup-

https://icecube.wisc.edu/
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plement each other during the long-term monitoring
period.

• Optical data were obtained from the WEBT archive
at the Osservatorio Astronomico di Torino of the
Istituto Nazionale Di Astrofisica as a part of the
WEBT program (Whole Earth Blazar Telescope) and
were supplemented with observational data from the
70 cm telescope of the Crimean Astrophysical Obser-
vatory (Sergeev et al., 2005).

• The gamma ray observational data of 3C 454.3 from
24 April 2005 through 18 September 2010 were pro-
vided from the Swift spacecraft Burst Alert Telescope
(BAT), which operates at 15–195 keV, and from the
X-ray Telescope (XRT), which operates at 0.3–10 keV.
These data are available through the HEASARC web
site.5 The energy range for the 3C 454.3 light curve
obtained during the Swift/BAT transient monitor-
ing program is 15–50 keV (Fig. 16.10). X-ray ob-
servations at 2–10 keV range were obtained with
the Rossi X-ray Timing Explorer (RXTE). To exclude
short-period variability and reduce uncertainty in the
measured fluxes these light curves could be averaged
over time intervals of one day, which corresponds
to 15 orbital periods of the RXTE satellite (Chesnok
et al., 2009). The data from the Fermi gamma ray
telescope (the main instrument is the Large Area
Telescope) were used to calculate light curves from
100 MeV to 300 GeV (lower panel of Fig. 16.10) of
3C 454.3, which is identified with the gamma ray
source 1FGL 2253.9+1608 (Abdo et al., 2010).
Using the Shuster method one can conduct a har-

monic analysis of the flux variations of 3C 454.3 from
radio to gamma ray ranges and derive a unified law for
the frequency-dependent delays of the flares. The dou-
ble character of the flares in the period 2005–2010 may
indicate the passage of a companion of the central su-
permassive black hole through the accretion disk at the
pericenter, with the disk oriented at some angle to the
orbit of the companion (Vol’Vach et al., 2011).

The American Association of Variable Star Observers
installed a “Light Curve Generator for 3C 454.3,” which
is available through http://www.aavso.org/, where ev-
erybody can find periods of its outbursts, brightening
to a peak apparent magnitude of 13.4 in June 2014. Us-
ing SIMBAD entry for “3C 454.3” one can access to all
the available multiwavelength data on this blazar.

Instead of conclusion to the chapter. Summarizing
what is written above, we emphasize that the current
multiwavelength databases help us not only to study
deeply the known phenomena in the universe, but also

5http://heasarc.gsfc.nasa.gov/docs/swift/results/transients/weak/.

to discover new features that have not been seen be-
fore. Current data in various archives save a lot of time
needed for downloading, analyzing, collecting, and de-
scribing soft observational data. Astronomical data are
very heterogeneous, allowing everyone to find in this va-
riety a solution to the new puzzles of the Universe.
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