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FOREWORD OF THE EDITOR

9

Current science of the extraterrestrial world, based on observati-
ons and physical theories, during the last decades has collected
many independent types of evidence to certify that about 95% of
the energy-mass content of our Universe is dark and invisible, and
its physical nature is unknown. There are also many arguments
that it is composed of two ingredients: dark matter, which facili-
tates clustering of the baryonic matter, and dark energy, which is
almost uniform and is responsible for the accelerated expansion
of the Universe. Scientific teams of physicists, astrophysicists and
cosmologists all over the world endeavor to unveil these mysteri-
ous components, which today dominate in the average density of
the Universe and determine the physical properties and evolution
of our Universe. This task becomes extremely important for the
elaboration of particle physics beyond the Standard Model.

In 2007, the programme of the National Academy of Sci-
ences of Ukraine “Investigations of the structure and composition
of the Universe, hidden mass and dark energy (Cosmomicrophy-
sics)” was initiated, aimed at consolidating the efforts of different
scientific teams in several research institutes and universities wor-
king in the field of astroparticle physics and theory of gravity and
investigating the dark components of the Universe. The results
of six-year activity in the framework of this programme will be
presented in the three-volume edition “Dark energy and dark
matter in the Universe”. The present book is the first of the
volume series and is devoted to the problem of dark energy. It
describes the current state of the problem of dark energy as well
as the contribution of the authors to this issue. Their investi-
gation in this area was supported in part by the Cosmomicrophy-
sics programme during the last six years, but the book also con-
tains their previous results obtained in the framework of the state
projects in their respective institutions as well as other projects
and grants which are mentioned in the acknowledgments. The
first and second chapters of the book are written by Bohdan



Foreword of the Editor

Novosyadlyj, the third one by Alexander Zhuk, the fourth one by Yuri Shtanov and
the fifth one by Volodymyr Pelykh.

This monography is dedicated to the memory of our colleagues and friends Peter
Fomin (1930—2011), Anatolij Minakov (1949—2012) and Victor Vakulik (1953—2012),
distinguished Ukrainian physicists who had passed away when this book was being
written. Peter Fomin made significant contributions to the quantum field theory and
quantum cosmology; he is the author of the idea of quantum birth of the Universe.
Anatolij Minakov laid the foundations for the application of the theory of gravi-
tational lensing to the interpretation of gravitational lens systems and estimation of
dark matter abundance. Victor Vakulik was an unsurpassed specialist in computer
simulation and a brilliant interpreter of astrophysical observational data.

V. SHULGA
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OBSERVATIONAL EVIDENCE
FOR DARK ENERGY

1.1. Introduction

13

The term “dark energy” has appeared in the titles and
abstracts of scientific papers in 1998 after announcements
about discovery of the accelerated expansion the Universe,
made by two teams practically simultaneously — Supernova
Cosmology Project [1,2] and High-Z Supernova Search [3,4].
The first application of this term in the conventional now
meaning we have found in the papers [5—7], one year before
M.Turner and M.White called this essence “smooth com-
ponent” [8] and P. Steinhardt “quintessence” [9]. Up to now
the number of papers devoted to this subject has amounted
to more then ten thousands and continues to grow in about
two thousands per year during last years (Fig. 1), that signi-
fies the actuality of dark energy problem and its importance
for fundamental physics, astrophysics and cosmology.

Dark energy stands for the wide spectrum of new physi-
cal substances capable to provide the accelerated expansion
of the Universe. But not only that. It must be noted, that
cosmology was looking for such essence for years. Indeed,
measurements of peculiar velocities of galaxies carried out in
the second half of 80s and first half of 90s showed, that total
matter density (baryons and cold dark matter, CDM) of our
Universe is 0.4± 0.1 of critical one [10]. On the other hand,
all measurements of the Hubble constant showed, that it is
larger than 60 km/s ·Mpc [11]. It meant, that the age of the
maximally open Universe does not exceed 13 billion years,
while the age of oldest stars in the globular clusters was esti-
mated to be 13.5± 2 billion years [12]. So, open models of
the Universe have not enough margin of safety, but models
with cosmological constant have: even at the upper limit of
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Fig. 1.1. Number of papers (accumulative and per year) in SAO/NASA
Astrophysics Data System with key words “dark energy” in title or abstract

Hubble constant estimation — 85 km/s ·Mpc — the age of the Universe is about
14 billion years. The matter dominated model with low 3-space curvature was
ruled out by these data at high confidential level.

Other indications of the presence of unusual component in our Universe
came from the study of large scale structure formation. Bahcall et al. [13]
have revealed the massive rich clusters of galaxies at redshifts z > 0.5,
such early appearance of them in the COBE normalized [14, 15] hierarchi-
cal scenarios of large scale structure formation is possible if growth factor of
density perturbations is lower than one in the standard CDM model (SCDM)
with density dominated by cold dark matter and zero 3-space curvature.
It is such in open CDM (OCDM) and CDM with cosmological constant
(ΛCDM) models. The last ones had higher margin of safety than former. The
measurements of power spectra of matter density perturbations [16], X-ray
cluster temperature function [17] and galaxy bulk flows [18] also preferred
ΛCDM model [19, 20]. But the science lacked for the direct test for such
model — determination of deceleration parameter q0, which is positive in the
matter dominated models (decelerated expansion) and negative in the Λ domi-
nated ones (accelerated expansion). Its early estimations, listed in review [21],
were very rough, −1.3 ≤ q0 ≤ 1.6, and gave no possibility to constraint the
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models. Improving this test became the key task for Hubble Space Telescope
(HST) and largest ground-based telescopes installed in 90s. And this problem
was successfully solved using Type Ia supernovae (SNe Ia) as standard candles
for magnitude-redshift relation.

The 1998 became the prominent year for cosmology. The High-Z Super-
nova Search team on the base of spectral and photometric investigations of
16 high-redshift and 34 nearby SNe Ia claimed [3] that deceleration parameter
q0 < 0 at confidential levels from 99.5% (2.8σ) to 99.9% (3.9σ) for q0 =
= Ωm/2− ΩΛ. These authors found also that more uncertain estimate for
its value is q0 = −1 ± 0.4. The Supernova Cosmology Project team during
ten-year observations had discovered 42 SNe Ia at redshifts between 0.18 and
0.83 which were photometrically and spectroscopically investigated carefully.
After complete analysis of the data the team claimed [2] that cosmological
constant is non-zero and positive with the confidence of 99%, including the
identified systematic uncertainties. They obtained the relation which approxi-
mates the joint probability distribution of matter and cosmological constant
density parameters: 0.8Ωm + 0.6ΩΛ ≈ −0.2 ± 0.1. It means that deceleration
parameter q0 ≈ −5Ωm/6−1/3±1/6 and is surely negative. So, the accelerated
expansion of the Universe was strongly preferred by magnitude-redshift data
for SNe Ia. But for assurance other proofs based on the other observations
should be realized. The large scale structure evidence had not enough strin-
gency yet, since different scenarios then were under discussions — its forming
from adiabatic or iso-curvature primordial perturbations, topological defects,
cosmological strings or other seeds. In the last two years of XX century the
precise measurements of cosmic microwave background (CMB) temperature
anisotropy realized in the BOOMERanG [22] and MAXIMA [23] stratospheric
experiments revealed the acoustic peaks in its angular power spectrum predi-
cted by scenario of large scale structure formation from adiabatic primordial
perturbations. So, the large scale structure data jointly with CMB anisotropy
have become the powerful test for dark energy models. During the first decade
of XXI century the numerous data proving the existence of dark energy have
been obtained. For the discovery of the accelerating expansion of the Universe
through observations of distant supernovae Saul Perlmutter, Adam G.Riess
and Brian P. Schmidt were honored with the Nobel Prize in Physics for 2011.

On the other hand theorists have proposed many candidates for dark
energy which well match the observational data [24—44] So, the important
problem of nowadays cosmology is developing of key tests for distinguishing
between different models of dark energy and constraining the values of their
parameters. The state-of-art observational evidence for dark energy and const-
raints on its parameters are discussed in this chapter.
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1.2. Dynamics of expansion of the homogeneous
isotropic multicomponent Universe

The base of cosmology as physical science is General Relati-
vity founded by Albert Einstein [45]. He was also the first who in 1917 introdu-
ced the new essence, cosmological constant [46], which acts against gravi-
tation attraction 1 and now is considered as the simplest candidate for dark
energy. The other fundamental conceptual base of standard cosmology is the
cosmological principle which states that on the large scales the Universe is
homogeneous and isotropic. The geometric properties of such Universe define
the general form of space-time line element as

ds2 = gµνdx
µdxν = a2(η)

(
−dη2 + dr2 + χ2(r)(dϑ2 + sin2 ϑdϕ2)

)
, (1.1)

where gµν is a metric tensor, η is the conformal time defined by relation cdt =
= a(η)dη, a(η) is the scale factor, r, ϑ, ϕ are spherical coordinates in 3-space
with a curvature K and

χ(r) =


1√
K

sin
√
Kr, K > 0 (spherical 3-space),

r, K = 0 (flat 3-space),
1√
|K|

sinh
√
|K|r, K < 0 (hyperspherical 3-space).

(1.2)

.
Here and below the Greek indices (ν, µ, ...) run from 0 to 3 and the Latin

ones (i, j, ...) run from 1 to 3. Henceforth we put c = 1, so the time vari-
able t ≡ x0 as well as conformal time η have the dimension of a length. We
follow also usual convention that terms with the same upper and lower indi-
ces are summed over. The space-time with metric (1.1) is called Friedmann—
Robertson—Walker (FRW) one in memoriam of the first investigations of
homogeneous and isotropic solutions of Einstein’s equations by A.Friedman in
1922 [47] and distance-redshift relation in the expanding Universe 2 by H.Ro-
bertson in 1928 [49] and A.Walker in 1933 [50].

Today we know that our Universe is filled with matter-energy and fields,
which can be classified as relativistic component (cosmic background radiation
and relic neutrino), non-relativistic one (baryon and dark matter) and dark
energy of unknown nature which accelerates its expansion. Each of them can
be described by energy-momentum tensor of perfect fluid

TµνN = (ρN + pN )uµNuνN + pNgµν , (1.3)
1 A. Einstein introduced it in order to realize a static universe in the framework of

General Relativity, but after discussion with A. Friedmann and discovery of expansion of the
Universe by E.Hubble he abandoned this idea.

2 Physical properties of the non-stationary Universe with FRWmetric were first analyzed
by G. Lemaitre in 1927 [48]
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1.2. Dynamics of expansion of the homogeneous isotropic multicomponent Universe

that is consequence of symmetry of FRW space-time. Here ρN is energy density
and pN is pressure, which are defined as time- and space-like eigenvalues of
T νµN correspondingly, uµN = (−a, 0, 0, 0) is four-velocity of the fluid in como-
ving coordinates, and N stands for relativistic (r), matter (m) or dark energy
(de) components. The space-time metric (1.1) and energy-momentum tensors
(1.3) of each component are used for analysis of expansion dynamics, physical
phenomena and distant-redshift relations of homogeneous isotropic Universe,
called also cosmological background. In the theory of large scale structure
formation they have more general forms, that will be discussed later.

Assuming that the interaction between all components is only gravitatio-
nal, each of them should satisfy the differential energy-momentum conservation
law separately: T νµ;νN = 0. (1.4)

Hereafter “;” denotes the covariant derivative with respect to the coordinate
with given index in the space with metric gij . In the homogeneous Universe
the density ρN and pressure pN of perfect fluid are functions of time only, so
the equation of state (EoS) can be presented in the simple form

pN (η) = wN (η)ρN (η), (1.5)

where wN is called EoS parameter, it can be constant or time-variable, that
depends on physical properties of the component (N).

In the space-time (1.1) the differential energy-momentum conservation law
(1.4) gives

ρ̇N = −3
ȧ

a
ρN (1 + wN ), (1.6)

here and below a dot denotes the derivative with respect to the conformal
time, ˙ ≡ d/dη.

For the non-relativistic matter wm = 0 and for the relativistic one wr =
= 1/3. For these cases the equation (1.6) can be easily integrated to obtain
the time dependences of density of these components in the form

ρm = ρ(0)
m (a0/a)3, ρr = ρ(0)

r (a0/a)4, (1.7)

where index “0” in parentheses and without them denotes the current values
of corresponding variables. The EoS parameter of dark energy is unknown and
can be constant or time-variable. In the general case the integral of equation
(1.6) for dark energy is as follows

ρde = ρ
(0)
de (a0/a)3(1+w̃de), (1.8)

where w̃de = wde for the constant EoS parameter wde and

w̃de =
1

ln (a/a0)

a∫
a0

wded ln a (1.9)

for the time-variable one.
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CHAPTER 1. Observational evidence for dark energy

In this chapter we consider mainly the dark energy with constant EoS
parameter wde. The case wde = −1 corresponds to the well studied ΛCDM
model with ρde = ρΛ = const. When wde > −1 the density of DE monotonically
decreases with time (often called quintessence), in the opposite case (wde < −1)
it increases. Since in the last case the density starts from zero at a = 0 it is
dubbed “phantom” [51].

The Einstein equations relate the Ricci tensor Rµν to the total energy-
momentum tensor of all components as follows

Rµν −
1

2
gµνR = 8πG

∑
N

TµνN , (1.10)

where R ≡ gαβRαβ is scalar curvature of space-time. For the space-time with
metric (1.1) they become(

ȧ

a

)2

+K =
8πG

3
a2
∑
N

ρN , (1.11)

ä

a
−
(
ȧ

a

)2

= −4πG

3
a2
∑
N

ρN (1 + 3wN ), (1.12)

which can be integrated for a(η) when right-hand sides (r.h.s.) are defined.
The first term in left-hand side (l.h.s.) of (1.11) is the rate of expansion and

in l.h.s. of (1.12) is acceleration (d2a/dt2). So, the dynamics of cosmic expansi-
on is determined by specifying the properties of matter-energy components
of the Universe.

It is convenient to introduce the dimensionless parameters of matter densi-
ty Ωm, radiation density Ωr, dark energy density Ωde and curvature of 3-space
ΩK as follows

Ωm ≡
(

8πGρma
2

3(ȧ/a)2

)
η0

, Ωr ≡
(

8πGρra
2

3(ȧ/a)2

)
η0

,

Ωde ≡
(

8πGρdea
2

3(ȧ/a)2

)
η0

, ΩK ≡
(
−K

(ȧ/a)2

)
η0

.

(1.13)

The density parameter of relativistic component Ωr at current epoch is
the sum of photon and neutrino ones and equals

Ωr = 4.17·10−5

(
1 + ρν/ργ

1.6813

)(
T0

2.726

)4

≈ 4.17·10−5h−2. (1.14)
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1.2. Dynamics of expansion of the homogeneous isotropic multicomponent Universe

Fig. 1.2. The lines of zero decele-
ration parameter wde=−(1−ΩK)/
/(1−Ωm −ΩK)/3 for flat (solid li-
ne), closed (dotted line) and open
(dashed line) models. Below these
lines there is range of values of wde
and Ωm for which the expansion
is accelerated. The rectangle shows
observationally constrained range
for these parameters

The equations (1.11), (1.12) in this notation become

H = H0

(
Ωr
a4

0

a4
+ Ωm

a3
0

a3
+ ΩK

a2
0

a2
+ Ωde(

a0

a
)3(1+wde)

)1/2

, (1.15)

q =
H2

0

H2

(
Ωr
a4

0

a4
+

1

2
Ωm

a3
0

a3
+

1

2
(1 + 3wde)Ωde

(a0

a

)3(1+wde)
)
, (1.16)

where H ≡ a−1da/dt = a−2da/dη = ȧ/a2 is Hubble parameter at any time η
and q ≡ −

(
aä/ȧ2 − 1

)
is deceleration parameter.

At the current epoch η = η0 the Friedmann equations (1.15), (1.16) are
simplified to the form

Ωr + Ωm + ΩK + Ωde = 1, (1.17)

q0 = Ωr +
1

2
Ωm +

1

2
(1 + 3wde)Ωde. (1.18)

If the Universe is filled only with matter and radiation then deceleration
parameter is always positive (d2a/dt2 < 0) for any curvature, as one can see
from (1.16)—(1.18). And when only third component with

wde < −
1

3

1− ΩK

1− Ωm − ΩK
(1.19)

is present then deceleration parameter q0 at current epoch could be negative
(d2a/dt2 > 0). In the last expression we omit Ωr, since it is substantively lower
than Ωm. In Fig. 1.2 the ranges of values of parameters for which expansion of
the Universe is accelerated are shown.

If the dark energy is cosmological constant Λ, for which wde = −1 and
ΩΛ ≡ Λ/3H2

0 , then the accelerated expansion of the Universe will take place
under condition Ωm < 2(1 − ΩK)/3. In the models with vanishing curvature
(standard ΛCDM ones) matter density parameter must be lower than 0.66.
The dependence of deceleration parameter q0 on Ωm for different ΩK and wde
at current epoch is shown in Fig. 1.3.
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Fig. 1.3. The dependence of current value of deceleration parameter on Ωm for different ΩK
(left panel) and different wde (right one). The rectangles show observational constraints on
q0 and Ωm from [2]

Fig. 1.4. The evolution of energy density of relativistic (r), matter (m) and dark energy
w = const (de) components. RDE — radiation dominated epoch, MDE — matter dominated
epoch and DEDE — dark energy dominated epoch. In the left panel the plot is in log-log
scale from early epoch to current one, in the right panel the plot is in norm-log scale and
illustrates the late epoch. All lines correspond to model with Ωm = 0.3 and Ωde = 0.7. The
MDE-DEDE crossing line is shown for Λ-model (wde = −1)

The dynamics of expansion of the multicomponent Universe is different
in different epochs, that follows from equations (1.15), (1.16). Really, for wde,
which satisfies condition (1.19), the dynamical history can be divided into three
periods (Fig. 1.4):

radiation dominated (RD) epoch, when ρr � ρm � ρde and q = 1;
it was at a � a

(r−m)
eq , where a(r−m)

eq = 4.17 ·10−5Ω−1
m h−2 is scale factor at

radiation-matter equality;
matter dominated (MD) epoch, when ρm � ρr and ρm � ρde; then

q = 0.5; it was at a(r−m)
eq � a� a

(m−de)
eq , where a(m−de)

eq = (Ωm/Ωde)
−1/3wde is

scale factor at matter — dark energy equality;
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1.2. Dynamics of expansion of the homogeneous isotropic multicomponent Universe

Fig. 1.5. The dependence of deceleration parameter q on z for cosmological models with
different ΩK (left panel) and wde (right one). Here values of other parameters are: Ωm = 0.3,
Ωde = 1− ΩK − Ωm, H0 = 70 km/s/Mpc

dark energy dominated (DED) epoch, when ρde � ρm � ρr at a >
> a

(m−de)
eq ; it is epoch of accelerated expansion of the Universe. In the case of

wde =const it will last forever.
In the model with realistic parameters Ωm = 0.3, Ωde = 0.7, h = 0.7,

wde = −1 the scale factors (redshifts) related to epoch change-overs
(shown in Fig. 1.4) are a(r−m)

eq = 2.9 ·10−4 (z(r−m)
eq = 3500) and a(m−de)

eq = 0.75

(z(m−de)
eq = 0.32).
The measurements of q0 give the possibility to connect Ωm, Ωde and wde

by relation (1.18), where Ωr can be omitted. In the flat Universe, for which
Ωde = 1− Ωm, it can be reduced to the relation between wde and Ωde:

Ωde = (2q0 − 1)/3wde. (1.20)

And only for the flat Λ-model we can estimate ΩΛ from measurements of
q0: ΩΛ = (1 − 2q0)/3. For joint estimation of wde and Ωde the measurements
of q at other redshifts are required. For example, if we have estimations of q0

and redshift zq=0 where decelerated expansion was changed by accelerated one
(q = 0), then EoS parameter can be estimated from transcendent equation

(1 + zq=0)3wde =
2q0 − 1− 3wde

(1 + 3wde)(2q0 − 1)
, (1.21)

and Ωde from equation (1.20). In the general case for estimation of Ωm, Ωde

and wde the form of q(z) dependence in the range 0 < z < 5, shown in Fig. 1.5,
must be measured. It can be done by realization of tests “luminosity distance —
redshift” for sources with known luminosities or “angular diameter distance —
redshift” for sources with known diameters.
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1.3. The luminosity distance — redshift relation
and SNe Ia evidence for dark energy

The luminosity distance is defined by

d2
L ≡

L

4πF
, (1.22)

where L is absolute luminosity of a source and F is an observed flux. The
source is at comoving distance r and has emitted photons at η, which observer
from the Earth detects in the point r = 0 at current moment of time η0.

Taking into account the redshifting of each photon detected by observer
from the Earth and lowering the photons arrival rate, both by the factor
a(η0)/a(η) = 1 + z, in the FRW space-time (1.1) the luminosity distance dL of
a source and its redshift are bound by relation

dL = (1 + z)χ

 z∫
0

dz′

H(z′)

, (1.23)

where function χ is defined by expression (1.2) and H(z′) by equation (1.15).
The computed dL(z)-dependences for models with different values of Ωm, ΩK ,
Ωde and wde are shown in Fig. 1.6. There also shown for comparison the lumi-
nosity distances to high-z SNe Ia derived from their moduli distances and
corrected magnitudes presented in Table 5 of [3] and Table 1 of [2] correspondi-
ngly 3. They certainly indicate that models with dark energy are strongly
preferred by the SNe Ia observations.

One can see, that models with values of parameters ΩK and wde from the
ranges [–0.1, 0.1] and [–0.9, –1.1] correspondingly are only slightly distinguished
by dL(z) for 0 ≤ z ≤ 5 since it is integral of H−1(z) over z. Fig. 1.5 illustrates
that the deceleration parameter, which is defined by ratio of the first derivative
of H(z) with respect to redshift z and H(z),

q(z) =
z + 1

H(z)

dH(z)

dz
− 1 (1.24)

is more sensitive to value of EoS parameter. One expects, that higher deri-
vatives of H(z) with respect to redshift z are also more sensitive to value
of EoS parameter. It is convenient to introduce the dimensionless parameters

analogical to the deceleration parameter q(t) ≡ − 1

a(t)H2(t)

d2a(t)

dt2
:

j(t) =
1

a(t)H3(t)

d3a(t)

dt3
, s(t) =

1

a(t)H4(t)

d4a(t)

dt4
,

3 These papers contain the most accurate data in 1998—1999 supporting the existence
of dark energy and become the base for awarding of Nobel Prise in physics to S. Perlmutter,
A.Riess and B. Shmidt in 2011.
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Fig. 1.6. Left panel: The dependence of luminosity distance dL on redshift for cosmologi-
cal models with different values of ΩK , ΩΛ, Ωm: (0, 0, 1), (0, 0.7, 0.3), (–0.1, 0.8, 0.3),
(0.1, 0.6, 0.3), (0.7, 0, 0.3). Right panel: The same for cosmological models with ΩK = 0,
Ωde = 0.7, Ωm = 0.3 and different values of wde. In both panels the luminosity distances
to high-z supernovae Ia derived from the data presented in [2, 3] are shown by signs. (It is
assumed that H0 = 70 km/s/Mpc for all calculations here)

dubbed jerk and snap (see [52, 53] and citing therein), which are represented
by second and third derivatives of H(z) with respect to z as follows

j(z) = q2(z) +
(z + 1)2

H(z)

d2H(z)

dz2
, (1.25)

s(z) = −q3(z)− [4q(z) + 3]
(z + 1)2

H(z)

d2H(z)

dz2
− (z + 1)3

H(z)

d3H(z)

dz3
. (1.26)

They are shown in Fig. 1.7. Indeed, they can be used for accurate determi-
nations of wde if high-precision measurements of dL will be possible, since

H(z) =

[
d

dz

(
dL
z + 1

)]−1

for the flat Universe for example. Unfortunately, the

contemporary observational data give the possibility to establish q at current
epoch only, which is the coefficient of second order term in the power series of
dL on z in the vicinity of z = 0

dL(z) =
c

H0

{
z +

1

2
[1− q0] z2 − 1

6

[
1− q0 − 3q2

0 + j0 + ΩK

]
z3+

+
1

24

[
2− 2q0 − 15q2

0 − 15q3
0 + 5j0 + 10q0j0 + s0 + ΩK

]
z4+O(z5)

}
. (1.27)

This expansion of dL in z up to fourth order term 4 approximates the
exact expression (1.23) with error ≤1 % up to z ≈ 0.5 for all models in Fig. 1.6
excluding OMD one with ΩK = 0.7, for which this level of approximation
accuracy is overcome at z ∼ 0.2. The including of third order term in the value
of dL at z ∼ 0.1 gives 3—7% of value of second one, the including of fourth

4 It have been deduced firstly by M.Visser [52]. The term of third order in z was previ-
ously calculated by T.Chiba and T.Nakamura [54], the first two terms are Weinberg’s version
of Hubble law [55].
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Fig. 1.7. The dependence of jerk parameter j (top panels) and snap parameter s (bottom
panels) on redshift z for cosmological models with different ΩK (left panel) and wde (right
one). The values of other parameters are the same as in Fig. 1.5

one is at the level of few tenthes of percent, so, their estimation on the base
of current data on SNe Ia luminosity distances is impossible. Enough precision
of observations for obtaining the information on the variation of q(z) and j(z)
will be reached at the end of current decade, as it is expected.

The observed flux and absolute luminosity of sources in astrophysics tradi-
tionally are presented by visible and absolute magnitudes m andM , which are
connected to the luminosity distance dL by well known relation

(m−M) = 5 log dL + 25. (1.28)

Their difference in the l.h.s. is called distance modulus and is marked by µ.
The sources with known luminosity L or absolute magnitude M are called

standard candles, they give possibility to measure the distances, that is crucial
for astrophysics and cosmology. The best standard candles in cosmology are
Type Ia supernovae (SNe Ia), which are thermonuclear explosions of near-
Chandrasekhar mass carbon-oxygen white dwarfs residing in binary systems.
The word “the best” means “the better than any other one”, nothing more.
They are not ideal standard candles, since their raw peak brightnesses vary by
factor two, this limits their cosmological applications. The key astrophysical
development in the cosmological use of SNe Ia was the realization that their
luminosities could be further standardized using empirical relationships: SN
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1.3. The luminosity distance — redshift relation and SNe Ia evidence

Ia light-curve width — SN Ia luminosity [56, 57] and SN Ia color — SN Ia
luminosity [58]. Light curves can be described by stretch parameter s, which
stretches or tightens a template of light curve to match an observed one.

The correction of observed peak magnitudes in the most cosmological
applications is as follows

m
(corr)
B = m

(obs)
B + α(s− 1)− βC(obs), (1.29)

where α and β are parameters, which must be determined for sample of SNe
Ia. As a rule, the magnitudes are measured in the standard B and V bands and
the color is their difference, C(obs) = m

(obs)
B −m(obs)

V . For using the measured
m

(obs)
B and m(obs)

V of distant SNe Ia in the cosmological context they must be
corrected also for redshifting of their spectral energy distributions as well as
extinction along the line of sight. A few methods have been developed for SNe
Ia light-curve fitting, which were called the stretch one [59—61], CMAGIC [62],
BATM [63], ∆m15 [64,65], Spectral Adaptive Light curve Template (SALT) [66]
and its improvement SALT2 [67], Multicolor Light Curve Shape (MLCS) [68]
and its improvement MLCS2k2 [69], SiFTO [70] etc. They give quite simi-
lar results for reasonably large sample of supernovae. The typical precision
achieved in SN Ia distance estimations is ∼5—7% which make them crucial
objects for cosmology.

Since 1998 a lot of observational projects for search and rigorous investi-
gations of Type Ia supernovae were realized using the most advanced telescopes
of the world. Up to now about thousand SNe Ia at 0.1 ≤ z ≤ 1.6 were discovered
and photometrically and spectroscopically investigated carefully. They have
been collected by high-redshift surveys including Hubble Space Telescope
(HST) [71, 72], SuperNova Legacy Survey (SNLS) [73], Equation of State:
SupErNovae trace Cosmic Expansion (ESSENCE) [74, 75], Super Nova Sloan
Digital Sky Survey (SN SDSS) [76,77] ones. The first unified sample of SNe Ia
“Union” (HST+SNLS+ESSENCE) [78] counted 307 selected supernovae, the
second one — “Union2” [79] — counts 557 supernovae eligible for cosmologi-
cal applications. Their luminosity distance moduli, calculated using SALT2
method for light-curve fitting, versus redshifts are shown in the left panel
of Fig. 1.8. The best-fit curve corresponds to the model with parameters 5

Ωde = 0.2875, wm = −1.0486, h = 0.7013, the total χ2 for it, calculated as

χ2 =

Ntot∑
i=1

(µi − µbf )2

∆µ2
i

, (1.30)

is equal to 542.6 and the standard deviation, called also RMS of the Hubble

residuals, σ =
√∑Ntot

i=1 (µi − µbf )2/Ntot, is 0.28. Here µi is luminosity distance

5 They have been determined for the data [79] using Levenberg—Marquardt method [80]
and relations (1.23)—(1.28).

25



CHAPTER 1. Observational evidence for dark energy

Fig. 1.8. Left panel: the distance moduli (m−M)(z) for 557 SNe Ia from Union2 compilation
[79] (signs) and for five models (lines): flat matter dominated (FMD, Ωm = 1.0), open matter
dominated (OMD, Ωm = 0.3) and dark energy dominated (DED, Ωm = 0.3, Ωde = 0.7) with
wde = −0.9, wde = −1.0 and wde = −1.1. Right panel: the residuals of the distance modulus
relative to the best-fit model for SNe Ia data (Ωm = 0.2875, wde = −1.0486, h = 0.7013) as
well as for other models

modulus of ith supernova from Union2 sample, ∆µi is statistical error of its
determination, µbf is the theoretical distance modulus at the redshift of ith
supernova for best-fit model.

The dependences of luminous distance modulus on redshifts in different
cosmological models — flat matter dominated (FMD, Ωm = 1.0), open matter
dominated (OMD, Ωm = 0.3) and three dark energy dominated (DED, Ωm =
= 0.3, Ωde = 0.7) with wde = −0.9, wde = −1.0 and wde = −1.1 ones are
shown in Fig. 1.8 by lines for comparison. The χ2’s for them are 2047, 1182,
569, 547, 544 correspondingly (µmod instead of µbf in formula (1.30)). In the
right panel of Fig. 1.8 the residuals of the distance modulus relative to the
best-fit curve for SNe Ia data as well as other models are shown. One can see,

Fig. 1.9. 68.3%, 95.4% and 99.7% confidence
regions of the Ωm − wde plane from SNe
Ia alone from Union (dashed contours)
and Union2 (shaded contours) compilations
(from [79])

that SNe Ia luminosity distance —
redshift test strongly prefers the
dark energy dominated cosmologi-
cal models. The 68.3%, 95.4% and
99.7% confidence regions of the
Ωm − wde plane from SNe Ia alone
from Union (dashed contours) and
Union2 (shaded contours) compilati-
ons are shown in Fig. 1.9. It supports
conclusion that cosmological models
without dark energy are ruled out at
high confidence level. But allowable
range for values of EoS parameter is
too wide yet (−1.4 < wde < −0.75
at 1σ C.L.) for distinguishing the
type of dark energy, so, the extensi-
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1.3. The luminosity distance — redshift relation and SNe Ia evidence

Fig. 1.10. Left panel: the distance moduli (m−M)(z) for 288 SNe Ia from SDSS compilation
[77] (signs) and for five models (lines): flat matter dominated (FMD, Ωm = 1.0), open matter
dominated (OMD, Ωm = 0.3) and dark energy dominated (DED, Ωm = 0.3, Ωde = 0.7) with
wde = −0.9, wde = −1.0 and wde = −1.1. Right panel: the residuals of the distance moduli
relative to the best-fit models for SNe Ia data as well as for other models. In the top panels
the luminosity distance moduli are calculated using SALT2 light-curve fitting method, in
bottom ones — using MLCS2k2 method

on of SNe Ia sample and reducing of identified systematic errors remain cruci-
al problem of SNe Ia observations and astrophysics (see excellent review of
M. Sullivan in [81]).

The homogeneous sample of 103 SNe Ia at the redshifts range 0.04 < z <
< 0.42 was selected from SDSS-II SuperNova Survey and combined with SNe Ia
from HST, SNLS and ESSENCE surveys in order to reduce the statistical and
systematical errors in the estimation of their luminosity distance moduli [77].
In the left panel of Fig. 1.10 the luminosity distance moduli versus redshifts
are presented for 288 SNe Ia from this compilation, called SDSS SN one. Two
methods for SNe Ia light-curve fitting have been used there — SALT2 (open
circles) and MLCS2k2 (open triangles) in order to compare them. The best-fit
curve to SDSS SN SALT2 corresponds to the model with parameters Ωm =
= 0.323, wde = −1.1292, h = 0.7046, the total χ2 for it equals 559.5 and the
standard deviation is 0.23, lower than for Union2 SALT2 supernova distance
moduli. For the same FMD, OMD and DED (wde = −0.9, wde = −1.0, wde =
= −1.1) models, shown by lines in Fig. 1.10, the χ2’s are correspondingly
1972, 1626, 560 and 567. In the case of SDSS SN MLCS2k2 supernova distance
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moduli the best-fit model has parameters: Ωm = 0.3205, wde = −0.7854,
h = 0.6344. The total χ2 for it equals 778.8 and the standard deviation
is 0.21, lowest in comparison with Union2 and SDSS SN SALT2 compilati-
ons. The χ2’s for FMD, OMD and 3 DED models equal 4170, 2880, 1626,
1500, 1397 correspondingly. So, Union2 and SDSS SN SALT2 compilations
are similar, while SDSS SN MLCS2k2 compilation prefer essentially higher
wde and lower H0.

Combining the SDSS SN compilation with other cosmological measure-
ments (BAO from SDSS LRG survey and CMB temperature anisotropy from
WMAP experiment) Kessler et al. (2009) [77] have found that for spatially
flat cosmological model wde = −0.96 ± 0.06(stat) ± 0.12(syst), Ωm = 0.265±
± 0.016(stat) ± 0.025(syst) using the SALT2 and wde = −0.76 ± 0.07(stat)±
± 0.11(syst), Ωm = 0.307 ± 0.019(stat) ± 0.023(syst) using MLCS2k2 fitter.
So, the 1σ confidence contours for wde and Ωm for the same SN sample using
SALT2 and MLCS2k2 fitters overlap only partially. This means, that one of
them or both have yet unidentified systematic errors. In the paper [77] the
differences between 2 methods of light curve fitting, SALT2 and MLCS2k2,
are thoroughly analyzed but convincing arguments for one or the another are
not given.

The papers [82–84] present the modern high-quality sample of SNe Ia,
based on 3-year SuperNova Legacy Survey (SNLS3) data including other menti-
oned above supernova samples. It contains 472 selected SNe Ia for cosmological
applications with distance moduli determined by updated versions of SALT2
and SiFTO light-curve fitting methods. They use the same phenomenological
correction formula (1.29) but differ substantially in their detailed parametri-
zation of observables and in the procedures considered for training and light-
curve fitting (see for details § 4.3.1 and § 4.3.2 in [82]). The RMSs of the Hubble
residuals are 0.17 for SNLS3 SALT2 supernovae and 0.15 for SNLS3 SiFTO
ones, essentially lower then for previous SNe Ia samples of similar completeness.
Comparison of SN-only statistical constraints on Ωm, wde for SALT2 and Si-
FTO fitters assuming a flat universe and constant EoS parameter is shown in
the left panel of Fig. 1.11. In the right panel of Fig. 1.11 68.3%, 95.4% and
99.7% confidence regions of the Ωm − wde plane from SNe Ia alone (SNLS3
compilation with SALT2 and SiFTO fitters) assuming a flat universe and
constant dark energy equation of state are shown. All contours are prolate
and convoluted, this indicates some degeneracy of likelihood function. The
median line can be approximated roughly by

w
(SNIa)
de ≈ −0.651− 0.122Ωm − 5.076Ω2

m. (1.31)

The best-fit values of wde and Ωm and their 1σ confidential ranges are wde =
= −0.95+0.17

−0.19, Ωm = 0.214+0.072
−0.097 for SALT2 light-curve fitter and wde =

= −0.85+0.14
−0.20, Ωm = 0.173+0.095

−0.098 for SiFTO one [83].
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Fig. 1.11. Left panel: the distance moduli (m−M)(z) for 472 selected SNe Ia and residuals
from best-fit curve ∆m = mcorr − mbf (bottom). Right panel: 68.3%, 95.4% and 99.7%
confidence regions of the Ωm−wde plane from SNe Ia alone (SNLS3 compilation with SALT2
and SiFTO fitters) assuming a flat universe and constant dark energy equation of state.
(From [83])

One can conclude, that luminosity distance — redshift relation for SNe Ia
obtained by using SALT2 and SiFTO light-curve fitting methods prefers wde
in the 1σ confidential range (–1.15, –0.7), while using MLCS2k2 method in the
range (–0.94, –0.6). Therefore, the Λ-models are not excluded by SNe Ia alone
with SALT2 and SiFTO light-curve fitters, while SNe Ia with MLCS2k2 one
exclude them at 1σ confidential level.

The discussions on advantages of different light-curve fitting methods
continue in the literature. In spite of that, one can certainly conclude that data
on SNe Ia luminosity distances prefer the dark energy dominated cosmological
models. The low accuracy of current determination of wde, which is important
for establishing of the nature of dark energy, does not understate the main
conclusion issued from SNe Ia luminosity distance — redshift relation: it
requires the cosmic acceleration at >99.999 % confidential level, including all
systematic effects [83].

Other observational evidence for existence of dark energy, based on the
luminosity distance — redshift relation, comes from the investigations of
gamma-ray bursts (GRBs). Using peak energy — peak luminosity relation for
63 optically identified GRBs Tsutsui et al. (2009) extend the Hubble diagram
up to z = 5.6 [85] and show that dark energy dominated models are preferable
for these data too. Although constraints from GRBs themselves are not so
strong as from SNe Ia they are important argument for existence of dark energy
since the other class of objects at higher redshifts supports that.
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1.4. The angular diameter distance —
redshift relation and acoustic peak tests

The objects of known dimensions can be used as “standard
rulers” for measuring of angular diameter distances which are defined as follows

dA ≡
D

Θ
, (1.32)

where D is known orthogonal to the line of sight actual size of the object and
Θ is its measured angular diameter. To relate dA with redshift z of the object
astrophysicists use FRW metric (1.1) for space-like interval at the sphere with
comoving radius χ(r) at the moment η of emitting of photons, which observer
from the Earth detects at the current moment of time η0 and measures the
angle Θ that subtends an object of actual size D = a(η)χ(r)Θ (dη = dr =
= dφ = 0). Therefore, the angular diameter distance — redshifts relation
becomes as follows

dA =
1

(1 + z)
χ

 z∫
0

dz′

H(z′)

, (1.33)

where function χ is defined by expression (1.2) and H(z′) by equation (1.15).
Comparing this relation with (1.23) one can see, that angular diameter distance
and luminosity one are related by simple ratio: dA = dL/(1 + z)2.

We know now that all astrophysical objects — galaxies, rich clusters of
galaxies and so on — are not “standard rulers” of enough accuracy to be used
for testing of cosmological models. Only acoustic peaks in the power spectra of
CMB temperature fluctuations and the baryon acoustic oscillations (BAO) in
two-point correlation function of matter density space distribution are. Since
power spectra and correlation function are statistical measures of fluctuations
and the tests based on their features are statistical in their nature too.

1.4.1. CMB acoustic peaks

Mapping of the CMB temperature sky with subdegree
angular resolution and ∆T/T ∼ 10−5 sensitivity has revealed the acoustic
peaks, predicted by the adiabatic scenario of large scale structure formati-
on. The first such maps of small parts of the sky, obtained in the balloon
experiments BOOMERanG [22] and MAXIMA [23], have indicated that posi-
tions and amplitudes of acoustic peaks in the angular power spectrum of
CMB temperature fluctuations prefer the flat Universe with low matter densi-
ty, supporting the discovery of dark energy through observations of distant
supernova. The all-sky precise measurements of CMB anisotropy in the cosmic
experiment WMAP [86,94,95] opened up a new opportunity to determine the
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cosmological parameters with high precision and provide another independent
test for the existence of dark energy.

The theory of CMB anisotropy was initiated by R. Sachs & A.Wolfe
[96] and J. Silk [97]. The CMB radiation comes from last scattering surface
at which electrons are trapped by hydrogen to form atoms, so-called recombi-
nation or decoupling epoch. The thermal photons were tightly coupled to
baryons by Thomson and Compton scattering before the decoupling epoch
at zdec ∼ 1000, but they could freely move to us after that. So, an adequate
calculation of the recombination process is crucial for modeling the power
spectrum of CMB temperature fluctuations and polarization. The first analyses
of recombination kinetics were carried out by Zeldovich et al. (1968) [98]
and Peebles (1968) [99] in 1967. In subsequent papers [100—105] the main
processes have been studied using the 3-level approximation of hydrogen and
helium atoms.

The most complete analysis of cosmological recombination processes with
taking into account the multi-level structure of hydrogen and helium atoms
('300 levels) and non-equilibrium ionization-recombination kinetics has been
performed by S. Seager, D. Sasselov & D. Scott [106]. Also all known plasma
thermal processes were taken into account therein. These authors have provi-
ded cosmological community with software RECFAST [107] which ensures the
accuracy of calculation of number density of electrons ∼1%. However, the
researches aimed on improving the calculation of recombination and decoup-
ling of the radiation from baryon plasma are still going on (see recent papers by
[108—111] and citing therein). Development of perturbations of number densi-
ties of ions and electrons stipulated by scalar mode of cosmological fluctuations
and physical processes during recombination epoch have been analyzed by one
of the authors of this book [112]. Last improvements of cosmological recombi-
nation calculations result into new codes CosmoRec [113] and HyRec [114],
which provide the subpercent accuracy of calculation of number density of
ionization fractions during and after recombination.

The dependences of relative number density of free electrons xe ≡
≡ ne/(nH +nHe) on redshift in the flat matter dominated (FMD) cosmological
model (Ωcdm = 0.95, Ωb = 0.05, h = 0.70), open one (OMD) (Ωcdm = 0.25,
Ωb = 0.05, h = 0.70) and flat dark energy dominated (DED) one (ΩΛ = 0.70,
wde = −1, Ωcdm = 0.25, Ωb = 0.05, h = 0.70) computed by RECFAST are
shown in Fig. 1.12. The difference between xe(z) for DED and OMD does not
exceed one percent and between DED and FMD three percents during decoup-
ling epoch and later, so the lines xe(z) are superimposed. The dotted line shows
visibility function dτ/dze−τ (×270), peak of which corresponds to the decoup-
ling moment zdec.

Scalar mode of cosmological perturbations, which provide the large scale
structure formation, is also the main source for the CMB temperature anisotro-
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Fig. 1.12. Top panel: the dependences of relative number densities of free electrons on
redshift in the flat matter dominated (FMD) cosmological model (dashed line; Ωcdm = 0.95,
Ωb = 0.05, h = 0.70), open one (OMD) (dash-dotted line; Ωcdm = 0.25, Ωb = 0.05, h = 0.70)
and flat dark energy dominated (DED) one (solid line; ΩΛ = 0.70, wde = −1, Ωcdm = 0.25,
Ωb = 0.05, h = 0.70). Dotted line presents visibility function dτ/dze−τ (×270). Bottom
panel: the relative differences of xe are shown by solid line for (DED-OMD)/DED and
dashed line for (DED-FMD)/DED

pies. They generate CMB temperature fluctuations which can be written in
gauge-invariant form as a sum of four terms — the ordinary Sachs—Wolfe
effect, the integrated Sachs—Wolfe term, the Doppler term and the acoustic
term [96]:(

∆T

T0

)
(n) = (Φ−Ψ)(ηdec, rdec,n)−

η0∫
ηdec

(Φ̇(η, r,n)− Ψ̇(η, r,n))dη+

+ Vi(ηdec, rdec)n
i +

1

4
Dγ(ηdec, rdec,n). (1.34)

Here Φ and Ψ are the Bardeen metric potentials [115], Vi is the baryon
velocity andDγ is a gauge-invariant variable for the radiation density fluctuati-
ons. A dot denotes the partial derivative w.r.t. conformal time η. For perfect
fluids and for dust we have Ψ = −Φ. In Newtonian limit the Bardeen potenti-
als just reduce to the ordinary Newtonian potential. For adiabatic perturbati-

ons
1

4
Dγ =

1

3
δb −

5

3
Φ, where δb is the magnitude of baryon matter density

perturbations, it corresponds to εm in Bardeen’s notation. The variable η is
conformal time, r is comoving radial coordinate and n is direction on the sky
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point (or θ, φ) in metric (1.1). In the linear perturbation theory it is conveni-
ent to perform the Fourier transformation of all spatially-dependent variables
and use the equations for corresponding Fourier amplitudes. It is convenient
to present the n-dependence of ∆T/T0(k,n) in spherical harmonic series

∆T

T0
(k,n) =

∑
`,m

a`m(k, η0)Y`m(n), 〈a`ma∗`′m′〉 = δ`mδ`′m′C`,

C` =
2

π

∞∫
0

dkk2

(
∆T

T0

)2

`

.

So, C` is angular power spectrum of temperature fluctuations (` = π/θ).
For its computation in any cosmological model the coupled system of Einstein—
Boltzmann equations for evolution of metric, density and velocity perturbati-
ons must be solved. The complete system of such equations for multicomponent
Universe (radiation, neutrinos, baryons and dark matter) as well as method
of their integration firstly were described by Ma & Bertschinger (1995) [116].
These authors also have provided the cosmological community with software
COSMICS, which makes accurate calculations of evolution density and veloci-
ty perturbations of all components as well as perturbation of metrics in
synchronous and conformal-Newtonian gauges. This code was used by number
of authors to calculate the transfer function of density perturbations and
power spectra of CMB temperature fluctuations and polarization, in particular,
by [117,118] for development of publicly available software CMBFAST. Other
improved publicly available cosmological codes which use similar approach are
CMBEasy [119], CAMB [120,121] and CLASS [122—124]. The CAMB code is
included in CosmoMC software [125, 126] doing the fast Markov chain Monte
Carlo exploration of cosmological parameter space for an input set of data. It
is widely used in modern cosmology. We omit here the detailed discussion of
theory of CMB anisotropy because of its bulkiness, completeness of its coverage
in the cited above papers as well as availability of numerous books ([127, 128]
for example) and review papers ([129,130] for example).

In Fig. 1.13 the binned angular power spectrum of CMB temperature
fluctuations obtained on the base of 7-year WMAP observations [93—95] as
well as model ones calculated using CAMB code [120,121] are presented. The
solid line shows the CMB power spectrum in the flat ΛCDM model with best-
fit parameters (minimal set) which we have determined using the CosmoMC
software [131]: baryon matter density in units of critical one Ωb = 0.046, cold
dark matter density Ωcdm = 0.234, cosmological constant density parameter
ΩΛ = 0.72, Hubble constant H0 = 70.0 km/s ·Mpc, spectral index of primordi-
al power spectrum of scalar mode ns = 0.97, amplitude of primordial spectrum
As = 2.2 · 10−9 and redshift or reionization zrei = 10.5. The best-fit ΛCDM
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Fig. 1.13. The binned power spectra of CMB temperature fluctuations measured in experi-
ment WMAP [93–95] (dots) and predicted by models (lines): flat cold dark matter domi-
nated (FMD, Ωb = 0.05, Ωcdm = 0.95), open cold dark matter dominated (OMD, Ωb = 0.05,
Ωcdm = 0.25), open baryon matter dominated model (OMDb, Ωb = 0.3) and flat dark
energy dominated (DED, Ωb = 0.05, Ωcdm = 0.25, Ωde = 0.7) with wde = −0.9, wde = −1.0
and wde = −1.1. The solid line is best-fit ΛCDM model with parameters Ωb = 0.046,
Ωcdm = 0.234, ΩΛ = 0.72, H0 = 70.0 km/s ·Mpc, ns = 0.97, As = 2.2 · 10−9 and zrei = 10.5

model power spectrum passes all points of WMAP7 data (thick solid line)
(χ2
min = 44.3 for NDoF = 39). The other model spectra have been calculated

for reasonable values of cosmological parameters and normalized to amplitude
of 10th spherical harmonic multipole by method proposed in [15]. One can see
that all matter dominated models (FMD, OMD, OMDb) strongly contradict
the WMAP observational spectrum (χ2 = 116430, 13879, 66178 correspondi-
ngly), that is visible by the naked eye. Only dark energy dominated models
(DED) can match the positions and amplitudes of acoustic peaks in the angular
power spectrum of CMB temperature fluctuations (their lines are superimposed
with best-fit ΛCDM model one).

To understand the numerical results, presented in Fig. 1.13, let us use
some analytic formulas and approximations of simulations which have been
developed in the papers [132—137].

A useful fitting formula for zdec is given by [133]:

zdec =
1

adec
− 1 = 1048[1 + 0.00124ω−0.738

b ][1 + g1ω
g2
m ], (1.35)

where

g1 = 0.0783ω−0.238
b [1 + 39.5ω0.763

b ]−1, g2 = 0.56[1 + 21.1ω1.81
b ]−1,
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ωb ≡ Ωbh
2 and ωm ≡ Ωmh

2. In the cosmological model with Ωcdm = 0.25,
Ωb = 0.05, h = 0.70 the redshift of decoupling is zdec = 1089 (peak of visibility
function in Fig. 1.12).

The locations of the acoustic peaks in the CMB power spectrum depend
on the value of sound horizon at decoupling epoch

rs(zdec) ≡
1

1 + zdec

∞∫
zdec

csdz

H(z)
(1.36)

and the angular diameter distance to the last scattering surface, dA(zdec).
Comparing with numerical calculations it was shown (see [134—136] and
references therein) that the spherical harmonic which corresponds to the m-th
acoustic peak is well approximated by the relation

`pm = (m− φm)π
dA(zdec)

rs(zdec)
, (1.37)

where φm takes into account the shift of m-th peak from its location in the
idealized model which is caused by driving effects from the decay of the gravi-
tational potential. Doran and Lilley (2002) give the accurate analytic approxi-
mation in the form

φm = φ̄− δφm, (1.38)

where φ̄ is overall phase shift of the spectrum (or the first peak) and δφm is a
relative shift of each peak and dip caused by the Doppler shift of the oscillating
fluid. For the overall phase shift of the spectrum they found

φ̄ = (1.466− 0.466ns)a1r
a2
∗ , (1.39)

where

r∗ ≡ ρrad(zdec)/ρm(zdec) =
0.0416

ωm

(
1 + ρν/ργ

1.6813

)(
T0

2.726

)4( zdec
1000

)
(1.40)

is the ratio of radiation density to matter one at decoupling and

a1 = 0.286 + 0.626ωb, a2 = 0.1786− 6.308ωb + 174.9ω2
b − 1168ω3

b

are fitting coefficients. Here and below the numbers in the expressions are
obtained for a present CMB temperature of T0 = 2.726 K and the ratio of
densities of massless neutrinos and photons ρν/ργ = 0.6813 for three massless
neutrino species (fν ≡ ρν/(ργ + ρν) = 0.405). All values can be easily scaled
to other values of T0 and fν .

35



CHAPTER 1. Observational evidence for dark energy

The relative shift of the 1st acoustic peak is zero, δφ1 = 0. For the 2nd
one it is

δφ2 = c0 − c1r∗ − c2/r
c3
∗ + 0.05(ns − 1), (1.41)

with
c0 = −0.1 + 0.213e−52ωb , c1 = 0.015 + 0.063e−3500ω2

b ,

c2 = 6 · 10−6 + 0.137(ωb − 0.07)2, c3 = 0.8 + 70ωb,
(1.42)

and for the 3rd peak
δφ3 = 10− d1r

d2
∗ + 0.08(ns − 1), (1.43)

with d1 = 9.97 + 3.3ωb, d2 = 0.0016 + 0.196ωb + 2.25 · 10−5ω−1
b .

The sound speed in the pre-recombination plasma is

cs = c/
√

3(1 +R)

with
R ≡ 3ρb/4ργ = 30315(T0/2.726)−4ωba (1.44)

and scale factor is well approximated by 6

a(η) = aeq

[
η

η1
+

(
η

2η1

)2
]
, (1.45)

with

aeq =
4.17 · 10−5

ωm

(
1 + ρν

ργ

1.6813

)(
T0

2.726

)4

, η1 ≡
ηeq

2(
√

2− 1)
=

c

H0

√
Ωr

Ωm
(1.46)

the integral for sound horizon (1.36) can be reduced to the analytic formula

rs(zdec) =
19.9
√
ωbωm

(
T0

2.726

)2

ln

√
1 +Rdec +

√
Rdec +Req

1 +
√
Req

Mpc. (1.47)

The deviation of the acoustic extrema locations calculated using formulas
(1.37)—(1.47) from the values obtained by CAMB code is <1% for the first
peak, <6% for the second one and <3% for the third one (for DED models and
somewhat worse for other ones) in the sufficiently wide range of parameters.

The dependences of locations of the first, second and third acoustic peaks
on Ωde for models with Ωm = 0.3, Ωb = 0.05, ns = −0.97, H0 = 70 km/s ·Mpc
are shown in Fig. 1.14. The 1σ ranges for them obtained from the WMAP7
angular power spectrum of CMB temperature fluctuations [93, 95] are shown
there too. One can see that only model with Ωde ≈ 0.7 predicts the peak
locations which match the observational data. In Table 1.1 the locations of

6 It is obtained by integration of (1.15) with ΩK = Ωde = 0, which is allowable since at
this epoch ΩKa

−2, Ωdea
−3(1+wde) � Ωma

−3, Ωra
−4 in the realistic models.
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Fig. 1.14. Dependences of locations of the
1st, 2nd and 3rd acoustic peaks on Ωde for
models with Ωm = 0.3, Ωb = 0.05, ns = −0.97,
H0 = 70km/s ·Mpc (solid lines). The 1σ ran-
ges for them obtained from the WMAP7
angular power spectrum of CMB temperature
fluctuations [93] are shown by horizontal
dotted lines

acoustic peaks are presented for the FMD, OMD and DED models. The FMD
and OMD models are ruled out by WMAP7 data while DED ones well agree
with them. The weak dependence of peak locations on wde is recognized too.
The DED models with wde ≈ −1 are preferable.

As a rule for estimation of the cosmological parameters including dark
energy ones all data on CMB anisotropy are used, not only data on peak
positions. The form of the power spectrum of CMB temperature fluctuations
and its amplitude depend on practically all cosmological parameters, the mi-
nimal set of which in the models with dark energy contain eight ones: density
parameter of baryons Ωb, density parameter of cold dark matter Ωcdm, densi-
ty parameter of dark energy Ωde, EoS parameter of dark energy wde, Hubble
constant H0, spectral index of initial matter density power spectrum ns (scalar
mode), amplitude of initial matter density power spectrum As and reionizati-
on optical depth τrei. So, determination of dark energy parameters using CMB
anisotropy data has sense jointly with other ones. It can be done by maximi-
zation of the likelihood function

L(x; θk) = exp

(
−1

2
(xi − xthi )Cij(xj − xthj )

)
,

where x is measured CMB anisotropy data, xth is predicted in the model with
parameters θk, Cij is covariance matrix. Assuming a flat Universe the number
of free parameters is reduced to seven, since Ωde = 1− Ωm.

Integrating L(x; θk) over H0, ns, As, τrei and Ωb and Ωcdm for fixed their
sum Ωm = Ωb + Ωcdm one can obtain 2-dimensional marginalized likelihood

Table 1.1. Locations of acoustic peaks: observations versus models

Peaks WMAP7 FMD OMD DED DED DED
wde = −0.9 wde = −1.0 wde = −1.1

1st 210± 10 201 412 216 218 220
2nd 526± 24 426 947 499 504 508
3rd 825± 25 764 1563 821 829 836
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Fig. 1.15. The 2D marginalized contours (68% and 95% CL) in the Ωm − w plane for
WMAP data only (lines) and WMAP data combined with SN Ia data (shaded regions). The
dashed lines show the contours for WMAP data only without prior on H0 and solid ones
with the assumed prior of H0 < 100 km/s/Mpc. (From [89])

function L(x; Ωm, wde). The 2-dimensional marginalized contours (68% and
95% CL) in the Ωm−wde plane for WMAP data [89] are presented in Fig. 1.15.
Their prolate and convoluted form indicates some degeneracy in the Ωm−wde
plane: the line of maximal likelihood density distribution is

w
(CMB)
de ≈ −2.61 + 9.45Ωm − 10.45Ω2

m. (1.48)

It crosses with the similar approximation w
(SNIa)
de (Eq. (1.31)) in the point

Ωm = 0.23, wde = −0.96.
The best-fit values of wde and Ωde and their 1σ confidential ranges determi-

ned from the WMAP5 data only are wde = −1.06+0.41
−0.42, Ωde = 0.73+0.10

−0.11. Limits
are significantly improved when WMAP data are combined with SNe Ia data,
that is illustrated by shaded contours in Fig. 1.15. In the case of WMAP+SNLS
data the best-fit values of dark energy parameters are: wde = −0.97±0.07 and
Ωde = 0.73± 0.03.

Therefore, the acoustic peak locations in the angular power spectrum of
CMB temperature fluctuations are independent evidence for existence of dark
energy or cosmological constant.

1.4.2. Baryon acoustic oscillations

Other realization of “angular diameter distance — redshift”
test is implemented by extraction of the baryon acoustic oscillations
(BAO) from the space distribution of galaxies which is described by two-
point correlation function or power spectrum of luminous matter density
perturbations.
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1.4. The angular diameter distance — redshift relation and acoustic peak tests

Fig. 1.16. Left panel: The space two-point correlation function of the SDSS LRG sample.
The models are from top to bottom Ωmh

2 = 0.12, 0.13, 0.14, all with Ωbh
2 = 0.024 and

n = 0.98 and with a mild non-linear prescription folded in. For a pure CDM model the peak
vanishes (lowest line at separation <130h−1 km/s ·Mpc). (From [141]). Right panel: BAO
in power spectra from the combined SDSS and 2dFGRS main galaxies (a), from the SDSS
DR5 LRG sample (b) and the combination of these two samples (c). (From [142])

The idea about modulation of the spectrum of density perturbations by
prerecombination acoustic oscillations in the baryonic Universe was announced
first by A. Sakharov in 1965 [138]. That is why they are called sometimes in
the literature Sakharov oscillations. P.J.E. Peebles was first who has analyzed
their manifestation in the autocorrelation function of the mass distribution
ξ(r), has computed the spike in ξ(r) at large r caused by the oscillation of
the initial power spectrum of density perturbations [139] and has predicted
the possibility of their detection on the base of the galaxy sky surveys. The
physics of BAO phenomena, the analysis of numerical modeling as well as useful
analytic approximations are presented in the papers [133, 140] and numerous
early and recent reviews and textbooks.

The first certain detection of the BAO signal was made by SDSS colla-
boration [141] in 2005 using the two-point correlation function of luminous
red galaxies (left panel of Fig. 1.16). Later, in 2007, they were detected in
power spectra obtained from the combined SDSS and 2dFGRS main galaxies
samples, from the SDSS DR5 LRG sample and the combination of these two
samples [142] (right panel of Fig. 1.16).

The statistically significant bump at 100h−1 km/s ·Mpc scale in the
redshift-space correlation function or oscillations in the power spectrum of
matter density perturbations (Fig. 1.16) is the outcome of acoustic peak shown
in Fig. 1.13. It is manifestation of baryon-photon plasma oscillations before
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and during cosmological recombination epoch. The main part of CMB radi-
ation comes to Earth from the last scattering surface at zdec defined by maxi-
mum of visibility function (Fig. 1.12), which in the DED-models with best-
fit parameters is ≈1090 (optical depth from current epoch to zdec caused by
Thomson scattering is τdec ≈ 0.7).

The fraction of free electrons at this moment was yet large enough (xe ≈
≈ 0.12) and since the ratio of radiation density to baryon matter one then was
ρrad(zdec)/ρb(zdec) ≈ 1.7 the radiation density perturbations drag the baryon
matter density ones via Compton and Coulomb interactions. It continues until
the rate of Compton scattering between photons and electrons becomes too
low to drag baryons. The drag epoch zdrag, defined as the time at which the
baryons are released from the Compton drag of the photons in terms of a
weighted integral over the Thomson scattering rate, is well approximated by
following expression obtained in [140]:

zdrag = 1291
ω0.251
m

1 + 0.659ω 0.828
m

[1 + b1ω
b2
b ], (1.49)

where b1 = 0.313ω−0.419
m [1 + 0.607ω0.674

m ] and b2 = 0.238ω0.223
m . In the models

with Ωb = 0.05, Ωm = 0.3 and h = 0.7 it equals 1026. The sound horizon at
zdrag, when baryons were released from the Compton drag of photons, plays a
crucial role in determination of the location of baryon acoustic oscillations. It
can be estimated using expression (1.47), where Rdec must be substituted by
Rdrag. In the same DED model rs(zdrag) = 148 Mpc in comoving coordinates.
It is well approximated by expression

rs(zdrag) ≈
44.5 ln(9.83/Ωmh

2)√
1 + 10(Ωbh2)3/4

, (1.50)

presented in [140], where the approximation for the first peak location in k-
space is presented too:

kBAO ≈
5π

2rs
(1 + 0.21Ωmh

2). (1.51)

In the FMD model it equals 0.083, in the OMD and DED ones with
presented above parameters it is 0.055. The linear scales λBAO = 2π/kBAO,
which correspond to these wave numbers are 76 and 114 Mpc respectively. But
we observe the angular and redshift distributions of galaxies and deduce the
linear scales from the angular distance — redshift relation. So, it is possible to
measure the following ratios

θs(z) =
rs(zdrag)

(1 + z)dA(z)
, ∆zs(z) =

rs(zdrag)H(z)

c
, (1.52)
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Fig. 1.17. The BAO distance
measure DV (z) for FMD, OMD
and DED models (lines) and
observational constraints (sym-
bols) extracted from SDSS and
2dF galaxy redshift surveys
[141,142]

where θs(z) is measured angular size of physical length rs(zdrag)/(1+z), which
lies orthogonal to the line of sight at redshift z, and ∆zs(z) is z-extension of
the same length when it lies along the light of sight.

Using both measures (1.52) it is possible to obtain a combined distance
scale ratio which is related to spherically averaged correlation function or power
spectrum: [

θ2
s(z)∆zs(z)

]1/3 ≡ rs(zdrag)

[(1 + z)2d2
A(z)c/H(z)]1/3

.

In the paper [141] the following measure was introduced

DV (z) =

[
(1 + z)2d2

A(z)
cz

H(z)

]1/3

, (1.53)

it is the dilation scale as the cube root of the product of the radial dilation
times the square of the transverse dilation. Its z-dependence for FMD, OMD
and DED models is presented in Fig. 1.17. The observational constraints for it
extracted from the SDSS Luminous Red Galaxies (SDSS LRG) survey [141] and
SDSS galaxy samples (Data Release 5) combined with 2dF Galaxy Redshift
Survey (2dF GRS) data [142] are presented there too. One can see that they
prefer DED models.

In the paper [143] the data release 7 (DR7) of SDSS galaxy survey combi-
ned with 2dF GRS data was used for measuring the BAO signal in a series
of redshift slices. The relative distance measure dz = rs(zdrag)/DV (z) was
determined for z = 0.2, 0.35 and showed that DED models best matches these
data (Fig. 1.18).

From the likelihood analysis Percival et al. (2010) found that the BAO data
alone weakly constraint the dark energy parameters in the plane Ωm−wde, that
is shown in Fig. 1.19 by lines. The strong degeneracy of Ωm−wde likelihood di-
stribution function give possibility to constraint the matter density parameter
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Fig. 1.18. The BAO relati-
ve distance measure rs(zdrag)/
DV (z) for FMD, OMD and
DED models (lines) and obser-
vational constraints extracted
from SDSS DR7 and 2dF
galaxy redshift surveys [143]
(symbols)

Ωm for fixed EoS parameter wde according to approximate expression

Ωm ≈ 0.282 + 0.0935(1 + wde) +

+ 0.015(1 + wde)
2 ± [0.058 + 0.012(1 + wde)]. (1.54)

It crosses with similar approximation w
(SNIa)
de (Eq. 1.31) in the point Ωm ≈

≈ 0.275, wde ≈ −1.06. The limits are significantly improved when BAO data
are combined with SN Ia or CMB data. Really, BAO data combined with
SN Ia ones give the best-fit values and 1σ CL as follows Ωm = 0.29 ± 0.02,
wde = −0.97 ± 0.11, and combined with WMAP5 data on CMB anisotropy
they give Ωm = 0.283± 0.026, wde = −0.97± 0.17.

Therefore, BAO data extracted from different galaxy surveys alone prefer
cosmological models with dark energy and combined with CMB anisotropy
and SN Ia distance moduli data significantly improve the determination of
dark energy parameters.

1.4.3. X-ray gas fraction in clusters

Other probe of the accelerated expansion of the Uni-
verse based on the “angular diameter distance — redshift” relation is the
measurement of the X-ray gas mass fraction, fgas, in clusters of galaxies si-
tuated at different redshifts. This fgas technique for determination of cosmo-
logical parameters was proposed independently by S. Sasaki [144] and U.Pen
[145] in 1996. It was improved and tested in papers [146—151] on the base of
data of Chandra observatory.

The first certain detection of cosmic acceleration using the fgas techni-
que was made by Allen et al. in 2004 [149] using Chandra observations of 26
hot (kT & 5 keV), X-ray luminous (Lbol & 1045h−2

70 erg/s), dynamically relaxed
clusters spanning the redshift range 0.07—0.9. It led to a ∼3σ detection of the
acceleration of expansion of the Universe and the tight constraint on the mean

42
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Fig. 1.19. The 2D marginalized contours
(68% and 95% CL) in the Ωm−wde plane
from BAO data (lines), WMAP and Union
SN Ia. BAO constraints in Ωm−wde space
deduced from the rs/DV (0.275) relation
(From [143])

mass density Ωm = 0.25± 0.04 in
excellent agreement with independent
findings from SN Ia distance moduli,
CMB anisotropy and galaxy redshift
surveys studies. This constraint ori-
ginates from the dependence of the
fgas measurements, which are deri-
ved from the observed X-ray gas
temperature and density profiles, on
the assumed distances to the clusters,
fgas ∝ dA(z)1.5. To understand the ori-
gin of this dependence, consider a
spherical region of observed angular
radius θ within which the mean gas
mass fraction is measured. The physi-
cal size, R, is related to the angle θ
as R = θdA. The X-ray luminosity
emitted from within this region, LX ,
is related to the detected flux, FX , as
LX = 4πd2

LFX , where dL is the lumi-
nosity distance and dA = dL/(1 + z)2

is the angular diameter distance. Since the X-ray emission is primarily due to
collisional processes (bremsstrahlung and line emission) and is optically thin,
we may also write LX ∝ n2V , where n is the mean number density of colliding
gas particles and V is the volume of the emitting region, with V = 4π(θdA)3/3.

Considering the cosmological distance dependences, we see that n ∝
∝ dL/d

1.5
A , and that the observed gas mass within the measurement radius

Mgas ∝ nV ∝ dLd
1.5
A . The total mass, Mtot, determined from the X-ray data

under the assumption of hydrostatic equilibrium, Mtot ∝ dA. Thus, the X-
ray gas mass fraction measured within angle θ is fgas = Mgas/Mtot ∝ dLd

0.5
A .

The expectation from non-radiative hydrodynamical simulations is that for
the largest (kT & 5 keV), dynamically relaxed clusters and for measurement
radii beyond the innermost core (r & r2500, where r2500 is defined by condi-
tion ρgas(r ≤ r2500; z) ≥ 2500ρcr(z)), fgas should be approximately constant
with redshift. However, possible systematic variation of fgas with redshift can
be accounted for in a straightforward manner, so long as the allowed range
of such variation is constrained by numerical simulations or other comple-
mentary data.

The rigorous phenomenological expression for fphgas used for testing of cos-
mology by observations is as follows

fphgas(z;P,Q) =
KAγb0(1 + αbz)

1 + s0(1 + αsz)

(
Ωb

Ωm

)[
dΛ
A(z)

dA(z)

]1.5

, (1.55)
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where P = (Ωb, Ωm, Ωde, wde, H0) is set of parameters in the cosmological
model of interest, dA(z) is the angular diameter distance (1.33) computed for
it, dΛ

A(z) is the angular diameter distance computed in the reference spatially-
flat ΛCDM model (with Ωm = 0.3, Ωde = 0.7, wde = −1, h = 0.7), and Q =
= (s0, b0, αs, αb, K, A, γ) is set of parameters related to modeling the cluster
gas mass fraction. The factor K is a ‘calibration’ constant that parameterizes
residual uncertainty in the accuracy of the instrument calibration and X-ray
modeling; the factor A accounts for the change in angle subtended by innermost
core of cluster r2500 as the underlying cosmology is varied; the parameter γ
models non-thermal pressure support in the clusters; the factor b0(1 + αbz)
is the ratio by which the baryon fraction measured at the central part of X-
ray clusters is depleted with respect to the universal mean at redshift z; the
parameter s0(1 +αsz) models the baryonic mass fraction in stars at redshift z.
They are discussed in depth in [151]. Thus, in the general case the approach
contains 12 parameters (P+Q) for determination by matching fphgas to fobsgas. The
number of free parameters can be reduced to 8 if the flat Universe is assumed
and 4 cluster model parameters K, A, γ, b0 are presented by one combined K̃,
which is their product [152].

Allen et al. (2008) collected 42 hot, X-ray luminous, dynamically relaxed
galaxy clusters spanning the redshift range 0.05 < z < 1.1 and measured for
them fobsgas using Chandra data (see for details [151]). Since the angular diameter
distance dA(z), and so fphgas, depends on the assumed dark energy model, one
can compare predicted values of the gas mass fraction with measurements for
clusters at redshift zi by constructing a χ2 =

∑
i

(fphgas(zi)−fobsgas(zi))
2/σ2

i functi-

on (σi are the one standard deviation measurement errors and the summation
is over the 42 clusters) and constrain parameters of given dark energy models.

For determination of cosmological parameters by fgas technique the
authors of [151,152] have used a Markov chain Monte Carlo method and priors
on baryonic content and Hubble constant. Analyzing the data for all 42 clusters,
employing priors Ωbh

2 = 0.0214 ± 0.0020 [153] and h = 0.72 ± 0.08 [154]
Allen et al. (2008) have detected the effects of dark energy at ∼99.99%C.L.
with Ωm = 0.28 ± 0.06 and wde = −1.14 ± 0.31 for a flat cosmology with a
constant dark energy equation of state. Practically the same values of the dark
energy parameters were obtained independently by Samushia & Ratra (2008).
In Fig. 1.20 the two-dimensional Ωm-wde marginalized over rest parameters
contours from cluster X-ray gas mass fraction alone as well as combined with
CMB anisotropy and SN Ia moduli distances data are presented. The const-
raints obtained from all three data sets are as follows: Ωm = 0.253± 0.021 and
wde = −0.98± 0.07.

So, the measurements of the ratio of baryonic-to-total mass, fgas, in the
largest, dynamically relaxed galaxy clusters clearly detect the effects of dark
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Fig. 1.20. The 68% and 95% confidence
constraints in the Ωm-wde plane obtai-
ned from the analysis of the Chandra fgas
data using priors on baryonic content and
Hubble constant (Ωbh2 = 0.0214± 0.0020
[153], h = 0.72 ± 0.08 [154]). Also the
independent results obtained from CMB
data using a weak uniform prior on h
(0.2 < h < 2.0) and SNIa data are shown.
The inner contours show the constraint
obtained from all three datasets without
any external priors (From [151])

energy on the expansion of the Universe and constrain the parameters of dark
energy model via its effects on the distance-redshift relation. The fgas data
alone allow the range of dark energy parameters which overlaps with ones
constrained by other data (see Fig. 1.20). The accuracy is somewhat less or
comparable to that obtained from CMB anisotropy or SNe Ia distance moduli
method, but importance of this technique consists in the fact that quite similar
cosmological results are obtained from the distance-redshift information for
quite different class of source populations.

1.5. Evidence for dark energy
from study of large scale structure

1.5.1. Linear power spectrum of matter
density perturbations

The large scale structure of the Universe is formed by the
gravitational growth of primordial perturbations generated presumably in the
inflation epoch. As it follows from the pioneering work of E. Lifshits [155] the
temporal behavior of amplitudes of the Fourier modes

δ(k, η) ≡ 1

(2π)3

∫
e−ikrδ(r, η)d3r,

of density perturbations in the real space

δ(r, η) ≡ (ρ(r, η)− ρ̄(η))/ρ̄(η))

is result of competition of gravity and pressure gradient, thus, depends on
nature of density-dominating component and relation of scale of perturbati-
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Fig. 1.21. Evolution of Fourier amplitudes (k = 0.01, 0.05, 0.25 Mpc−1) of density
perturbations of cold dark matter (solid line), baryonic matter (dotted line) and dark energy
(dash-dotted line) computed by CAMB. In the left panel OMD model, in the right DED
with wde = −0.9 (parameters are the same as in Fig. 1.13). The vertical thin dotted lines
show radiation matter equality moment, aeq, and the drag one, adrag, when the baryons are
released from the Compton drag of the photons

on to horizon scale. In the case of spatial isotropy the most interesting is
dependence of Fourier modes of density perturbations on the module of wave
vector k ≡ |k|. The amplitudes of superhorizon perturbations (kη � 1) in the
synchronous gauge increase as δ(k, η) ∝ η2 in RD epoch as well as in MD one.
But η ∝ a ∝ t1/2 in RD epoch, and η ∝ a1/2 ∝ t1/3 in MD epoch. It means,
that starting from the radiation matter equality

ηeq = 2(
√

2− 1)
c

H0

√
Ωr

Ωm
=

16.05

Ωmh2
, (1.56)

aeq = 1.619 · 10−7η2
eqΩmh

2 =
4.17 · 10−5

Ωmh2
, (1.57)

when ρ̄r(ηeq) = ρ̄m(ηeq), the rate of increasing of density perturbations is lower.
The wave number that corresponds to the horizon scale at the radiation matter
equality is as follows

keq ≡ η−1
eq = 0.0623Ωmh

2. (1.58)

The density perturbations of baryon-photon plasma with scale smaller
than horizon scale (k > keq) oscillate with approximately constant amplitudes,
δb ∝ cos (kη/

√
3) till adrag, when the baryons are released from the Compton

drag of the photons due to the recombination (dotted line in Fig. 1.21).
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The Fourier amplitudes of density perturbations of cold dark matter in-
creased all time, since it is collisionless. But perturbations with wave numbers
k � keq have entered the horizon long before the radiation matter equality,
at ηh = k−1 � ηeq = k−1

eq and oscillations of baryon-photon plasma effectively
suppressed the increasing of dark matter perturbations, so that at ηh � η �
� ηeq they grow logarithmically [132]:

δcdm ∝ ln

(
I2
a

ah

)
, (1.59)

where ah ≡ a(ηh) can be estimated using (1.45)

ah = 2(
√

2− 1)
keq
k
aeq

(
1 +

(
√

2− 1)

2

(
keq
k

)2
)
≈ 2(
√

2− 1)
keq
k
aeq. (1.60)

and the value of constant I2 = 0.594(1− 0.631fν + 0.284f2
ν ) depends on neu-

trino fraction in the relativistic component fν ≡ ρν/ρr (fν = 0.405 and I2 =
= 0.47 for standard model).

In Fig. 1.21 the evolution of density perturbations of cold dark matter
and baryonic matter with wave numbers k = 0.01, 0.05, 0.25Mpc−1 is shown
from before horizon crossing up to current epoch for OMD (left panel) and
DED (right panel) models. For DED models it is shown also the evolution of
dark energy density perturbations. In the models with wde = const < −1/3
their amplitudes are essentially lower than corresponding amplitudes for matter
components and they do not leave appreciable fingerprints in the form of matter
power spectrum. This figure illustrates also that dark matter is responsible for
the formation of galaxies and large scale structure of the Universe.

Therefore, Fourier amplitudes of density perturbations of cold dark matter
with k ≤ keq before radiation matter equality a ≤ aeq increased all time ∝ a2

independently on k, while perturbations with k > keq changed their growth
rate to (1.59) at a ≥ ah and their amplitudes at aeq depend on k additionally to
the k-dependence of the primordial power spectrum. The pure crossing horizon
effect can be well demonstrated by using transfer function defined as

Tcdm(k, aeq) =
δcdm(k, aeq)

δcdm(k1, aeq)

δcdm(k1, a1)

δcdm(k, a1)
,

where k1 � kh, a1 � ah. Roughly assuming δcdm(k ≤ keq, a ≤ aeq) = δcdm(k ≥
≥ keq, a ≤ ah) = B(k)a2 and δcdm(k ≥ keq, ah ≤ a ≤ aeq) = B(k)(a2

h+
+ ln(a/ah)), where B(k) is primordial amplitude, we obtain

Tcdm(k, aeq)=1 for k � keq and Tcdm(k, aeq)=

(
keq
k

)2(
1+ln

k

keq

)
for k � keq.
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If cold dark matter is dominating matter component then the k-depen-
dence of transfer function slightly changes after ηeq, in the opposite case
the other effects must be taken into account (Silk damping [97] and photon
Compton drag [133] for baryonic component, collisionless damping for hot or
warm dark matter components, etc.) which additionally suppress the initial
matter power spectrum7 at k � keq. But horizon crossing effect is dominating
one at scales related to the observed large scale structure of the Universe
and accurately described by the linear theory of cosmological perturbations in
multicomponent universe.

If primordial power spectrum of scalar mode perturbations, generated in
the early Universe, is power law, B2(k) = Akns , then the initial (after recombi-
nation) one is

Pm(k, a) ≡ 〈δm(k, a)δ∗m(k, a)〉 = AknsT 2
m(k, a),

where A is normalization constant and Tm(k, adrag) is the transfer function of
matter density perturbations δm(k, a) = Ωbδb(k, a)/Ωm + Ωcdmδcdm(k, a)/Ωm

(Ωm = Ωb + Ωcdm), which takes into account all processes affecting the form
of the spectrum up to end of the drag epoch. The initial power spectrum
Pm(k, a) has peak at some kmax from [0,∞] for any ns from 0 < ns < 4, or
at kmax ≈ keq for ns ≈ 1. The exact value of peak position depends on matter
density Ωm, dimensionless Hubble parameter h and spectral index ns of pri-
mordial power spectrum. Thus, the determination of peak position in the initi-
al power spectrum of matter density perturbations Pm(k, a) from observations
fixes the matter content for given values of h and ns. If 3-curvature is known
or constrained by other observations then these data constrain also the dark
energy content. And not only the peak position of Pm(k, a) give possibility
to do that, but also its inclination and amplitude at any k > keq do so. The
essence is that amplitude of the matter density perturbations depends also on
dynamics of expansion of the Universe.

Indeed, the equation of evolution of matter density perturbations in synch-
ronous gauge at DM — DED epochs (see [130] and citing therein) is as follows

δ̈m +
ȧ

a
δ̇m +

(
ä

a
− 2

ȧ2

a2
−K

)
δm = 0, (1.61)

where a is solution of equation (1.15). It shows that the rate of amplitude
growth depends on matter content, parameters of dark energy and curvature,
but does not depend on scale of perturbations. So, the form of initial power
spectrum is practically the same during the linear stage of evolution of matter
density perturbations at DM — DED epochs.

7 The imprint of the baryon acoustic oscillations at Compton drag epoch on the matter
power spectrum was discussed shortly in the section 1.4.2.
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Fig. 1.22. Evolution of matter
density perturbations at MD —
DED epochs in the FMD, OMD
and DED models computed by
CAMB for the same parameters
as in Fig. 1.13. Amplitudes are
arbitrarily normalized to 10−2

at z = 100 (a = 0.01) — the
same for any scale

In Fig. 1.22 it is shown the evolution of matter density perturbations from
z = 100 (a = 0.01) up to the current epoch (z = 0, a = 1) for the FMD,
OMD and DED models computed by CAMB with the same parameters as in
Fig. 1.13. The growth of linear matter density perturbations at this epoch is
approximated with about one percent accuracy by simple expression [156]

δm(a) ∝ exp

a∫
0

Ωγ
m(a′)d ln a′, (1.62)

where Ωm(a) = Ωma
−3/(Ωma

−3 + Ωdea
−3(1+w0) + ΩKa

−2) and γ is growth
index which we suppose equals 8 0.6. In the literature some authors use the
value D(a) = δm(a)/a, dubbed growth factor, which shows how the growth
rate of matter density perturbations in the models with dark energy or curva-
ture is retarded in comparison with one in the Einstein — de Sitter model, in
which δm(a) ∝ a. Fig. 1.22 illustrates the possibility of distinguishing of these
models by studying of matter clustering at different redshifts.

After the cosmological recombination the baryons are released from the
Compton drag of the photons and are free to fall inside the dark matter potenti-
al wells and starting from a ≈ 0.01 (z ≈ 100) their spectrum catches the dark
matter one (see Fig. 1.21). The form of transfer functions for both components

T(i)(k, a) =
δ(i)(k, a)

δ(i)(k1, a)

δ(i)(k1, a1)

δ(i)(k, a1)
, (1.63)

8 Linder in the paper [156] proposed other best-fit values for growth index: γ = 0.545 +
+ 0.05(1 + w) (z = 1), but for w = const models the approximation function (1.62) with
γ = 0.6 fits the lines in Fig. 1.22 with percent accuracy for DED models as well as for OMD
ones, while that ∼2—3%.
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Fig. 1.23. Transfer functions of matter density perturbations at cur-
rent epoch in the FMD, OMD and DED models with the same para-
meters as in Fig. 1.13 calculated using the CAMB [120]

where a � 0.01, k1 � kh, a1 � ah and (i) notes here cdm or b, after that
is invariable 9.

In Fig. 1.23 the transfer functions of matter density perturbations,
defined as

Tm(k) =
Ωcdm

Ωm
Tcdm(k, 1) +

Ωb

Ωm
Tb(k, 1), (1.64)

at current epoch in the FMD, OMD and DEDmodels with the same parameters
as in Fig. 1.13 are shown. For comparison it is shown also the transfer functi-
on for the open (low matter density) baryonic dominated model with Ωm =
= Ωb = 0.3 in which the baryon oscillations in k-space are frozen acoustic
oscillations which they were at the drag epoch. The lines, which mark transfer
functions in OMD and DED models with the same values of Ωcdm and Ωb,
overlap. Contrary, the transfer functions in the models with different Ωm (FMD
and OMD or DED models), or models with the same Ωm but different Ωcdm

and Ωb (OMD and OMDb) are quite different. So, transfer function of matter
density perturbations is not sensitive 10 to presence of cosmological constant
or dark energy with constant EoS parameter with value from vicinity of –

9 If the dark matter is warm or some fraction is hot (massive active neutrinos) then
the amplitude of density perturbations at scales lower free-streaming one decay [157] (see
also [158,159] and citing therein.

10 The cases of affect of other dark energy models on the matter transfer functions are
discussed in the next section.
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Fig. 1.24. The linear power spectra in FMD, OMD, OMDb and DED models, which have
been normalized at decoupling epoch to the amplitude of the angular power spectrum of
CMB temperature fluctuations [15] obtained in the COBE experiment [14], versus measured
ones from the Abell/ACO (R 1998 [160], MB 2001 [161]) and X-ray galaxy cluster catalogue
REFLEX II [162] (left panel), galaxy ones (SDSS LRG DR7 [163], 2dF GRS [164]), peculiar
velocity field from Mark III catalogue [165, 166] (in units of Ω1.2

m h−3Mpc3) and Lyα-clouds
along the line of sight to the distant quasars [167] (right panel)

1. It is explained by the essence of transfer function, since it does not take
into account the growth factor which depends on expansion dynamics of the
Universe (Fig. 1.22).

The characteristic of large scale structure of the Universe, which can be
obtained directly from observations, is power spectrum of matter density per-
turbations

Pm(k) = AknsT 2
m(k)

[
δm(1)

δm(ai)

]2

, (1.65)

where A is normalization constant deduced, for example, from CMB anisotropy
data and the ratio in the brackets is growth factor of matter density perturbati-
ons, which can be calculated numerically or using analytical approximation
(1.62). The power spectra for the same models are presented in Fig. 1.24.
They are normalized at decoupling epoch to the amplitude at horizon scale
deduced from CMB temperature fluctuations [15] (the same normalization as
in Fig. 1.13).

The normalized model power spectra are compared with observational ones
derived from the Abell/ACO [160, 161] and X-ray galaxy cluster catalogue
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REFLEX II [162], galaxy ones SDSS LRG DR7 [163] and 2dF GRS [164],
peculiar velocity field fromMark III catalogue [165,166] (in units Ω1.2

m h−3Mpc3)
and Lyα-clouds along the line of sight to the distant quasars [167]. They are
related via bias factor bi,

Pi(k) = b2iPm(k),

which depends on classes, scales and luminosities of objects [168] (index “i”
marks the class of objects with corresponding catalogue). In the left panel
the cluster power spectra are reduced by square bias factor 2.5, 4 and 3.5 for
Abell/ACO rich clusters with richness R ≥ 0 [160], with richness R ≥ 1 [161]
and REFLEX II X-ray clusters with LX > 0.015 ·1044 erg/s corresponding-
ly. The values of bias factors are well explained by the peaks statistics of
random Gaussian fields [168]. The figures 14 and 15 in [162] illustrate the
dependence of bias factor on luminosity for X-ray clusters. The spectra in the
right panel are unbiased. The amplitude of matter power spectrum derived from
the Mark III catalogue of peculiar velocities of galaxies [165,166] presented in
the units of Ω1.2

m h−3Mpc3. So, in the OMD model it is biased by the factor
∼14.8 (bMark III ≈ 3.8), in the DED models it is biased by the factor ∼3.2
(bMark III ≈ 1.6). The value of bias factor for OMD model is too large for
galaxies from the point of view of the statistics of random Gaussian fields [168].
The amplitude of the matter power spectrum measured from the Lyα forest
at z = 2.5 is recalculated to z = 0 using (1.62) in the DED model (presented
in Fig. 1.24) and is practically unbiased (bLyα ∼ 1). Recalculation to z = 0 in
the OMD model gives biased clustering of Lyα-clouds with bLyα ∼ 2.3 and,
contrary, in the FMD model it gives untibiased clustering with bLyα ∼ 0.4—0.6.
For both models the bias parameters for Lyα-clouds are hard for explanation
in the framework of current theory of large scale structure formation. The most
accurate measurements of matter power spectrum realized on the base of galaxy
redshift surveys SDSS and 2dF. They agree perfectly with form and amplitude
of the matter power spectrum in DED models normalized to CMB data. The
matter power spectrum of OMD model matches the SDSS LRG7 and 2dF LRG
spectra with biasing parameter ∼1.6. The both FMD and OMDb models are
ruled out by these data at high confidential level. The model spectra at small
scale, k ≥ 0.1, are corrected for non-linear evolution of density perturbations
in the late epoch using HALOFIT approximation [169].

One can conclude, that the form and amplitude of the linear power
spectrum of DED model normalized at early epoch to CMB power spectrum
obtained in the COBE or WMAP experiments 11, evolved according to the
theory of linear perturbations through ∼13 billion years of MD — DED epochs,
match well the observational power spectra derived from catalogue of different
types of objects at current epoch. Therefore, the data on the power spectra

11 They have close amplitudes at low spherical harmonics.
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of space inhomogeneities of different types of objects, which are elements of
the large scale structure of the Universe, prefer the models with dark energy
dominating by density now.

The linear power spectrum of matter density perturbations is important
measurable characteristics of the large scale structure of the Universe but not
exclusive. Its moments, defined as

σ2
j (Rss) ≡

1

2π2

∞∫
0

P (k)W 2(kRss)k
2+2jdk (j = −1, 0, 1, 2, ...). (1.66)

are measurable too. HereW (Rss) is Fourier transformation of window function
of smoothing (averaging) scale Rss. The Gaussian and Heaviside (top-hat)
smoothing are used most often. So, the window functions can be as follows

WG(kRss) = exp

(
−k

2R2
ss

2

)
,

for the Gaussian smoothing fG(Rss) = exp (−(r − r′)2/2R2
ss) in the real space,

or
WH(kRss) = 3

sin(kRss)− (kRss) cos(kRss)

(kRss)3

for top-hat one fH(Rss) = Θ(1− |r − r′|/Rss), where

Θ(x) =

{
1, x ≥ 0

0, x < 0

}
,

is Heaviside step function. The (0)-moment, σ0, is r.m.s. of matter density
perturbation field smoothed by sphere with Rss:

σ0(Rss = 〈δ2(r,Rss〉1/2, (1.67)

where
δ(r,Rss) ≡

3

R3
ss

∞∫
0

dr
′
r
′2δ(r

′
)Θ

(
1− |r − r

′|
Rss

)
,

The (–1)-moment, σ−1, is connected with r.m.s. of peculiar velocity of
galaxies in the sphere with radius Rss, dubbed bulk flow :

σV (Rss) ≡ 〈V 2(Rss)〉1/2 = H0f(1)σ−1, (1.68)

where f(a) is the ratio of growth function for amplitude of velocity perturbati-
ons V (a) and analogical growth function for amplitude of density ones δm(a).
Since, the density perturbations and velocity ones are connected by Euler
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Fig. 1.25. Left panel: the r.m.s. of matter density perturbations σ8 computed for the model
spectra presented in Fig. 1.24 (horizontal lines). By the dotes its values from different
measurements are shown: 1 — SDSS and 2dF galaxies catalogues [141, 164, 170], 2 — Lyα
forest [171], 3 — Cosmic Shear [172], 4 — cluster of galaxies catalogue [173], 5 — Sunyaev—
Zeldovich effect [174], 6 — cosmic flows [175], 7 — CFI++ Tully—Fisher catalogue [176],
8 — CMB angular power spectrum of temperature fluctuations [93, 95]. Right panel: bulk
flows for different models and scales. By the signs its values from different measurements are
shown: BDFDB 1990 [177], CFDW 1993 [178], D 1999 [179], SFW 2007 [180], ND 2011 [176]

equation −ikV = δ̇m(a), so, their ratio is f(a) = d ln δm(a)/d ln a and taking
into account (1.62) f(1) = Ωγ

m. The ratio of other two moments, σ1 and σ2,
gives the characteristic scale of peaks in the Gaussian fluctuation field

R∗ ≡
√

3 · σ1

σ2
. (1.69)

Most measurements of r.m.s. of matter density perturbations are related
to scale 8h−1Mpc containing the mass of order of rich clusters of galaxies. The
recent ones have been carried out on the base of different catalogs and types
of objects (galaxies, clusters, cosmic shear, Lyα-clouds, Sunyaev—Zeldovich
effect, cosmic flows, CFI++ Tully—Fisher measurements, CMB anisotropy
data) and are presented in Fig. 1.25 (left panel). Some recent measurements of
the bulk flows at different scales are presented in the right panel of Fig. 1.25.
One can see, that all measurements of these moments prefer models with
dark energy.

All techniques of obtaining the linear power spectrum of matter densi-
ty perturbations from the space distributions of any class of objects have
sequences of uncertainties, distortions and contaminations which essentially
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lower its accuracy and scale extension. It is because the tracers of large scale
structure of the Universe are luminous objects or dense absorption clouds of
baryonic matter at different distances, stages of nonlinear evolution, chemi-
cal compositions, internal structure, dynamics, kinematics and so on. The di-
screteness of their space distributions, volume and luminosities limitations of
their samples complicate their cosmological interpretation too. Most from these
problems are absent when linear power spectrum is extracted from CMB ani-
sotropy formed in the early Universe.

1.6. Angular power spectrum of CMB
temperature fluctuations

1.6.1. Integrated Sachs—Wolfe effect

In the subsection 1.4.1 we have discussed briefly the physical
effects related to the formation of angular power spectrum of CMB temperature
fluctuations caused by scalar mode of cosmological perturbations, main source
of CMB anisotropy. We emphasized there the importance of positions of
acoustic peaks, measurements of which are realization of “angular diameter
distance — redshift” test indicating the presence of dark energy. The positions
of troughs can be used for that as well as [136, 137]. The ratios of amplitudes
of acoustic peaks and deeps of troughs are sensitive to physical densities of
baryons and dark matter [136,137], that is illustrated by Fig. 1.13.

The amplitude and inclination of the CMB power spectrum at low spherical
harmonics (` ≤ 20) is sensitive to the presence of dark energy or space curvatu-
re via the late integrated Sachs—Wolfe (ISW) effect 12 [96], which is described
by second term in the r.h.s. of expression (1.34). The spherical `-harmonic of

Fourier mode of
(

∆T

T0

)
k

, caused by the late ISW effect, is following:

(
∆T

T0

)(ISW )

k`

= −(2`+ 1)

adec∫
1

(Ψ′k − Φ′k)j`(kr)da, (1.70)

where r(a) =
∫ a

1 (ã2H(ã))−1dã is the comoving distance along the line of sight,
Ψk and Φk are amplitudes of Fourier modes of Bardeen metric potentials.

At the MD and DED epochs Ψk = −Φk and the amplitude of k-mode of
gravitational potential changes as

(3K − k2)Ψk(a) =
3

2
H2

0

∑
i

Ωi(a)δi(k; a)/a, (1.71)

12 Producing the additional temperature fluctuations of CMB by decaying of gravitational
potential of large scale perturbation at the linear stage of its evolution. At the non-linear
stage (formation of galaxy clusters, for example) it is called Rees—Sciama effect [182].
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Fig. 1.26. Left panel: Evolution of the amplitude of metric perturbation at MD — DED
epochs in the FMD, OMD and DED models. The growing gravitational potential in the
closed matter dominated model with Ωm = 1.2 and Ωde = 0 (CMD, thin short dash line)
is shown for comparison. The lines of OMD and OMDb are overlapped. Right panel: The
model angular power spectrum of CMB temperature fluctuations at low spherical harmonics
where the late ISW effect gives contribution comparable with ordinary SF effect in the OMD
and DED models (lines). The binned power spectrum from WMAP7 measurements [93, 95]
is shown by dots. The 1σ errors shown by dashed lines are computed from diagonal terms of
the Fisher matrix and include the measurement errors and cosmic variance, the errors shown
by solid lines are measurements ones only multiplied by 10 for visibility

that follows from Einstein equations for scalar perturbations (see, for example,
Eq. 62 in [130]). In the left panel of Fig. 1.26 the evolution of amplitudes
of Ψk(a) in FMD, OMD and DED models at MD — DED epochs is shown.
There the approximation (1.61) for δm(a) was used. The late ISW effect gives
contribution to ∆T/T along the line of sight to the last scattering surface
where Ψ′k 6= 0. In the FMD model it is absent, since Ψk is constant. Its value
at decoupling equals ∆T/T caused by ordinary Sachs—Wolfe (OSW) effect (the
first term in the r.h.s. of (1.34)). In the OMD and DED models maximal rate of
decaying of Ψk is at the current epoch, but taking into account the properties of
Bessel functions of ` > 0 order the main contribution to ∆T/T is accumulated
at 0.01 . z . 1 with peak of integral over k in (1.70) at z ∼ 0.3—0.4, that was
shown in our paper [181]. The later property causes the maximal effect of ISW
at small k (large scales) and lowest `. The growing gravitational potential in
the closed matter dominated model with Ωm = 1.2 and Ωde = 0 is shown there
for complicity. It must be noted here, that Ψ′k 6= 0 also in the vicinity of the
last scattering surface, this is caused by transition of dynamics of expansion
from radiation density dominated Universe to matter one and oscillating of
baryon-photon plasma at decoupling epoch. So, it gives notable contribution
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into ∆T/T in the models with low Ωm and at scales close to the horizon scale at
decoupling epoch, that corresponds to spherical harmonics ∼100. It is dubbed
the early ISW effect and is related to the primary anisotropy of CMB.

In the right panel of Fig. 1.26 the model angular power spectra of CMB
temperature fluctuations is shown for low spherical harmonics where the late
ISW effect gives maximal contribution to ∆T/T in the OMD and DED models.
In these models the late ISW contributes to the quadrupole component of
∆T/T about 20 % in the DED models and about 60 % in the OMD with
Ωm ≈ 0.3, So, the negative space curvature causes stronger ISW effect than
dark energy for models with similar Ωm. And contrary, the space curvature
|ΩK | ∼ 0.2 gives the ISW contribution comparable to ISW one in the DED
models with Ωde ∼ 0.7 (in the figure it is shown for closed model). It causes
the degeneracy in the space of parameters Ωm − ΩK − Ωde − wde when CMB
data alone are used for determination of cosmological parameters. That is why
the prior on zero curvature is applied as rule. The binned power spectrum
from WMAP7 measurements [93, 95] is shown by dots. The 1σ errors shown
by dashed lines are computed from diagonal terms of the Fisher matrix and
include the measurement errors and cosmic variance, the errors shown by
vertical solid lines are measurement ones multiplied by 10 for visibility.
Therefore, CMB anisotropy data in the range of ISW effect are not enough
accurate due to unremovable cosmic variance for constraining the dark energy
models. But since the contribution of late ISW into ∆T/T forms in the range of
observable large scale structure of the Universe the cross-correlation between
them can be used to detect it and to constraint the dark energy parame-
ters [183—186].

The essence of such approach consist in the fact that CMB anisotropy sky

map, presented by
(

∆T

T0

)
(n) in the form (1.34), contains the ISW contributi-

on from matter density perturbations, δm(k; a,n) at z . 1, which strongly
correlate with galaxies space inhomogeneities δg(k; a,n) = bg(k; a)δm(k; a,n),
deduced from the galaxy sky surveys. For the comoving scales& 100Mpc the bi-
as factor bg varies weakly with scale and redshift [142] and the general assumpti-
on about its time and scale independence is well-grounded. Other components
of (1.34), which are related with perturbations at decoupling epoch, do not
correlate with δg(k; a,n) at current epoch and do not contribute to cross-
correlation function (CCF), defined as

CTg(ϑ) ≡
〈

∆T

T0
(n1)δg(n2)

〉
(1.72)

with the average carried over all the pairs at the same angular distance
ϑ = |n1 − n2|.
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It is possible to express this value in the harmonic space with the use of
the Legendre polynomials Pl:

CTg(ϑ) =
∞∑
`=2

2`+ 1

4π
CTg` P`[cos(ϑ)], (1.73)

where cross-correlation power spectra are given by

CTg` =
2

π

∞∫
0

dkk2Pm(k)IISW` (k)Ig` (k). (1.74)

The two integrands in the last expression are respectively

IISW` (k) = 2

amin∫
1

e−τ(a)

(
δm(a)

a

)′
j`[kr(a)]da, (1.75)

Ig` (k) =

amin∫
1

bgN ′(a)δm(a)j`[kr(a)]da, (1.76)

where Ψk and δm(k, z) are the Fourier components of the gravitational potenti-
al and matter perturbations, j`(x) are the spherical Bessel functions, N ′ is a
selection function of the galaxy survey, δm(a) is growth function of matter
density perturbations at linear stage, r(a) is the comoving distance along the
line of sight, τ(a) is the optical depth along the line of sight caused by Thomson
scattering by free electrons and amin corresponds to zmax of the survey.

Applying the (1.72) to the CMB and galaxies sky maps one can obtain the
observational CCF which contains the information about parameters of our
Universe. They can be constrained by comparison of CCF function computed
for the model with given parameters using (1.73)—(1.76).

Such approach has been used by several groups [187—194] to detect the
ISW effect using WMAP all sky maps of the CMB temperature fluctuati-
ons and several maps of galaxy space distributions. The cross-correlations

between
∆T

T0
(n) map and individual δm(n) maps with different galaxy surveys

that trace the matter distribution with light from the whole range of the
electromagnetic spectrum have been detected at 2—3σ significance. It indicates
the rapid slowing down in the growth of amplitude of density perturbations and
means the existence of dark energy in the flat Universe. The combination of
data from different surveys and redshifts essentially reduces uncertainties and
introduces important new constraints [195, 196]. The best surveys available
for this purpose include the following: the optical Sloan Digital Sky Survey
(SDSS), the infrared 2 Micron All-Sky Survey (2MASS), the X-ray catalogue
from the High Energy Astrophysical Observatory (HEAO) and radio galaxy
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Fig. 1.27. Measurements of the CCFs between the WMAP CMB maps and all available
galaxy catalogue that trace the matter distribution with light from the whole range of
the electromagnetic spectrum (black points), compared with the theory from WMAP best
fit cosmology and the galactic bias from the literature (solid lines). Their 1σ deviations
are shown by dashed lines. The errors are calculated from Monte Carlo simulations of
temperature and density fluctuations (From [197])

catalogue from the NRAO VLA Sky Survey (NVSS). The high quality of the
SDSS data allows us to extract some further subsamples from it, consisting
of Luminous Red Galaxies (LRG) and quasars (QSO) in addition to the main
galaxy sample. The results of measurements of the CCFs between WMAP
CMB maps and each from these catalogues obtained in [197] are presented in
Fig. 1.27. The analysis of auto- and cross-correlations between all catalogues
and including the full covariance matrix between all data gave the possibility to
authors of [197] to increase the significance of the total combined measurement
of ISW effect up to 4.5σ and to constraint the Ωm − wde parameter space as
it is shown in Fig. 1.28. One can see, that measurement of ISW effect is a
good probe for dark energy and independent evidence for its presence in our
Universe, like SNe Ia, CMB acoustic peaks and BAOs. Its combination with
other detections of dark energy narrows essentially confidence ranges of DE
parameters (right panel of Fig. 1.28).

The analysis of the constraining power of future measurements of the ISW
effect on models of wde(z) was carried out in [198]. There it was demonstrated
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Fig. 1.28. Ωm − wde constraints from measurements of the ISW effect (shadow range in
the left panel). Constraints from other observations, including CMB, SNe Ia and BAO are
shown for comparison. In the right panel the combined likelihoods using the ISW + each
one of these other constraints are presented. In the both panels the 1 and 2 σ contours are
shown by solid and dashed lines respectively (From [197])

that the cross-correlation of Planck CMB data and Large Synoptic Survey
Telescope galaxy catalogues will provide important independent constraints
on wde(z) at high z.

1.6.2. Weak gravitational lensing of CMB

The measurements of gravitational lensing of CMB tempe-
rature fluctuations by the foreground large scale structure are powerful source
of information about the geometry, expansion history and dark components
of the Universe (see excellent reviews [199—201] and citing therein). The first
detection of len-sing signal at 3.4σ significance was realized by Smith et al.
(2008) [202] from cross-correlation of WMAP data [88,89] with≈2 million radio
sources founded in the NRAO VLA Sky Survey (NVSS) [203]. In the next year
Hirata et al. (2008) [204] for the same data set announced the detection of len-
sing signal at 2.1σ significance. They supported the result by cross-correlation
of WMAP3 data with SDSS LRG and quasar samples at 1.8σ significance.
Combining all three large scale structure samples they stated the detection at
2.5σ level. The obtained there cross-correlation amplitude agrees well with one
expected for DED model with WMAP cosmological parameters.

Recently, the lensing signal has been detected in CMB alone by Atacama
Cosmology Telescope (ACT) [205] at 4σ significance. The gravitational lensing
remaps the CMB temperature fluctuations on the sky as follows

T (ñ) = T̃ (ñ + α(ñ)),
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Fig. 1.29. The CMB lensing power
spectra detected by Atacama Cosmolo-
gy Telescope [205] (dots) and computed
for two models (lines), which have
practically indistinguishable TT power
spectra well matching the WMAP7 one
(ΛCDM with ΩΛ = 0.73, Ωm = 0.27
and closed MD model with ΩΛ = 0,
Ωm = 1.29) (From [206])

where α(ñ) is deflection field and tilde denotes the unlensed quantities. It
imprints a distinctive non-Gaussian signature on the pattern of the microwave
sky, which can be measured by 4-point correlation function or power spectrum
of the convergence field κ = 1

2∇α in the form

(2π)2δ(L− L′)ĈκκL = |Nκ(L)|2
∫

d2`

(2π)2

∫
d2`′

(2π)2
|g(`,L)|2×

×
[
T ∗(`)T ∗(L− `)T (`′)T (L′ − `′)− 〈T ∗(`)T ∗(L− `)T (`′)T (L′ − `′)〉Gauss

]
,

where `, `′,L,L′ are coordinates in Fourier space in the flat-sky approximation,
g defines the filters that can be used to optimize signal-to-noise, N is a normali-
zation, and the second term is the Gaussian part of the 4-point correlation
function. Subtraction from the full 4-point function its Gaussian part gives the
non-Gaussian lensing signal.

The power spectrum of the convergence field extracted from ACT tem-
perature maps in [205] is presented 13 in Fig. 1.29. There are also shown the
predicted power spectra of the convergence field for ΛCDM (ΩΛ = 0.73, Ωm =
= 0.27) and closed MD (ΩΛ = 0, Ωm = 1.29) models, which have practically
indistinguishable TT power spectra [206]. They differ only at largest angular
scales (` < 10) due to the ISW effect, but there cosmic variance is too large
(see right panel of Fig. 1.26). Strong degeneracy in Ωm−wde parameter space
constrained by CMB TT power spectrum alone is illustrated by prolate and
convoluted form of confidence contours in Fig. 1.28. The addition of lensing
data should break this degeneracy.

Recently, these data have been used by Sherwin et al. (2011) [206] for con-
straining the Ωm−ΩΛ parameter space on the base of WMAP7 TT and ACT
lensing power spectra. The results are presented in Fig. 1.30. One can see

13 For details of pipeline of obtaining the lensing power spectrum from ACT data we
refer to the original paper [205].
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Fig. 1.30. Two-dimensional marginalized
posterior probability for Ωm and ΩΛ (68%
and 95% C.L.). Shaded contours are for
WMAP + ACT lensing, black lines are for
WMAP only (From [206])

that ACT lensing data prefer model
with dark energy and serve as one
more independent argument for its
existence and dominance in density.

In the paper [207] it was shown
that combining of expected Planck
CMB data with the weak lensing
survey of Euclid will give powerful
constraints on early dark energy and
will be able to break degeneracies in
the parameter set inherent to the

various observational channels. So, the current and planned experiments for
measurements of gravitational lensing promise to become the crucial data
in unveiling the mystery of dark sector of our Universe.

1.7. Age of the Universe

We have mentioned at the beginning of this chapter the
problem of agreement of the expansion age of the Universe with age of the
oldest stars of our galaxy. The estimations of the age of the oldest stars in
the globular clusters, obtained in the 90s of last century, are in the range
13.5 ± 2 Gyrs [12, 208–211]. The similar results were obtained using other
methods: white dwarf cooling sequence in globular clusters (14.5 ± 1.5 Gyrs
[212], 12.7 ± 0.7 Gyrs [213]) and content of U-238 in the old stars of halo of
the Milky Way (14.0± 2.4 Gyrs [214]). The lower limit of such estimations is
11 Gyrs at 2σ C.L. [211]. The expansion age of the Universe should be larger.
So, what we have here?

The age of the Universe in the general cosmological model with given
parameters is as follows:

t0 =

1∫
0

da

aH(a)
, (1.77)

where H(a) is given by Eq. (1.15). Since Ωr ∼ 10−5 and the main contribution
to the integral comes from the range a > 0.01, the radiation term in (1.15) can
be neglected. In the Einstein—de Sitter model (Ωr = ΩK = Ωde = 0, Ωm = 1)
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the age of the Universe is defined by current value of Hubble constant

t0 =
2

3

1

H0
, (1.78)

and equals 9.3± 0.6 Gyrs for H0 = 70± 4 km/s ·Mpc, that is essentially lower
than the age of the oldest stars of our galaxy and, therefore, this model is ruled
out by these measurements.

In the open models without dark energy the equation (1.77) is integrated
to give

t0 =
H−1

0

1− Ωm

[
1 +

Ωm

2
√

1− Ωm
ln

(
1−
√

1− Ωm

1 +
√

1− Ωm

)]
. (1.79)

In the limit Ωm → 1 we recover the value (1.78). In the limit Ωm → 0 we
obtain also finite value: t0 → H−1

0 . For H0 = 70 ± 4 km/s ·Mpc and Ωm =
= 0.3± 0.1 from (1.79) we obtain t0 = 11.3± 1.2 Gyrs, that is at lower limits
of measurements of age of the oldest stars. These models prefer uncomfortably
low Ωm, that contradict its measurements from peculiar velocity of galaxies,
for example, and large negative curvature, that contradict data on positions of
CMB acoustic peaks.

The equation (1.77) has analytic solution also for flat ΛCDM model:

t0 =
H−1

0

3
√

1− Ωm
ln

(
1−
√

1 + Ωm

1−
√

1− Ωm

)
. (1.80)

In the limit Ωm → 1 we obtain the value (1.78) of Einstein—de Sitter
model, but in the opposite limit Ωm → 0 the cosmic age goes to infinity,
t0 →∞, which makes this model more suitable for agreement with independent
measurements of cosmic age (see Fig. 1.31). Really, for the same range of

Fig. 1.31. The dependences of age
of the Universe on matter density
in the models without dark energy
(OMD, Ωde = 0) and in the flat models
(ΩK = 0) with dark energy (DED).
The dotted strip shows the age of
the Universe estimated from the age
of oldest white dwarfs, oldest stars of
globular clusters and from the content
of U-238 in the oldest stars of galaxy
halo. The rectangle shows marginali-
zed 1σ constraints from combined data
(Table 1.2)
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CHAPTER 1. Observational evidence for dark energy

parameters (H0 = 70± 4 km/s ·Mpc and Ωm = 0.3±0.1) the age of expansion
of the Universe is now in the interval 12—16 Gyrs.

In the models with non-Λ dark energy, even in the simplest among them —
wCDM (w = const 6= −1), the integral in (1.77) can be calculated only numeri-
cally. The results of calculations for DED and OMD models are shown in
Fig. 1.31. Also the measurements of age of the oldest stars are shown there.
One can see, that the DED models can explain, in principle, all independent
measurements of cosmic age. One can see, that EoS parameter also affects
the age of expansion of the Universe which increases with decreasing of wde.
It was used by Krauss & Chaboyer (2003) [211] for constraining of dark
energy parameters on the base of estimation of age of globular cluster: for the
Hubble key project the best-fit value of Hubble constant they have obtained
wde < −0.4 and Ωm < 0.38 at 1σ C.L.

Therefore, the independent measurements of age of the oldest stars of our
galaxy and Hubble constant from distant galaxies are important evidence for
existence of dark energy in the Universe.

1.8. Constraints on dark
energy parameters from combined data

The complex approaches for establishing the most adequate
model of the Universe have been started in the 90s of the past century. Using
available at that time observational data on large scale structure (galaxi-
es and clusters power spectra, bulk motions, cluster mass and temperature
functions, damped Ly-α systems) and COBE CMB anisotropy measurements
it was stated at 1σ confidence level that ΩΛ > 0 before indication of dark
energy by SN Ia measurements (see our papers [19, 20] and citing therein).
Complementation of these data by SN Ia luminous distance measurements
and CMB acoustic peaks positions from the ground-based and stratospheric
experiments available at the boundary of millennium enhances the confidence
level of existence of dark energy to 99.99% [135, 137, 215—224].

Simultaneously with progress in accumulation of cosmological data and
increasing their accuracy and quality, the physical interpretations as well as
mathematical and computing methods of comparison of theoretical predictions
with observations and extracting of the cosmological parameters from them
were progressed too. The highly accurate fast codes for estimation of large
number of parameters become publicly available (CosmoMC, for example).
Together with publications of the results of the digital galaxy sky surveys
and the first year WMAP all-sky CMB survey they originates the next level
of cosmology investigations, dubbed precision cosmology. It becomes possible
to establish the most optimal values of main cosmological parameters at high
confidence level, which is very important for investigation of the nature of dark
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energy and constraining the classes and number of its models. Since its effect
on the predicted values of the characteristics of the Universe (age, dynamics
of expansion, large scale structure) is comparable with influence of values of
rest cosmological parameters (ΩK , Ωcdm, Ωb, Ων , Nν , H0, As, ns, At, nt, Yp,
τ), the dark energy parameters must be determined jointly with all other ones.
The analysis of Monte Carlo Markov chains is widely used for this puprose, in
it two functions

L(x; θk) = exp

(
−1

2
(xi − xthi (θk))Cij(xj − xthj (θk))

)
, (1.81)

and
P(θk;x) =

L(x; θk)p(θk)

g(x)
, (1.82)

the likelihood and posterior ones correspondingly are under consideration. Here
θk notes all cosmological parameters, x notes all observational values, xth notes
their model predictions, Cij is covariance matrix for all observational data,
p(θk) is prior for θk parameter, g(x) is probability distribution function of
data. If model is correct, the data are normally distributed and do not contain
dominating systematic errors then normalized to 1 at maximum dependences
of their likelihood and posterior functions on each parameter marginalized over
the rest ones coincide.

It was shown ([94,137,225] and citing therein) that contribution of tensor
mode of cosmological perturbations to CMB temperature fluctuations is negli-
gibly small and, therefore, can be omitted in the problem of determination
of dark energy parameters. Also, there it was shown that the value of active
neutrino density parameter, Ων , is lower than 0.03 at 95.4% confidence level.
Its best-fit value is close to zero. Such low upper limit for active neutrino densi-
ty parameter makes it unimportant for dark energy problem. Therefore, two
parameters, At and Ων can be assumed to be zero without loss of generality in
the problem of determination of dark energy parameters. The spectral index of
tensor mode, nt, in this case is neglected too. The effective number of neutrino
species, Nν , is not crucial parameter too and in our task is commonly assumed
to be equal to effective number from standard model of particle physics, 3.04.

The similar situation is with primordial helium parameter Yp. Its value
defines the number density of free electrons at decoupling epoch as ne =
= 11.31(1 + zdec)(1− Yp)Ωbh

2 [226] that influences photon free streaming and
suppresses the CMB power spectrum at small angular scale. The change of pri-
mordial helium parameter in the range of its 95.4% limits, 0.16 < Yp < 0.46
[94], causes the variation of amplitude of 2nd, 3d and 4th acoustic peaks in the
range 1—2%. So, without loss of generality one can fix it at standard fiducial
value 0.24, which matches well the Big Bang nucleosynthesis (BBN) const-
raint [227,228] and incorporates the other measurements of primordial content
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CHAPTER 1. Observational evidence for dark energy

Fig. 1.32. Posterior (solid line) and likelihood (dashed line) functions for main cosmological
parameters and combined datasets WMAP7 + HST + BBN + SDSS LRG7 + SN SDSS
SALT2

of helium [229, 230]. Of course, the exact values of these parameters are very
important for physics and cosmology, but they correspond to other problems
of current cosmology which are beyond the scope of this book. They become
especially actual in the light of forthcoming experiments.

Therefore, in the problem of determination of dark energy parameters at
current level there are 7 important cosmological parameters (ΩK , Ωcdm, Ωb,
H0, As, ns, τ) apart the dark energy ones Ωde and wde ones. In Figs. 1.32
and 1.33 the marginalized likelihood and posterior functions are presented for
main cosmological parameters and current observational data on dynamics of
expansion of the Universe (SN SDSS [77], HST [231]), its large scale structure
(SDSS LRG7 [163], BAO [143]) and CMB anisotropy (WMAP7 [93—95]). In
the first figure SNe Ia from SDSS supernova survey are processed using SALT2
light-curve fitting method, in the second one — MLCS2k2 method. Maxima of
functions define the best-fit parameters and limits of 68.3% (95.4%) fraction
of area under the curves define 1σ (2σ) confidence limits of optimal values
of corresponding parameters. They are presented in Table 1.2 for different
assumptions and SNe Ia compilations. One can see, that best-fit values of wde
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1.8. Constraints on dark energy parameters from combined data

Fig. 1.33. Posterior (solid line) and likelihood (dashed line) functions for main cosmological
parameters and combined datasets WMAP7 + HST + BBN + SDSS LRG7 + SN SDSS
MLCS2k2

are somewhat different for SALT2 and MLCS2k2 light-curve fittings for the
same data set: in the first case it is in the phantom range, in the second one
in the quintessence one. But confidential limits for both are wide and do not
exclude each other. The presented in Fig. 1.32 and 1.33 likelihood and posteri-
or functions, which are practically superimposed and Gaussian, prove that
the theory matches well observational data and its parameters are determi-
ned surely. One can see, that current data unambiguously prefer the models
with low spatial curvature and high dark energy density now. Since the admi-
ssible values of curvature parameter are very close to zero and computations
of models with non-zero curvature by CAMB are essentially time consu-
ming most researchers fix it equal to zero when determine the dark energy
parameters.

The remarkable achievement of current cosmology is visible here too: it
is establishing of the existence of dark energy (Ωde > 0) at 99.999% or more
confidence level (&12σ) with its content in the 1σ range 0.64 < Ωde < 0.76.
In spite of the relatively small dispersions of parameters shown in Figs. 1.32
and 1.33 and Table 1.2, a large number of dark energy models can “belong”
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there yet. Really, 1σ range of marginalized likelihood/posterior functions
for wde includes ΛCDM, phantom and quintessence dark energy. Its more
accurate and assured determination becomes the key problem of dark energy
investigations.

In Figs. 1.9, 1.11, 1.15, 1.19, 1.20, 1.28, 1.30 the 1 and 2σ contours in
Ωm − wde plane of likelihood distribution function marginalized over all rest
parameters are presented for the different determinations. One can see, that
practically each method shows some degeneracy (see expressions (1.31), (1.48),
(1.54)) which makes contours prolate and convoluted. It is caused by integral
character of “distant—redshift” relations in the low-z observations or geometri-
cal projections in the high-z ones. For example, the degeneracy in Ωm − wde
plane of likelihood distribution function, obtained from CMB data alone, can be
understood as follows. The first peak of the CMB temperature power spectrum
is connected with the sound horizon at decoupling, when the CMB was last
scattered by free electrons. It depends (see equations (1.35)—(1.47)) on Ωb,
Ωm, H0, T0 and effective number of relativistic fractions Neff . The projecti-

Table 1.2. The best-fit values for cosmological parameters
and the 1σ limits from the extremal values of the N-dimensional distribution
determined for the ΛCDM and wCDM models by the MCMC technique
from the combined datasets WMAP7 + HST + BBN + SDSS LRG7 +
+ SN SDSS SALT2 (1) and WMAP7 + HST + BBN + SDSS LRG7 +
+ SN SDSS MLCS2k2 (2). By the asterisk in brackets the derived
parameters are noted. The Hubble constant H0 is in units km s−1 Mpc−1

Parameters
ΛCDM ΛCDM wCDM wCDM

1 2 1 2

Ωbh
2 0.0225+0.0016

−0.0013 0.0223+0.0016
−0.0013 0.0228+0.0008

−0.0012 0.0226+0.0017
−0.0014

Ωcdmh
2 0.113+0.012

−0.012 0.117+0.011
−0.013 0.115+0.010

−0.012 0.115+0.013
−0.014

Ω
(∗)
m 0.286+0.042

−0.043 0.319+0.047
−0.051 0.279+0.048

−0.033 0.307+0.057
−0.049

ΩK –0.001+0.016
−0.017 –0.004+0.016

−0.019 –0.002+0.012
−0.019 0.006+0.026

−0.023

H0 68.8+6.5
−4.9 66.0+6.0

−5.0 70.2+4.3
−6.1 66.8+5.6

−5.9

log(1010As) 3.09+0.09
−0.09 3.09+0.08

−0.09 3.09+0.07
−0.08 3.09+0.10

−0.09

ns 0.970+0.034
−0.036 0.962+0.035

−0.033 0.969+0.029
−0.027 0.973+0.039

−0.040

τ 0.084+0.046
−0.033 0.085+0.041

−0.036 0.085+0.034
−0.029 0.082+0.050

−0.034

t
(∗)
0 13.87+0.78

−0.75 14.04+0.77
−0.71 13.58+0.99

−0.58 13.62+0.098
−0.91

Ω
(∗)
de 0.715+0.041

−0.037 0.685+0.047
−0.043 0.723+0.032

−0.044 0.687+0.044
−0.052

wde –1 –1 –1.04+0.17
−0.19 –0.84+0.22

−0.22

− logL 3865.11 3859.24 3865.05 3857.32
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Fig. 1.34. Confidence level (68.3%, 95.4% and 99.7%) contours in Ωm − ΩΛ plane (left
panel) and in Ωm − wde plane (right panel) obtained from CMB, BAO and SN data alone
as well as their combination (From [78])

on of this sound horizon onto the same degree-scale angle on the sky, as it
follows from eqs. (1.33) and (1.37), can be realized in cosmologies with di-
fferent combinations of H0, Ωb, ΩK , Ωm, Ωde and wde. But when we take into
account the position and amplitude of other peaks and troughs, which have di-
fferent dependences on cosmological parameters, the ranges of possible combi-
nation of parameters become narrow. Their dimensions, amounts and forms
depend also on accuracy of observational data. So, the models with values of
parameters which are inside the contour cannot be surely distinguished using
only the measurements of primordial CMB power spectrum. Fortunately, for
different techniques of dark energy parameter determination the contours or
surfaces of equal likelihood or posterior have different orientations, prolateness
and convolution in the parameter space (see Figs. 1.9, 1.11, 1.15, 1.19, 1.20,
1.28, 1.30), that give the possibility to break the degeneracies by using combi-
ned datasets for determinations of cosmological parameters. It also narrows
the confidence ranges of main cosmological parameters and establishes the
concordance model of the Universe.

Fig. 1.34 illustrates breaking of the degeneracies in Ωde − Ωm and
wde − Ωm marginalized likelihood distributions by using the combined dataset
for determinations of cosmological parameters. There the Union compilati-
on of SNe Ia [78], 5-year WMAP data [90] and BAO [141] have been used.
In the left panel the density parameters Ωde and Ωm are constrained by the
whole data set for the case of fixed EoS parameter wde = −1 (ΛCDM). The
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best-fit values from combined dataset are as follows 14: Ωde = 0.713 ± 0.047,
Ωm = 0.285± 0.022 and ΩK = −0.009± 0.0098. In the right panel the const-
raints are computed for flat models, there best-fit values of wde and Ωm are
−0.969 ± 0.089 and 0.274 ± 0.020 correspondingly. These values somewhat
differ from ones presented in Table 1.2, where we used the updated observatio-
nal data (WMAP7 [93—95], SN SDSS [77], HST [231], SDSS LRG7 [163],
BAO [143]). The main reason for difference of best-fit values of dark energy
parameters consists in different datasets and different light-curve fitting in SNe
Ia compilations, SALT method in Union compilation and MLCS2k2 method
in SN SDSS one. Also, our 1σ ranges are wider, since we present the extremal
values of corresponding parameters in N-dimensional distributions.

The main advantage of combined analysis consists in the fact of existence of
concordance model, which matches practically all cosmological and astrophysi-
cal observational data. This concordance model is dark energy dominated and
close to flat ΛCDM one at current epoch. But small departure from standard
ΛCDM allows existence of large number of alternative models, which include
physical fields, fluids, generalized or modified gravity theories. In this section
we analyzed only ΛCDM and wCDM models as simplest ones and showed the
incontrovertible observational evidence for existence of dark energy.

1.9. Summary

The state-of-art observational evidence for existence of dark
energy and methods of constraining of its parameters were discussed in this
chapter. The list of independent indicators of dark energy developed during last
decade in observational, data processing and theoretical aspects is as follows:

• luminosity distance — redshift relation for SNe Ia,
• luminosity distance — redshift relation for GRBs,
• angular diameter distance — redshift relation for CMB acoustic peaks,
• angular diameter distance — redshift relation for BAO peaks in matter

density perturbations,
• angular diameter distance— redshift relation forX-ray clusters of galaxies,
• formation of the large scale structure of the Universe and its elements,
• cross-correlation of ISW anisotropy of CMB with large scale structure

distribution of galaxies,
• weak gravitational lensing of CMB,
• age of the oldest stars of our Galaxy.

We have shown that each of from them prefers the dark energy dominated
model for agreement of current physical models of objects with numerous
accurate observational data on their luminosities, spectra, sizes, distances, ages

14 Symmetrized errors include statistical and systematical ones (Table 6 in [78]) as root
square from sum of their squares.
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etc. We suppose that indirect but important argument for dark energy is exi-
stence of concordance model, in which all heterogeneous observational data
are fitted well simultaneously. The determinations of dark energy parameter
Ωde from different combinations of observable data give close values: Ωde =
= 0.69±0.05 for WMAP7 + HST + BBN + SDSS LRG7 + SN SDSS MLCS2k2
dataset and Ωde = 0.72± 0.04 for WMAP7 + HST + BBN + SDSS LRG7 +
+ SN SDSS SALT2 dataset. The EoS parameter is worse determined: its value
considerably depends on prior assumptions and combinations of dataset and
most determinations give its value in the interval (–1.2—0.8). Its best-fit value
is in the quintessence range (wde = −0.84± 0.22) if dataset contains the SNe
Ia distance moduli obtained with MLCS2k2 method of light-curve fitting and
is in the phantom range (wde = −1.04± 0.18) if used SNe Ia distance moduli
are obtained with SALT2 one. Since they are out of 1σ-range of each other one
can conclude that some inconsistency or tension exists between fitters SALT2
and MLCS2k2.

In the next chapters we will discuss the different physical models of dark
energy and their agreement with observational data presented in this chapter.
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In this and next two chapters we analyze the different
models of dark energy. Since the explanation of accelerated
expansion of the Universe is out of standard models of
matter and gravitation the three ways are to find it: the
modifying of form of matter, the modifying of gravity,
or both. The historical first one is modifying of gravi-
ty: Albert Einstein in 1917 [46] added the cosmological
constant to the left part of General Relativity equations.
But then the empty space is curved, that destroys the main
conception of General relativity: the matter-energy causes
the space curvature. On the other hand, then the gravity
has two fundamental constants, G and Λ, which through
the cosmological values H0, ρcr and ΩΛ can be expressed
as G = 3H2

0/(8πρcr) and Λ = 3H2
0 ΩΛ. Their numbers in

units of c = 1 are drastically different, G = 1013 cm/g
and Λ = 10−56 cm−2, that has not found the physical
interpretation. That is why physicists prefer to put Λ in the
right hand side of General Relativity equations and interpret
it as matter-energy component. There it also has not obtai-
ned suitable physical interpretation, but lead to the other
problems, “fine tuning” and “cosmic coincidence” ones, whi-
ch have no satisfactory physical explanations too. This is
the first reason of existence of large number of alternati-
ves to cosmological constant, in spite of that the cosmologi-
cal models with Λ well match the observational data on
dynamics of expansion and large scale structure of the Uni-
verse. The other reason is originated, in our opinion, by
successes of inflation and particle physics theories. Indeed,
if scalar field or inflaton existed in the very early Universe



2.2. Cosmological constant as vacuum energy

and accelerated its expansion, then why cannot something like it exist later
or now? Ratra and Peebles (1988) [35] and Wetterich (1988) [36] where first
who analyzed the cosmological consequences of presence of scalar fields in the
contemporary Universe. The active development of these ideas in the next years
after discovery of accelerated expansion of the Universe in 1998 (see [37—44]
and citing therein) has led to the current dark energy conception [24—34].

2.2. Cosmological constant
as vacuum energy: ideas and problems
The physical interpretation of cosmological constant has long

history. In 1968 Ya. Zeldovich [232] argued that the energy of zero oscillati-
ons of vacuum is Lorentz-invariant pvac = −ρvacc2, i.e. it is equivalent to the
Λ-constant T vacµν = Λgµν . The importance of such identification can hardly
be underestimated, since the existence of vacuum energy is indisputable in
quantum mechanics and field theory, as it causes the observed inevitable
natural broadening of spectral lines and Lamb shifts 1. On the other hand,
the General theory of relativity states, that all of existing kinds of energy are
the sources of gravitational field and should be included as proper stress-energy
tensors in the right-hand side of Einstein equations, Gµν = 8πG(Tµν + T vacµν ).
This means that Λ-constant should be introduced in order to take into account
the gravitational action of the vacuum.

However, the explanation of numerical value of observable Λ-constant is
complicated. Indeed, the value of energy of zero oscillations of vacuum can be
estimated as follows [233]:

ρvac ∝
kcut∫
0

√
k2 +m2k2dk ∝ k4

cut, (2.1)

where kcut � m is the ultraviolet limit, or the scale of spectrum cut-off,
necessary for the finite value of vacuum energy to be obtained 2. The most
plausible scale for the cut-off is the Planck energy scale kcut ∝ Mpl, for
which the value for the vacuum energy is ρvac ∝ M4

pl ≈ 1096 kg/m3. Such
density exceeds the observable value of Λ-constant, ρΛ = 8πGΛ = 1.88×
× 10−26ΩΛh

2 kg/m3, by 123 orders and it is the main problem of such physi-
cal interpretation of Λ. Since the appropriate scale for cut-off, kcut ∝ MX ≈
≈ 10−3 eV, is impossible to obtain in the framework of existing particle physics
theories, Zeldovich proposed the idea of ordering of polarized vacuum [232].
This is a vacuum represented as birth and annihilation of the same type pairs

1 In 1955, Lamb was honored with Nobel prize for the discovery of shift in the structure
of energy spectrum of Hydrogen atom. This shift is measured and predicted with accuracy
as high as 11 digits. The theoretical prediction is based on the interactions of electrons with
zero oscillations of electromagnetic field.

2 In quantum electrodynamics the arbitrary large value of vacuum energy is elimi-
nated by renormalization, though the absolute value (the finiteness) in this theory is not
so fundamental as in the theory of gravitation.
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of particle and antiparticle. The ordering implies the zero rest mass for particle-
antiparticle pair, so only the energy of their gravitational interaction is left.
For the particles of masses m, separated by the distance λ = ~/(mc), one
can evaluate the energy density of gravitation, and hence vacuum energy as
ρvacc

2 ≈ (Gm2/λ)/λ3 = Gm6c4/~4. The estimated value of vacuum energy is
appropriate for the mass of pion, it is intermediate value between the mass
of proton and electron. The result looks very promising, since the proper
order of magnitude for vacuum energy is obtained, but at the same time the
result is vague, since it has not found further development in particle physics,
hence there is no additional grounding for it. Also the attempts were made to
construct the observed value for ρΛ from the vacuum energy at Planck scales
ρvac ∝ 1096 kg/m3 by multiplying by e−2/α [234], where α = e2/(~c) is the
fine structure constant, or by (MSUSY /Mpl)

8 [235], where MSUSY ' 103 GeV
is the energy scale of supersymmetry breaking at electro-weak interaction.
Unfortunately, these attempts have failed to find the grounding too.

Another yet unsolved problem of vacuum energy is connected with the
circumstances of its emergence. It is quite natural to suppose, that this energy
is a remnant of processes taking places in the early Universe. Since the vacuum
energy density does not vary during the expansion, at the moment of emergence
it was by many orders smaller than the density of any other components of
medium. The value of vacuum energy density should be fine-tuned in the early
Universe to be of the same order as the matter density now. Moreover, the small
variation of the value in the early Universe leads to the crucial consequences
for the formation of its large scale structure in future.

So, three unresolved problems arise in the way of interpretation of
cosmological constant as vacuum energy: its small value, fine tuning in the
early Universe and strange coincidence of the value of its density with the
matter density now (see also [236—239]). These problems, on one hand, stipu-
late us to reconsider our point of view on the nature of vacuum, and, on the
other hand, enforce to search the alternative interpretation of Λ-constant. We
suppose, that history of Λ-cosmology is not completed, since it is the simplest
theory of dark energy from the mathematical point of view, matching well
practically all observational data mentioned in the previous chapter.

2.3. Scalar fields as dark energy
Other radical alternative of explanation of accelerated

expansion of the Universe consists in abandonment of cosmological constant,
zeroing of vacuum energy 3 but introducing the scalar field φ(a), which
smoothly (does not depend on spatial coordinates in the main order of its

3 There are many hypothetical mechanism to do that in supersymmetry and string
theories of particle physics. It is easier to build the theory which gives zero for energy of
averaged vacuum state than such small that corresponds to dark energy density.
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value) fills the Universe and satisfies some conditions. The simplest variants of
such fields assume the minimal coupling with other matter-energy components
of the Universe via gravitation only. Their physical properties are given by two
functions: potential U(φ) and Lagrangian density

L = F(X,U(φ)), (2.2)

where X ≡ 1
2φ;µφ

;µ is kinetic term, which describes the rate of change of
the field φ. The covariant Euler—Lagrange equation, or variational principle
applied to the action

S =

∫ √
−gL(X,U)d4x, (2.3)

gives the field equation of motion in the FRW metric (g is its determinant),
which can be solved jointly with Friedmann equations (1.11)—(1.12). To
do so, the energy density and stress or energy-momentum tensor of field
must be defined.

The energy-momentum tensor of such field is as follows:

Tµν = L,Xφ,µφ,ν − gµνL. (2.4)

It can be rewritten in the form of perfect fluid energy-momentum tensor

Tµν = (ρde + pde)uµuν − gµνpde

with energy density (T 0
0 ) ρde = 2XL,X − L, (2.5)

pressure (T ii ) pde = L (2.6)

and four-velocity uµ ≡ φ;µ/
√

2X = (a, 0, 0, 0) in the comoving coordinates.
The value of pressure, as a rule, is presented in the Friedmann equations by
EoS parameter wde

pde = wdeρde, (2.7)

which for the scalar field dark energy model should satisfy the equation

wde(a) ≡ pde(a)

ρde(a)
=

L
2XL,X − L

. (2.8)

It is a function of time and determination of character of its variati-
on (monotonous, non-monotonous, increasing, decreasing or oscillating) and
its evolution is crucial task for modern cosmology. Determining of the time-
dependence of wde(a) from observations gives evolution of dark energy density
according to equations (1.8)—(1.9). This is enough for description of dynamics
of expansion of the homogeneous Universe using Friedmann equations (1.11)—
(1.12), but insufficient for understanding of field evolution as well as for includi-
ng the scalar field in theory of the large scale structure formation.
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Indeed, applying the Euler—Lagrange equation for action (2.2), or dif-
ferential energy-momentum conservation law (1.4) for (2.4), we obtain the
equation of motion for scalar field in the general form:(

φ̈+ 2aHφ̇
)
L,X − a2∂U

∂φ
L,U +

φ̈φ̇2 − aHφ̇3

a2
L,XX +

∂U

∂φ
φ̇2L,XU = 0. (2.9)

It can be solved jointly with Friedmann equations (1.11)—(1.12) for the speci-
fied functional form of Lagrangian L(X,U) and potential U(φ).

On the other hand, Einstein equations and/or differential energy-momen-
tum conservation law indicate, that such scalar field in contrast to vacuum dark
energy cannot be perfectly smooth, it is perturbed by gravitational influence
of matter-radiation inhomogeneities or has its own ones, generated in the early
Universe. The equations for scalar field density and velocity perturbations, as
we will see below, contain besides wde two other values, so called effective sound
speed c2

s = δpde/δρde and adiabatic one 4 c2
a = ṗde/ρ̇de. Note that in the case

of scalar field dark energy the adiabatic sound speed is not the true velocity of
sound propagation. The perturbed scalar field has non-negligible entropy and
thus non-adiabatic pressure perturbations. In the dark energy rest frame the
total pressure perturbation can be presented as δpde = c2

sδρde and the effective
sound speed is defined for given Lagrangian as

c2
s ≡

δp

δρ
=
p,X
ρ,X

=
L,X

L,X + 2XL,XX
. (2.10)

The adiabatic sound speed is not independent quantity, it is related to EoS
parameter wde by the differential equation

aw′de = 3(1 + wde)(wde − c2
a). (2.11)

It can be calculated for known wde(a), or, on contrary, used for solution of
equation (2.11) for wde(a) with defined c2

a.
Therefore, in cosmology applications of scalar field models of dark energy

the Ωde, wde(a) and c2
s must be given or determined. In the previous chapter

it was shown that Ωde and wde = const are determined firmly by available
observational data. The time variable wde is less constrained and the effective
sound speed estimations are very rough now [240—246]. Future observational
programs are designed to achieve the 1 percent accuracy of their determination.
But even then, as one can see from equations (2.2)—(2.10), the reconstruction
or reverse engineering of potential and Lagrangian will be an ambiguous task.

4 The terms “effective sound speed” and “adiabatic sound speed” of dark energy are used
in the literature for designation of dark energy intrinsic values which formally correspond to
thermodynamical ones.
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2.4. Scalar perturbations of the scalar field

In the case of functional forms of Lagrangian and potential given ad hoc
the EoS parameter wde and the effective sound speed c2

s are defined by (2.8) and
(2.10) correspondingly. Friedmann equations (1.11)—(1.12) together with (2.9)
form the closed set of equations for determination of the evolution of a and φ.
Together with the set of equations for evolution of metric, density and velocity
perturbations for all components it gives the possibility to test different scalar
fields as dark energy and determine their intrinsic parameters by comparison
the model-predicted characteristics of the Universe with observational data. It
is one of the ways of intensive investigations of dark energy since its discovery.
Another one consists in defining of some functional forms for wde(a) and c2

s(a)
and search for the corresponding forms of Lagrangians and potentials. The
third one is combined — definition of functional forms of wde(a) and L(X,U),
giving the possibility to calculate c2

s(a) and reconstruct U(φ). We will not
discuss the advantages and imperfections of different approaches, each of them
is useful for its specifical aspects, but in the next sections we will use the
combined one to analyze the possibility to distinguish different scalar field
models of dark energy.

2.4. Scalar perturbations
of the scalar field and other components

In the subsection 1.5.1 it was shown that the rate of growth
of matter density perturbations is sensitive to the value of smoothed density of
dark energy (Ωde) and tempo of its change in the past via wde. It affects strongly
the ratio of amplitudes of matter power spectrum at different redshifts. Other
possible fingerprints of dark energy in the matter power spectrum are related
to the gravitational interplay of density perturbations in both components.

Let us consider the two-component model with matter and dark energy in
the terms of their energy densities, pressures and four-velocities. For derivation
of the evolution equations for scalar linear perturbations it is convenient to use
the conformal Newtonian gauge with space-time metric

ds2 = a2(η)[(1 + 2Ψ(x, η))dη2 − (1 + 2Φ(x, η))δαβdx
αdxβ],

where Ψ(x, η) and Φ(x, η) are gauge-invariant metric perturbations called
Bardeen’s potentials [115], which in the case of zero proper anisotropy of medi-
um (as for the dust matter and scalar fields) have equal absolute values and
opposite signs: Ψ(x, η) = −Φ(x, η) [247].

The perturbations in the energy density ρde, pressure pde and the four-
velocity uµ(de) of dark energy are defined in the following way:

ρde(η,x) = ρ̄de(η) + δρde(η,x) = ρ̄de(η)(1 + δde(η,x)),

pde(η,x) = p̄de(η) + δpde(η,x) = p̄de(η)(1 + πde(η,x)),

uµ(de) = ūµ(de) + δuµ(de),
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CHAPTER 2. Scalar field models of dark energy

where ρ̄de(η), p̄de(η) and ūµ (de) = (−a, 0, 0, 0) are the unperturbed background
values of energy density, pressure and four-velocity in the world with FRW
line element (1.1), respectively. Since uµ(de)uµ (de) = −1, it turns out that
a−1δu0 (de) = aδu0

(de) = −Ψ. In the case of scalar mode of perturbations the
spatial part of the four-velocity δui(de) can be expressed as a gradient of some
scalar function V (η,x)

δui(de) = gijV,j . (2.12)

For scalar fields the entropy perturbations are inherent and cause in addi-
tion to the adiabatic pressure perturbations, which follow from the variation
of (2.7), the non-adiabatic pressure ones δp(nad)

de , so the total perturbation is
their sum [240—254]:

δpde = c2
aδρde + δp

(nad)
de .

The intrinsic entropy Γde is defined by non-adiabatic part of pressure as

Γde = πde −
c2
a

wde
δde,

and in the variables of conformal-Newtonian gauge equals [240,242,248,249]

Γde =
c2
s − c2

a

wde

(
δde + 3aH(1 + wde)

Vde
k

)
.

So, the relative perturbation of dark energy pressure is

πde =
c2
s

wde
δde + 3aH(c2

s − c2
a)

1 + wde
wde

Vde
k
. (2.13)

In the rest frame of dark energy (Vde = δφ = 0) it can be presented as

πde =
c2
s

wde
δde,

where the effective (rest-frame) sound speed c2
s for the scalar field with given

Lagrangian can be calculated according to (2.10).
The perturbations are supposed to be small (|Φ| ∼ |Ψ| ∼ |δde| ∼]πde| ∼

∼ |Vde| � 1), henceforth all following equations are linearized with respect to
the perturbed variables. In the linear perturbation theory it is convenient to
perform the Fourier transformation of all spatially-dependent variables, so the
equations are written for the corresponding Fourier amplitudes of the metric
(Ψ(k, η)), dark energy density δde(k, η), pressure πde(k, η) and velocity Vde(k, η)
perturbations (here k is wave number). These variables are gauge-invariant
[115,130,247].
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2.4. Scalar perturbations of the scalar field

Since we suppose the minimal coupling between dark energy and matter,
then from the differential conversation law Tµν;µ (de) = 0 we obtain the equations
for evolution of density and velocity perturbations of dark energy:

δ̇de − 3aH(w − c2
s)δde+

+(1 + wde)

{[
k2 + 9a2H2(c2

s − c2
a)
] Vde
k
− 3Ψ̇

}
= 0,

V̇de + aH(1− 3c2
s)Vde −

c2
sk

1 + wde
δde − kΨ = 0.

(2.14)

By the same way the equations for evolution of density and velocity per-
turbations can be obtained of cold dark matter, which is pressureless, pdm =
= πdm = 0, perfect fluid. So, they can be easy deduced from (2.14) by assuming
wdm = c2

a (dm) = c2
s (dm) = 0 and re-denoting corresponding values:

δ̇dm + kVdm − 3Ψ̇ = 0, (2.15)

V̇dm + aHVdm − kΨ = 0. (2.16)

The Einstein equations for scalar metric and energy-momentum tensor pertur-
bations,

δRµν −
1

2
δµν δR = 4πG

(
δTµν (dm) + δTµν (de)

)
,

where δRµν and δR are perturbed parts of Ricci tensor and scalar curvature of
four-space correspondingly, complete the system of equations (2.14)—(2.16) by
equations for evolution of gravitational potential. One of them is as follows:

Ψ̇ + aHΨ− 4πGa2

k
(ρdmVdm + ρde(1 + wde)Vde) = 0, (2.17)

The system of 5 linear differential equations (2.14)—(2.17) for 5 unknown
functions δde, Vde, δdm, Vdm and Ψ is closed and can be solved for given initial
conditions. In the first and this chapters we assume adiabatic initial conditions
for perturbations of dark matter, baryons and relativistic components. At the
beginning of matter dominated era, when density of relativistic components
vanishes and dark energy is subdominant, in the limit Ωr and Ωde → 0 the
growing solution (growth mode) of equations (2.15)—(2.17) is as follows:

Ψ = const, δdm = −(2 + k2η2/6)Ψ, Vdm = kηΨ/3

(for more details see [130]). Putting some small value Ψinit at ηinit � k−1 we
obtain the adiabatic initial conditions for the dark matter component:

δinitdm = −2Ψinit, V init
dm = kηinitΨinit/3. (2.18)
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Assuming that dark energy is subdominant in the early Universe and wde,
c2
s, c2

a are constant one can solve the equations (2.14) for Ψ = const and for
superhorizon scale of perturbations (kη � 1) obtaining the initial conditions
for density and velocity perturbations of dark energy:

δinitde = −6
(1 + wde)(c

2
a − c2

s)

(3− 2c2
s)(wde − c2

s)
Ψinit, V init

de = kηinitΨinit/(3− 2c2
s). (2.19)

The equations (2.15)—(2.17) with initial conditions (2.18)—(2.19) have
been used for analysis of mutual influence of perturbations in two-component
Universe with scalar field dark energy with different Lagrangians [131, 255—
257]. The same equations (2.15)—(2.17) have been used recently in [246] for
analysis of effect of dark energy perturbations on dark matter ones in scalar
field models with generalization of kinetic term of classical Lagrangian, but,
unfortunately, there the initial conditions for both components are not specifi-
ed. In these papers it has been shown that scalar fields with evolving wde and
c2
s affect distinctly on the power spectrum of matter density perturbations at
subhorizon scales.

Therefore, the dark energy perturbations must be included in complete
theory of cosmological perturbations which is used for determinations of cos-
mological parameters from CMB anisotropy and large scale structure data. The
Einstein—Boltzmann equations for scalar perturbations in multicomponent
Universe (cold dark matter, baryons, photons and neutrinos), in which all
important physical processes at different epochs have been taken into account,
are presented in the paper [116]. They are the base for publicly available codes
CMBFAST [117, 118], CMBEasy [119], CAMB [120, 121] and CLASS [122—
124], designed for integration of Einstein—Boltzmann equations and accurate
computation of power spectra of CMB anisotropy and matter density per-
turbations for different cosmologies. The most advanced and widely used in
cosmological applications is CAMB code which gives possibility to include
also different models of dark energy and is supplied as part of the CosmoMC
parameter estimation package. There the Einstein—Boltzmann equations in
synchronous gauge are integrated. Since this code will be used below we present
here the evolution equations (2.15)—(2.17) and initial conditions (2.18)—(2.19)
in synchronous gauge too.

In the synchronous gauge the line element in 4-space with flat 3-space is
as follows:

ds2 = gµνdx
µdxν = a2(η)(−dη2 + (δij + hij)dx

idxj), (2.20)

where hij(η,x) is metric perturbations. The scalar perturbations of metric
hij can be decomposed into the trace h ≡ hii and traceless h̃ij components
as hij = hδij/3 + h̃ij . As above, the perturbations are supposed to be small
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2.4. Scalar perturbations of the scalar field

(h� 1), so, all following equations containing h are linearized with respect to
the metric and matter-energy perturbed variables. In the multicomponent fluid
each component moves with a small peculiar velocity V i = dxi/dη, defined by
its intrinsic properties (density, pressure, entropy etc.), gravitational potential
h and initial conditions. At the linear stage of evolution of perturbations the
cold dark matter (CDM) component is a pressureless perfect fluid interacting
with other components only via gravity. Therefore, the synchronous coordi-
nates are usually defined as comoving to the particles of CDM: Vcdm = 0.
The evolution equations for dark energy perturbations can be deduced by
the same way as in conformal Newtonian gauge or by gauge transformations
xµ(con) → xµ(syn) + ξµ which transform g

(con)
µν → g

(syn)
µν keeping ds2 as invariant.

Both ways lead to the equations for evolution of density and velocity
perturbations of dark energy and cold dark matter as well as metric perturbati-
ons in synchronous gauge as follows:

δ̇de + 3(c2
s − wde)aHδde+

+(1 + wde)
ḣ

2
+ (1 + wde)

[
k2 + 9a2H2(c2

s − c2
a)
] Vde
k

= 0,
(2.21)

V̇de + aH(1− 3c2
s)Vde −

c2
sk

1 + wde
δde = 0, (2.22)

δ̇dm +
ḣ

2
= 0, (2.23)

Vdm = 0, (2.24)

(aHḣ)̇− 8πGa2
[
ρdma

(
a−1δdm

)
+̇

+ρde

(
δ̇de − aH(1 + 3wde)δde − kVde

)]
= 0.

(2.25)

The adiabatic initial conditions for dark matter and subdominant dark
energy are:

δ initde = − (4− 3c2
s)(1 + wde)

8 + 6c2
s − 12wde + 9c2

s(wde − c2
a)
hinit,

V init
de = − c2

skηinit
8 + 6c2

s − 12wde + 9c2
s(wde − c2

a)
hinit,

δ initdm = −1

2
hinit,

V init
dm = 0.

(2.26)

The character of evolution of scalar field density perturbations depends on
the temporal behavior of EoS parameter, adiabatic and effective sound speeds,
which can be defined or deduced for specified L(X,U) and U(φ)).
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The evolution of dark energy perturbations can be analyzed also in the
terms of perturbations of field variable

φ(η,x) = φ̄(η) + δφ(η,x),

where it is supposed that the perturbation amplitude is small, |δφ| � |φ|,
henceforth all following equations can be linearized with respect to δφ and its
derivatives. Substituting it into (2.4), using the differential conservation law
Tµ0 (de);µ = 0 and taking into account (2.9) one can obtain the second order
linear differential equation for δφ, with coefficients comprising H, wde, c2

s, c2
a,

L,X , L,UU,φ etc. and free term with metric perturbations. The density, pressure
and velocity perturbations of dark energy, which are necessary to write the
free term in equations for metric perturbations (2.17), are related with δφ by
relationships:

δρde =
(

˙̄φ ˙δφ−Ψ ˙̄φ2
)(∂L
∂X

+ 2X
∂2L
∂X2

)
−
(
∂L
∂U

∂U

∂φ
− 2X

∂2L
∂X∂U

dU

dφ

)
δφ, (2.27)

δpde =
(

˙̄φ ˙δφ−Ψ ˙̄φ2
) ∂L
∂X

+
∂L
∂U

∂U

∂φ
δφ, (2.28)

Vde =
kδφ

˙̄φ
. (2.29)

They can be used also for definition of the initial conditions δφinit and ˙δφinit
from (2.19).

Presented in this section evolution equations for homogeneous and pertur-
bed scalar field are used for interpretation of observational data on dynamics of
expansion and large scale structure formation in the MD and DED epochs. For
interpretation of CMB anisotropy data the equations (2.14) or (2.21)—(2.22)
as well as corresponding initial conditions must be included in the Einstein-
Boltzmann code, CAMB for example.

2.5. Specifying the scalar-field models
of dark energy

The scalar field model of dark energy should be specified
for cosmological applications by definition of Lagrangian and potential or
dependences of EoS parameter and effective sound speed on scale factor
(redshift or time). In this section we list some of them, most widely used
in the literature.
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2.5.1. Lagrangian

The Lagrangians used for specifying the scalar field dark
energy models are as follows:

canonical or classical Lagrangian [258—268]

L = X − U(φ), (2.30)

non-canonical Dirac-Born-Infeld one [269—278], which is relativistic
generalization of classical Lagrangian,

L = −U(φ)
√

1− 2X, (2.31)

classical Lagrangian with opposite sign of kinetic term [51, 279—284]

L = −X − U(φ), (2.32)

canonical form of Lagrangian with generalization of kinetic term in the
form some function F (X) [246]

L = F (X)− U(φ), (2.33)

non-canonical form of Lagrangian with non-canonical kinetic term
[285—291]

L (φ, φ;νφ
;ν , U(φ)) , (2.34)

two-field Lagrangians of canonical or non-canonical form with canonical
or non-canonical kinetic terms

L (F (φ, φ;ν , φ,µφ
,µ), U(φ);F (ψ,ψ;ν , ψ,µψ

,µ), U(ψ)) . (2.35)

In the case of the additional coupling of dark energy with other compo-
nent(s) the Lagrangian contains the additional term(s), describing this non-
gravitational interaction(s). The limit of generalization of functional forms of
Lagrangians does not exist, it is only restricted by fantasia and technical possi-
bilities of researches.

2.5.2. Potential

As it follows from (2.8) and (2.10), for definition of wde
and c2

s the potential in Lagrangian must be given too. For different types
of Lagrangians the different potentials are studied. The scalar fields with
canonical Lagrangian (2.30) have the simplest and best studied equation of
motion (2.9),

φ̈+ 2aHφ̇+ a2dU

dφ
= 0. (2.36)

83



CHAPTER 2. Scalar field models of dark energy

called Klein—Gordon one. They were called by Steinhardt and Caldwell [9,
292] the “quintessence”. The large number of potentials, motivated by particle
physics beyond the standard model, have been used to probe the scalar field as
dark energy. They should satisfy the condition U > a−2φ̇2, where φ is solution
of (2.36), in order to have wde < −1/3 near the current epoch. Other conditions
for scalar field potentials follows from the requirement that the energy density
of the scalar field should be significantly less than that of radiation and dark
matter during RD epoch U(z < zdec) � ργ − φ̇2/2, provide long enough MD
epoch to allow galaxies to form which requires U(z < 1) � ρdm − φ̇2/2 and
accelerate the expansion now, that requires U(z ≈ 0) ≈ 3.3ρdm − φ̇2/2 now.

We present here the list of some functional forms of potentials, which eluci-
date the main properties of scalar field models of dark energy with canonical
Lagrangian:

the power-law potential, often used in particle physics ([233] and citing
therein)

U = M4−nφn with n > 0, (2.37)

the power-law tracker potential used in SUSY [293, 294] and supergravity
[41,44] theories

U = M4+nφ−n with n > 0, (2.38)

the polynomial form of potential

U = Σnanφ
n, (2.39)

the exponential potential used for moduli or dilaton fields [295,296]

U = M4 exp (−βφ/Mp), (2.40)

the exponential tracker field potential

U = M4 exp (Mp/φ), (2.41)

the combined power-law and exponential tracker potential used also in
SUSY [293,294] and supergravity [41,44] theories

U = M4+nφ−n exp (αφ2/M2
p ), (2.42)

the potential used for presenting pseudo-Nambu-Goldstone boson (PNGB)
[297] and some type of axions

U = M4 cos2 (φ/2f)... (2.43)

Here Mp is Planck mass, other values — n, M , an, α, β, f — are
parameters of scalar field which need the definition or determination to match
the observational data on dynamics of expansion of the Universe.
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Fig. 2.1. Classes of quintessence scalar fi-
elds (wde(a) > −1), freezing (w′de < 0)
and thawing (w′de > 0) ones, in the phase
plane wde(a) − w′de(a) [298]. Black solid li-
nes show the boundaries of these classes
in the phase space, the short-dashed line
shows the boundary between field evoluti-
on accelerating and decelerating down the
potential (see for details [298]). The solid,
dashed, dotted and dash-dotted lines show
evolutionary tracks of scalar fields with
potentials (2.37)—(2.43). The arrows show
the direction of evolution from beginning
(a = 0: right-most points for freezing and
left-most points for thawing scalar fields) to
current epoch (a = 1: left-most points for
freezing and right-most points for thawing
scalar fields) (From [298])

Presented list of potentials is far incomplete but spectrum of scalar field
properties for them is wide enough that to allow the possibility to classify
them as “freezing models” and “thawing” models [298]. In the class of free-
zing models the fields were rolling along the potentials in the past, but their
movements gradually slow down after the system enters the phase of cosmic
acceleration and freeze out at the minimum of potential at finite φ or at infinity
of field variable when minimum of potential is absent. The EoS parameters
wde of such fields can start from any value >−1 and go to −1 at the free-
zing stage. On contrary, in the class of thawing models the fields have been
frozen by Hubble friction (term 2aHφ̇ in (2.36)) until recently and then start
to evolve with increasing wde. In this models wde ≈ −1 at the early epochs and
−1 < wde < −1/3 now.

These classes of quintessence scalar fields are separated in the phase plane
wde(a)−w′de(a) (shown in Fig. 2.1). The evolutionary tracks of scalar fields with
potentials (2.37)—(2.43) are shown there too. The freezing models with poten-
tials (2.38) and (2.42) are shown there by solid and dashed lines correspon-
dingly. The thawing ones in this figure are represented by potentials (2.37) and
(2.43). The evolutionary track for field with potential (2.43) is shown by solid
line and for field with potential (2.37) by short-, dot-, and long-dashed ones for
n = 1, 2, 4 correspondingly. All scalar fields shown there have at current epoch
−1 < wde < −0.8 and Ωde ≈ 0.7, so, they can be considered as real candidates
for the dark energy.

Unfortunately, for Lagrangians other than canonical one we have no such
intensive analysis of scalar fields. Maybe in the nearest future this lack will
be removed.
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2.5.3. EoS parameter

Another way of specifying of scalar field model of dark energy
consists in assumption about the dependence of EoS parameter wde on the scale
factor a. It can be made in ad hoc manner or by solution of equations that
implement the defined field properties.

Ad hoc setting of wde(a). Traditional approach is to present wde
in the form

wde(a) =
∑
n

wnfn(a),

where wn is a parameter and fn(a) some simple function of scale factor a. Let
us list used in the literature function forms for wde(a) ordered by the number
of their parameters.

i) One-parametric EoS. Appears in the models with wde = const. They are
the simplest and best studied models of dark energy scalar field. This parameter
is constrained by majority of observational data, though the accuracy of
determination of its best-fit value is too low, ∼15—25%, while the density
parameter Ωde is determined with accuracy ∼5% (see Chapter 1). The best-fit
value of constant wde for the most determinations is in the range (–1.2, –0.8).
In these models c2

a = wde, but c2
s must be defined additionally by definition of

either Lagrangian or itself in ad hoc manner. Similarly to the simplest models
the wde = const-models are very specific. For example, in the case of scalar
field with classical Lagrangian (2.30)

X =
1 + wde
1− wde

U, U =
1− wde

2
ρde, c2

s = 1,

in the case of scalar field with Dirac—Born—Infeld one (2.31)

X =
1 + wde

2
, U =

√
−wdeρde, c2

s = −wde,

and so on, this can be deduced using equation (2.8). The evolution of energy
density and deceleration parameter for wCDM models with parameters from
Table 1.2 are shown in Fig. 2.2. The evolution of deceleration parameters in
both models is similar, they differ slightly by value of q at current epoch q0 =
= Ωm + (1 + 3wde)Ωde (in the model with wde = −0.84 q0 = −0.4, in the
models with wde = −1.04 q0 = −0.62) and asymptotic value at a → ∞:
q∞ = (1 + 3wde)/2 (–0.76 for wde = −0.84 and –1.06 for wde = −1.04). The
energy density evolution for these models is quite different: it decreases from∞
at a = 0 to 0 when a→∞ in scalar field model with wde = −0.84 and increases
from 0 at a = 0 to ∞ when a → ∞ in scalar field model with wde = −1.04.
The first is quintessence scalar field, the second is phantom [51] one.
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Fig. 2.2. The evolution of deceleration parameter q (left panel) and energy density ρde in
units of critical one at current moment (right panel) in the models with parameters of wCDM
models from Table 1.2 (dataset 1 — dashed line, dataset 2 — solid line). The dark matter
density evolution for both models is shown for comparison by thin lines (superimposed),
which go from the upper left to lower right corner

ii) Two-parametric EoS. The simplest approximation for time-variable EoS
parameter, which is widely used,

wde(a) = w0 + (1− a)wa, (2.44)

was proposed by Chevallier, Polarski and Linder [299, 300], called in the li-
terature the CPL one. Here, w0 and wa denote the present values of wde and
its first derivative with respect to a with opposite sign 5 respectively. The
determination of them in [94] on the base of WMAP7 + BAO + SN data
gives w0 = −0.93±0.12, wa = −0.41±0.72. The dependence (2.44) with these

Fig. 2.3. Time dependences of EoS parameter for
different parametrizations: CPL with parameters
determined in [94] (CPL K11), CPL with parame-
ters determined in [91] (CPL K09)

parameters is shown in Fig. 2.3
(CPL K11) in the range
0.001 ≤ a ≤ 10. Such dark
energy evolves from the field
with w = w0 + wa = −1.34
at the early epoch (a = 0) to
w = w0 = −0.93 at the current
one (a = 1) which will increase
in future. The evolution of
deceleration parameter for the
same range of a is shown in
Fig. 2.4 (left panel). Its energy
density increases from zero
to ∼1.25ρ

(0)
de at a ≈ 0.83 and

decreases asymptotically to

5 It is first derivative with respect to z at the current epoch z = 0.
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Fig. 2.4. The evolution of deceleration parameter q (left panel) and energy density ρde in
units of critical one at current moment (right panel) in the models with different parametri-
zations of EoS parameter: CPL with parameters determined in [94] (CPL K11), CPL with
parameters determined in [91] (CPL K09). The dark matter density evolution for all models
is shown for comparison by thin lines (superimposed), going from the upper left to lower
right corner

zero after that according to (1.8) with effective EoS parameter

w̃de = w0 + wa
1− a+ ln a

ln a
,

which goes to +∞ or −∞ depending on sign of wa when a → +∞ (Fig. 2.4,
right panel).

The previous determination of these parameters by [91] using similar but
older datasets gave w0 = −1.09± 0.12, wa = 0.52± 0.46 (Fig. 2.3, CPL K09).
It means that in this case the dark energy evolves from quintessential field
with w = −0.57 at the early epoch to the phantom one at current epoch with
w = −1.09. Its density decreases at early epoch, achieves the minimal value of
∼0.83ρ

(0)
de at the same scale factor a ≈ 0.83 and grows later. The evolution of

deceleration parameter and energy density is shown in Fig. 2.4 by lines marked
as CPL K09.

One can see, that wde, q and ρde diverge asymptotically at a > 1, therefore,
such models of dark energy are not usable for prediction of future dynamics of
expansion of the Universe. It is objection to this parametrization.

Another form of wde parametrization,

wde(a) = w0 + w1z = w0 + w1
1− a
a

,

has been proposed and used in [301] for analysis of possibility to discriminate
models with constant and time-varying EoS parameters on the base of SNe
data. It has, however, essential disadvantage: it can be used only for low-z
cosmology, since it diverges at high z.
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iii) Three-parametric EoS. Recently this form has been modified by [91] in
order to bring the behavior of dynamical dark energy at early epoch closer to
that of Λ-term:

wde(a) =
a

a+ atrans
[w0 + (1− a)wa]−

atrans
a+ atrans

, (2.45)

This approximation has the additional third parameter atran which, however, is
weakly constrained by observations. One can see, that at the early epoch when
a � atran wde ≈ −1 and has explicit asymptotic behavior a → 0 wde → −1.
At a � atrans this parametrization becomes the CPL one. It also has the
analytical form of effective equation of state, w̃de(a), which gives the evolution
of dark energy density and deceleration parameter:

w̃de(a) = −1 +
1− a
ln a

wa +
1 + w0 + (1 + atrans)wa

ln a
ln
a+ atrans
1 + atrans

.

The values of parameters in (2.45) have been determined in [91] for atrans =
= 10 and are as follows: w0 = −1.12±0.13, wa = 0.70±0.53. The a-dependen-
ces of wde, q and ρde with them are presented in Figs. 2.3—2.4. One can see,
that this parametrization meets the same objection as CPL one: prediction of
future dynamics of expansion of the Universe is doubtful. The other objection
is restriction of properties of scalar field in the early Universe: it supposes that
scalar field starts from vacuum-like state (wde(0) = −1). But establishing of
its true origin from observations is important for unveiling of nature of dark
energy as well as physics of Very Early Universe and unified theory of particle
physics. One more lack is the weak constraint for the third parameter from
observational data.

iv) Four-parametric EoS. The four-parametric EoS in the form

w(z) = w0 +
(wf − w0)

1 + exp( z−zt∆ )
, z ≡ 1

a
− 1, (2.46)

has been proposed in [302]. Here w0 is the initial EoS at a = 0 and wf is
final one at a = 1 when the transition epoch at is in the past (at < 1) and
zt/∆ � 1. It has been studied by authors only for the special case of w0 = 0
(at the beginning the dark energy is dust-like) and transition is sharp (zt/∆ =
= 30). Such time dependence of EoS has physical motivation: it appears in the
models like vacuum metamorphosis where non-perturbative quantum effects
are important at late times [303–305]. It was shown [302] that in such case
the CMB and SNe Ia data prefer the model with zt = 2.0+2.2

−0.76 and wf =

= −1+0.2 (Fig. 2.3). One can see that the third parameter zt is poorly constrai-
ned even for fixed w0 and ∆. It is important to constraint all four parameters
w0, wf , zt and ∆ jointly, but it looks impossible at current accuracy level of
cosmological observations. Disadvantage of this simple four-parametric form of
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w(a) is absence of analytic solution of integral (1.9) for w̃de and, as consequence,
analytic representations for ρde(a), H(a) and q(a).

The mentioned parametrizations of time dependence of EoS parameter
allow the phantom divide crossing (w = −1) and extend the variety of properti-
es of dark energy and its possible physical interpretations. The additional
degeneracies and uncertainties of parameters related to the early dark energy
density and time variations of EoS parameter are inherent for them. And vice
versa, the value of EoS wde as well as of energy density Ωde related to the late
epoch are determined well as a result of their main impact on the expansion
history of the Universe, horizon scale, distance to CMB last scattering surface
and scale-independent growth factor of linear matter density perturbations.
These values, however, give no possibility to constrain essentially the types of
cosmological scalar fields, or, in other words, the forms of their Lagrangians
and potentials.

Some exact solutions of Eq. (2.11). The cosmological constant or va-
cuum-like fields as well as wde = const dark energy are analyzed at different
stages of evolution of the Universe, from Beginning (a � 1) to current
epoch (a = 1), and for prediction of its future (a � 1). In the case of ii)—
iv) parametrizations their application at a � 1 or a � 1 are ambiguous
since energy density and pressure of dark energy can acquire there surprising
values as a consequence of extension of those parametrizations which are good
approximations only at the vicinity of a = 1. Instead of probing the numberless
analytical forms of wde(a) one can probe the scalar field dark energy models
assuming their specific properties. Let us consider the simplest ones.

i) Constant density, ρde = const. If the density of dark energy is constant
in space and time then we have the well studied model with cosmological
constant or vacuum field models, w̃de = −1, that follows from Eq. (1.8).

ii) Constant pressure, pde = const. Such assumption is equivalent to the
adiabatic sound speed, c2

a = ṗde/ρ̇de, is zero when ρ̇de 6= 0. Equation (2.11) in
this case has the simple analytic solution

wde(a) =
w0a

3

1 + w0(1− a3)
, (2.47)

where w0 = wde(a = 1) is free parameter. Such one-parametric EoS has interes-
ting asymptotic properties: when a→ 0 then wde → 0, and when a→∞ then
wde → −1. Such dark energy at the Beginning is dust-like and in the future
it is similar to vacuum energy field. It is like to the vacuum metamorphosis
model, mentioned above, but with gradual transition from dust-like state to
vacuum-like one (Fig. 2.5). So, such model has no fine tuning problem. Its other
advantage is that the effective EoS parameter (1.9) has exact analytic form:

w̃de(a) = −1

3

ln (1 + w0 − w0a
3)

ln a
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Fig. 2.5. Left column: top panel — the dependences of EoS parameter on scale factor for
pde = const (c2a = 0) scalar field with w0 = −0.9 and –1.1; bottom panel — the dependences
of dark energy density (in the units of critical one at the current epoch) with EoS parameters
from the top panel on scale factor. Right column: The dynamics of expansion of the Universe
with pde = const scalar field (c2a = 0) — H2(a) (top panel) and q(a) (bottom one) for the
same wde as in left panel

and the same asymptotic behavior. The energy density, accordingly, has simple
analytic dependence too

ρde(a) = ρ
(0)
de [(1 + w0)a−3 − w0].

In the range w0 ≥ −1 the EoS parameter wde is monotonic decreasing
function of a, repulsive property of scalar field increases and the Universe with
such dark energy will exponentially expand in far future. If w0 = −1, then
wde(a) = w̃de(a) = −1 and we have the vacuum-like field. When w0 < −1, the
properties of the field become unusual: at ad2k = [(1 +w0)/w0]1/3 < 1 the EoS
parameter has discontinuity of the second kind since energy density of scalar
field ρde becomes zero (left panel of Fig. 2.5). This discontinuity is not physical,
since physical values ρde and pde are smooth continuous functions. In this case
ρde is negative at 0 ≤ a < ad2k and positive later. In spite of ρde ∝ a−3 in
the multicomponent medium with matter and radiation all energy conditions
are always satisfied and Einstein equations for evolution of the homogeneous
Universe have real solutions (see for details Chapter 5). Such dynamics of EoS
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parameter is interesting in the scalar field model which supposes negative value
of energy density, that will be discussed later. In the right panel the evolution
of Hubble parameter H(a) and deceleration one q(a) are shown for w0 = −0.9
and −1.1. One can see, that dynamical evolution of the Universe filled with
pde = const DE with w0 = −0.9 and −1.1 in past and in future is similar
though dynamical evolution of fields is quite different.

We have studied this model in [131,255,257] for w0 ≥ −1 and shown that
it matches all observational data as well as ΛCDM and wCDM models do. The
best-fit parameters of such dark energy are Ωde = 0.72+0.04

−0.05, w0 = 0.99+0.03
−0.01.

It was shown also that it is perturbed and causes the appreciable influence on
the matter power spectrum at subhorizon scales.

iii) Barotropic EoS or constant adiabatic sound speed c2
a. This assumption

is more general than previous one and allows other distinct properties of dark
energy favorable for analytic, semianalytic and numerical analysis. In such case
the temporal derivative of pde(η) is proportional to the temporal derivative of
ρde(η). The integral form of this condition is the generalized linear barotropic
equation of state

pde = c2
aρde + C, (2.48)

where C is a constant. Cosmological scenarios for the Universe filled with the
fluid with such EoS equation 6 have been analyzed in [306, 307]. The solution
of the differential equation (2.11) for c2

a = const is following:

wde(a) =
(1 + c2

a)(1 + w0)

1 + w0 − (w0 − c2
a)a

3(1+c2a)
− 1, (2.49)

where the integration constant of (2.11) w0 is chosen as the current value of
wde. One can easily find that (2.49) gives (2.48) with C = ρ

(0)
de (w0− c2

a), where
ρ

(0)
de is current density of dark energy. Thus, we have two values w0 and c2

a

defining the EoS parameter wde at any redshift z = a−1 − 1.
The effective EoS parameter w̃de is also analytical function of scale factor

w̃de(a) = −1−
ln
(
c2
a − w0 + (1 + w0)a−3(1+c2a)

)
− ln

(
c2
a + 1

)
3 ln a

. (2.50)

The differential equation (1.6) with wde from (2.49) has the analytic solu-
tion too:

ρde = ρ
(0)
de

(1 + w0)a−3(1+c2a) + c2
a − w0

1 + c2
a

. (2.51)

The expressions (2.48) and (2.51) can be used for finding of the allowable
values of c2

a. Really, if c2
a > 0 then the energy density of scalar field increases

6 Often called in literature “wet dark fluid”.
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with decreasing a faster then matter density. In the Universe with such scalar
field the MD epoch, required for large scale structure formation, is absent. The
age of such Universe is lower than age of oldest stars of our galaxy. Besides, at
early epoch ρde > ρm and pde > 0 that changes drastically the transfer function
of matter density perturbations. So, the range of values for c2

a > 0 must be
excluded from consideration. Therefore, the sound range of allowable values of
c2
a is < 0 and w0 < −1/3. Other constraints for c2

a and w0 follow from analysis
of dynamics of expansion of the Universe, but their optimal values one can
deduce from comparison of computed predictions with all set of observational
data, which are mentioned in the Chapter 1.

The dynamical properties of such scalar field depend on the ratio c2
a

between w0 as well as on whether they are > −1 or < −1. If any of them
equals −1, then wde(a) = w̃de(a) = −1 and we have vacuum-like field again.
In the case w0 = c2

a we have the well studied wde = const model.
a) Both c2

a and w0 > −1 (quintessential range).
The time dependences of barotropic EoS parameter for different values

of c2
a > −1 are shown in the left top panel of Fig. 2.6. As it follows from

(2.49), c2
a corresponds to the EoS parameter at the beginning of expansion,

wde(0) = c2
a.

The dependences of dark energy density on scale factor for the same values
of c2

a are shown in the left bottom panel of Fig. 2.6. The dynamics of expansion
of the homogeneous isotropic Universe, described byH(a) and q(a) (Friedmann
equations (1.15)—(1.16)), with the same scalar field models is shown in the
right panel of Fig. 2.6.

One can see, that in the case c2
a > w0 wde(a) is monotonic decreasing

function in the whole range of scale factor variation, 0 < a < ∞, while in
the case c2

a < w0 wde(a) has discontinuity of the second kind at ad2k = [(1 +

+w0)/(w0 − c2
a)]

1/3(1+c2a) > 1, where ρde becomes zero. After that the energy
density of such scalar field acquires negative values and somewhat later H
reaches zero too and the Universe will start to recollapse (right panel of
Fig. 2.6). We note here that ρde(a) and pde(a) are smooth continuous functions
at any a.

b) Both c2
a and w0 < −1 (phantom range).

As it follows from (2.49), in this case c2
a corresponds to the EoS parameter

at the scale factor infinity, wde(a → ∞). But when a → 0, then wde → −1

and ρde → ρ
(0)
de (c2

a − w0)/(1 + c2
a). The energy density increases monotonically

with increasing of a, that follows from (2.51). It is always positive for c2
a ≤ w0

and sign-alternating in the case of c2
a > w0. In the last case the energy density

is negative at a < ad2k and positive at a > ad2k. When ρde becomes zero at
a = ad2k < 1 the wde(a) has discontinuity of the second kind in past, but
ρde(a) and pde(a) are smooth continuous functions.
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Fig. 2.6. Left column: top panel — the dependences of EoS parameter on scale factor for
barotropic quintessential scalar field with w0 = −0.85 and different c2a (0, –0.2, –0.85, –0.99);
bottom panel — the dependences of dark energy density (in the units of critical one at the
current epoch) with EoS parameters presented in the top panel on scale factor. Right column:
The dynamics of expansion of the Universe with barotropic quintessential scalar field — H(a)
(top panel) and q(a) (bottom one) for the same wde as in left panel

The dependences of wde, ρde, H and q on a for different c2
a and w0 = −1.2

are shown in Fig. 2.7. One can see that in spite of the second kind discontinuity
of wde such scalar field practically does not influence the dynamics of the
Universe in the MD and RD epochs (the lines in the right panels of Fig. 2.7
are superimposed at a < 0.8.)

c) Phantom divide crossing.
It happens when c2

a > −1 and w0 < −1 or when c2
a < −1 and w0 > −1.

In both cases the crossing of the line wde = −1 passes as discontinuity of the
second kind of wde(a) at a = ad2k, which is in the past in the first case, and in
the future in the last one. In both cases the physical measurable values ρde(a)
and pde(a) are smooth continuous functions, that is shown in the left panel
of Fig. 2.8.

So, the scalar field with barotropic EoS is capable to describe the dif-
ferent possible dynamical properties of dark energy (like vacuum energy, w =
= const fluid, quintessence, phantom, transition from quintessence to phantom
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Fig. 2.7. Left column: top panel — the dependences of EoS parameter on scale factor for
barotropic phantom scalar field with w0 = −1.2 and different c2a (–2.0, –1.3, –1.2, –1.1);
bottom panel — the dependences of dark energy density (in the units of critical one at the
current epoch) with EoS parameters presented in the top panel on scale factor. Right column:
The dynamics of expansion of the Universe with barotropic phantom scalar field — H(a) (top
panel) and q(a) (bottom one) for the same models as in left panel

and vice-versa), which are defined by two parameters only, w0 and c2
a. Their

determination on the base of observations can unveil the dynamical properties
of dark energy in our Universe. But such scalar field allows monotonic evolution
of energy density which can acquire negative values in the past or future. Its
crossing over zero leads to second kind discontinuity of wde(a). We have no
other arguments against this possibility besides that the null energy condition∑

N ρN ≥ 0 must be satisfied always in the past. This condition can be used
for establishing of the limits for values of w0 for any c2

a. Since it can be violated
in the late DE dominated epoch, the density of relativistic component can be
omitted. So, the null energy condition is satisfied when

w0 ≥ −
1 + (1 + c2

a)
Ωm
Ωde

a3c2a + c2
aa

3(1+c2a)

1− a3(1+c2a)
. (2.52)

The right part of inequality as function of a goes to −∞ when a → 0
or a → 1 and has maxima at 0.5 < am < 1 which we denote by w0m. The
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Fig. 2.8. Left column: top panel — the dependences of EoS parameter on scale factor for
barotropic quintessential scalar field with phantom divide crossing EoS parameter (w0 =
= −0.9, c2a = −1.1 and w0 = −1.1, c2a = −0.9); bottom panel — the dependences of
dark energy density (in the units of critical one at the current epoch) with EoS parameters
presented in the top panel on scale factor. Right column: The dynamics of expansion of the
Universe with barotropic quintessential scalar field — H(a) (top panel) and q(a) (bottom
one) for the same wde as in left panel

dependences of w0m on c2
a for different Ωm/Ωde are shown in Fig. 2.9. One

can state that the null energy condition is satisfied in any epoch in the past
when w0 ≥ w0m for given c2

a and Ωm/Ωde. The dependences of w0m on c2
a

and Ωm/Ωde, shown in Fig. 2.9 by solid lines, can be approximated by simple
expression

w0m = −0.9103− 1.272
Ωm

Ωde
+

(
0.7407 + 1.658

Ωm

Ωde

)
c2
a+

+

(
−0.03778 + 0.08091

Ωm

Ωde

)
c4
a, (2.53)

the accuracy of which is few percents (dashed lines in Fig. 2.9).
Therefore, defining of wde(a) on the whole time axis and Ωde at current

epoch governs completely the dynamical properties of homogeneous scalar
field and the whole Universe, gives possibility to describe its history, present
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Fig. 2.9. Minimal w0 as the function of c2a for different Ωm/Ωde (0.1/0.9, 0.2/0.8, 0.3/0.7,
0.4/0.6, 0.5/0.5, 0.6/0.4 from top to bottom). For values above the corresponding lines the
null energy condition

∑
N ρN ≥ 0 is always satisfied in the past. Dashed line shows the

analytic approximation (2.53)

and future. But for analysis of gravitational instability of scalar field and its
influence on the formation of large scale structure of the Universe the effective
sound speed as parameter of equations (2.14) must be defined too.

2.5.4. The effective sound speed

If Lagrangian of scalar field is defined then effective sound
speed can be calculated from (2.10). In the opposite case it can be specified
apart. First of all we must find the allowable range of its values. Analysis
of equations for evolution of scalar field density and velocity perturbations
shows that c2

s must be positive or zero, since in the opposite case the sca-
lar field is strongly gravitationally unstable and can essentially change the
transfer function and power spectrum of matter density perturbations and,
even, the angular power spectrum of CMB temperature fluctuations. On the
other hand, c2

s cannot exceed 1 to retain causality. So, the range of allowable
values of c2

s is [0, 1].
In most of papers the authors assume some value for c2

s supposing that it
is constant. In Fig. 2.10 the evolution of Fourier amplitude (k = 0.05 Mpc−1)
of linear density perturbations of dark energy with different values of constant
effective sound speed c2

s and either constant (left panel) or variable (right
panel) EoS parameter is shown. It is computed by CAMB for multicomponent
Universe in the synchronous gauge comoving to cold dark matter component.
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Fig. 2.10. Evolution of Fourier amplitude (k = 0.05 Mpc−1) of density perturbations of
cold dark matter (solid line), baryonic matter (dotted line) and dark energy (dash-dotted
line) computed by CAMB for models with constant effective sound speed c2s. Left panel:
models with constant EoS parameter (wde = −0.9) and different c2s (0.75, 0.5, 0.1) from top
to bottom); right panel: models with wde variable according to (2.49) with w0 = −0.9 and
c2a = 0,−0.5,−0.99 (from top to bottom)

The corresponding amplitudes for dark matter and baryonic components are
presented there for comparison. A few conclusions can be deduced from their
analysis: a) evolution of energy density perturbations of scalar field depends
on value of effective sound speed; b) the amplitude increases when scale of
perturbation is larger than acoustic horizon scale (k−1 > cst) and decays when
it becomes smaller (k−1 < cst); c) practically for any 0 < c2

s ≤ 1 at current
epoch the amplitude of energy density perturbations of scalar field is essentially
lower than amplitudes of dark matter and baryonic components; d) the value
of EoS parameter as well as the character of its time variation changes the
evolution of density (right panel of Fig. 2.10) too: for lower initial value of
wde — lower initial amplitude of scalar field density perturbations.

The time-variable effective sound speed was considered too. For example,
the authors of [246] have proposed and analyzed the simple analytic dependence
in form

c2
s(a) = c0 + c1

(
a

1 + a

)γ
, (2.54)

which comprehends infinite number of monotonic evolution tracks between 0
to 1, defined by constants c0, c1 and γ. The first of them equals c2

s at the
Beginning, a = 0, the second one is asymptotic value c2

s → c1 when a → ∞
and c0 = 0. The power-low index γ governs the rate of change. The increasing
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Fig. 2.11. Variable effective sound speed c2s(a)
defined by (2.54): increasing curves are cal-
culated for c0 = 0, c1 = 1, γ = 1 (solid line),
0.5 (dashed line), 0.1 (dash-dotted line) and
decreasing ones for c0 = 1, c1 = −1 and the
same γ’s

from 0 to 1 and decreasing from 1
to 0 effective sound speed for three
values of γ = 1, 0.5, 0.1 is shown in
Fig. 2.11. The evolution of density
perturbations of scalar field with
these effective sound speeds and
wde = const = −0.9 is presented in
Fig. 2.12 (left panel for increasing,
right panel for decreasing c2

s’s).
One can see, that increasing or
decreasing of c2

s as well as their
rates influence the time evolution
of energy density perturbations of
scalar fields.

In all cases considered here the
amplitudes of subhorizon density
perturbations of scalar fields are essentially lower than corresponding ampli-
tudes of dark matter and baryonic components, that is caused by decaying of
perturbations of scalar fields after entering into horizon. At super- and near-
horizon scales they are comparable (it depends also on initial conditions for

Fig. 2.12. Evolution of Fourier amplitude (k = 0.05 Mpc−1) of density perturbations of cold
dark matter (solid line), baryonic matter (dotted line) and dark energy (dash-dotted line)
for models with constant EoS parameter (wde = −0.9) and variable effective sound speed
(2.54). Left panel: models with increasing c2s (c0 = 0, c1 = 1; γ = 1, 0.5, 0.1 from top to
bottom); right panel: models with decreasing c2s (c0 = 1, c1 = −1; γ = 1, 0.5, 0.1 from top to
bottom)
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density perturbations in each component) and their gravitational interaction
can leave appreciable fingerprints in initial power spectrum of matter density
perturbations. The impact of scalar field perturbations on the linear power
spectrum of matter density ones is expected to be essentially lower than the
growth factor caused by the background dynamics, but it is scale-dependent
and can be appreciable for some types of scalar fields. Some of them are studied
carefully in [244,246].

At the end of this subsection we would like to note that specifying of
scalar field by defining of wde and c2

s determines completely its dynamical and
perturbative properties as of energy component of the Universe but gives no
possibility to reconstruct the Lagrangian, potential and field variable unambi-
guously, that follows from Eq. (2.8) and (2.10). So, we can say nothing about
its physical nature and field properties. That is why we prefer the combi-
ned approach to specifying of scalar field — its general property and form
of Lagrangian. Below we consider the scalar fields with generalized barotropic
equations of state and classical, phantom and tachyon Lagrangians and discuss
their properties, possibility to match all set of observational data as well as
possibility of distinguishing between them.

2.6. Quintessential scalar fields
with barotropic EoS

In this section we consider the scalar field models of dark
energy specified by the barotropic EoS (2.48)—(2.51) and different types of
Lagrangians to analyze the evolution of fields, their perturbative properties
and influence on the power spectrum of matter density perturbations. We will
determine their parameters jointly with minimal set of cosmological parameters
using current observational data and discuss the possibility of distinguishing
between different types of scalar field models of dark energy. We suppose
that the Universe is filled with non-relativistic particles (cold dark matter
and baryons), relativistic ones (thermal electromagnetic radiation and massless
neutrino) and minimally coupled scalar field as dark energy.

2.6.1. Classical scalar field

The scalar field with canonical (classical or Klein—
Gordon) Lagrangian

Lclas = X − U(φ), (2.55)

and positive values of kinetic term X and potential U(φ) is called the classical
one. At any time its energy density and pressure are simply linear combinations
of X and U ,

ρclas = X + U(φ), Pclas = X − U(φ), (2.56)
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and EoS parameter wde ≡ pde/ρde for such field is the ratio of these com-
binations,

wclas =
X − U
X + U

. (2.57)

One can see, that for positive values of X and U the EoS parameter always is
≥−1. For explanation of accelerated expansion of the Universe at the current
epoch (q0 < 0) it must satisfy two conditions:

a) X(0) < U (0)/2, b) U (0) − 2X(0) > ρ(0)
m /2, (2.58)

where index (0) marks the current values of corresponding variables.
Using relations (2.56)—(2.57) and (2.49)—(2.51) the field variable, potenti-

al and kinetic term can be presented in terms of density and EoS parameters
as follows:

φ(a)− φ0 = ±
√

(1 + w0)ρ
(0)
de

a∫
1

da′

a′(
5
2

+ 3
2
c2a)H(a′)

,

U(a) =
(1− c2

a)(1 + w0)a−3(1+c2a) + 2(c2
a − w0)

2(1 + c2
a)

ρ
(0)
de ,

X(a) =
1 + w0

2
a−3(1+c2a)ρ

(0)
de .

(2.59)

One can see that for cosmological model of real Universe (H(a) > 0, ρ(0)
de > 0)

the quintessential barotropic scalar field (w0 > −1, c2
a > −1) has always real

values of field variable and potential. Its kinetic term X(a) is positive for any a,
the potential U(a) is positive for any c2

a < 1 at a ≤ 1. But its sign in the future
(a� 1) depends on relation of values of c2

a and w0. Indeed, when a→∞ then

U → c2
a − w0

1 + c2
a

ρ
(0)
de and is positive for c2

a > w0 and negative for c2
a < w0.

The dynamics of expansion of the Universe at late epoch and in the future
depends on the density and EoS parameters of scalar field. It is shown in
Fig. 2.6. The behavior of field and dynamics of the Universe expansion can be
divided into three types, defined by the relation between adiabatic sound speed
and EoS parameter or the sign of derivative of EoS parameter with respect to
scale factor.

1) w′ < 0 (c2
a > w0): As it follows from (2.49), in this case wde decreases

monotonically from c2
a at the early epoch to w0 at current one up to –1 at

the infinite time. The constant C in EoS equation (2.48) is negative. The dark
energy density and pressure tend asymptotically to ρ(∞)

de = ρ
(0)
de (c2

a−w0)/(1+c2
a)

and p
(∞)
de = −ρ(∞)

de . Therefore, in this case the scalar field rolls down to the
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Fig. 2.13. Potentials U(φ − φ0) (left) and dependences of potentials and kinetic terms on
scale factor a (right) for classical scalar field with barotropic EoS. In the top panels c2a = −0.2,
in the middle ones c2a = −0.85 and in the bottom ones c2a = −0.99, in all panels w0 = −0.85.
Potential and kinetic term are in the units of current critical energy density, 3c2H2

0/8πG,
the field variable in units of

√
3c2/8πG. The current epoch in the left panels corresponds to

φ− φ0 = 0 and the field evolves from left to right

minimum of potential (see Fig. 2.13) and in far future the Universe will proceed
into de Sitter stage of its expansion with w(∞)

de = −1, q(∞) = −1 and H(∞) =

=
√

Ωde(c2
a − w0)/(c2

a + 1)H0. So, the scalar field of such type has the following
general properties (see relations (2.57)—(2.59) and top panels of Fig. 2.13):
a) its kinetic term and potential are always real positive; b) kinetic term is
always lower than potential (X < U); c) the potential rolls down to minimum
(Umin > 0) at the finite value of the field variable φmin (left top panel), which
is reached at time infinity (right top panel); d) the kinetic term of such field
tends asymptotically to 0, it means that φ̇→ 0 and the field “freezes”.

2) w′ = 0 (c2
a = w0): It corresponds to the well-studied case wde = const.

In this case C = 0 and we have usual barotropic EoS pde = w0ρde, ρde → 0
when a → ∞. So, the Universe in the future will experience the power-law
expansion with a ∝ t2/3(1+w0) and deceleration parameter q → (1 + 3w0)/2.
The scalar field of such type has the following general properties (see relations
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(2.57)—(2.59) and middle panels of Fig. 2.13): a) its kinetic term and potential
have always real positive values; b) the ratio of potential to kinetic term is
constant and large than unity, U/X = const > 1; c) its potential rolls down to
minimum Umin = 0 at some finite value of the field variable and time infinity;
d) the kinetic term of such field tends asymptotically to 0, it means that φ̇→ 0
and the field “freezes”.

3) w′ > 0 (c2
a < w0): The EoS parameter wde increases monotonically from

c2
a at the early epoch to w0 at the current one and still continues to increase
after that. The field will satisfy the strong energy condition ρde + 3pde ≥ 0
(wde > −1/3) starting from

a(w=− 1
3

) =

[
(1 + 3c2

a)(1 + w0)

2(c2
a − w0)

] 1

3(1+c2a)

and then accelerated expansion of the Universe will be changed by the
decelerated one. The EoS parameter will reach 0 in future at

a(w=0) =

[
c2
a(1 + w0)

c2
a − w0

] 1

3(1+c2a)

,

and 1 at
a(w=1) =

[
(1− c2

a)(1 + w0)

2(w0 − c2
a)

] 1

3(1+c2a)

, (2.60)

when potential becomes zero (relation (2.59) and left bottom panel of Fig. 213).
The scalar field energy density at these a is positive: ρde(a(w=0)) = ρ

(0)
de (c2

a−
−w0)/c2

a and ρde(a(w=1)) = ρ
(0)
de (c2

a−w0)/(c2
a− 1) correspondingly. The energy

density of scalar field continues decreasing, reaches 0 at

a(ρ=0) =

[
1 + w0

w0 − c2
a

] 1

3(1+c2a)

and then becomes negative. The EoS parameter at this moment has disconti-
nuity of the second kind (Fig. 2.6). Soon after that, when ρm + ρde reaches
0, the expansion of the Universe is changed by the contraction since at this
moment ȧ = 0, ä < 0, as it follows from equations (1.15) and (1.16), which
have no solution for larger a. Such behavior can be corrected only slightly by
the curvature parameter from the observationally allowable range.

2.6.2. Tachyonic scalar field

The scalar field ξ with Dirac—Born—Infeld Lagrangian

Ltach = −Ũ(ξ)
√

1− 2X̃, (2.61)

and positive values of kinetic term 0 ≤ X̃ ≤ 1/2 and potential Ũ(ξ) can be
another good candidate for quintessential dark energy [269, 270]. Such field is
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Fig. 2.14. Potentials U(φ − φ0) (left) and dependences of potentials and kinetic terms on
scale factor a (right) for tachyonic scalar field with barotropic EoS. Dark energy parameters
and units of variables are the same as in Fig. 2.13

often called in the literature tachyonic one. At any time the energy density and
pressure are functions of X̃ and Ũ :

ρtach =
Ũ(ξ)√
1− 2X̃

, Ptach = −Ũ(ξ)
√

1− 2X̃. (2.62)

The EoS parameter wde ≡ pde/ρde for this field is following:

wtach = 2X̃ − 1. (2.63)

One can see, that in the case of tachyonic field the EoS parameter is
always ≥ −1 for positive values of X̃ independently on value and sign of Ũ .
For explanation of accelerated expansion of the Universe at the current epoch
(q0 < 0) it must satisfy two conditions:

a) X̃(0) < 1/3, b) Ũ (0) 1− 3X̃(0)√
1− 2X̃(0)

> ρ(0)
m /2, (2.64)

where index (0) marks the current values of corresponding variables.
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The tachyonic field variable, potential and kinetic term can be presented
in terms of dark energy density (2.51) and EoS parameter (2.49) as follows:

ξ(a)− ξ0 = ±
a∫

1

da′
√

1 + wde(a′)

a′H(a′)
,

Ũ(a) = ρde(a)
√
−wde(a),

X̃(a) =
1 + wde(a)

2
.

(2.65)

The potentials Ũ(ξ − ξ0), evolution of potentials and kinetic terms for
models with decreasing, constant and increasing EoS parameter are shown in
Fig. 2.14. One can see that accelerated expansion of the Universe is caused
by rolling down of field to minimum of its potential quite similarly as in the
case of classical field. Meanwhile, for the same time dependence of ρde and
wde (or pde) the evolution of Ũ and X̃ for tachyonic field differs essentially
from corresponding evolution for classical one, that follows from compari-
son of expressions (2.59) and (2.65) or Fig. 2.13 and 2.14. Moreover, in the
case of increasing EoS parameter the potential of tachyonic field at aw=0

becomes imaginary, while one of classical field is real always. Therefore, the
same dynamics of expansion of the homogeneous Universe can be provided
by different homogeneous scalar fields, classical and tachyonic fields are the
example of such model degeneracy. But in the case of these two fields it can
be partially broken if cosmological perturbations are taken into account. That
will be shown below.

2.6.3. Quintessential scalar fields
in the phase plane

The general properties of the quintessential scalar field
models of dark energy with barotropic EoS can be deduced also from the
analysis of their occupation of the wde − dwde/d ln a phase plane. From (2.11)
and the constraint −1 ≤ c2

a ≤ 0 follows that the scalar field models of dark
energy with c2

a = const occupy the wde−dwde/d ln a region limited by the lines
dwde/d ln a = 3(1+wde)

2 and dwde/d ln a = 3wde(1+wde) (Fig. 2.15). The last
one coincides with the lower limit for freezing scalar field models of dark energy
deduced by [298] from the analysis of the simplest particle-physics models of
cosmological scalar fields. Below it the scalar fields have too large density at
the early epoch that contradicts the data on CMB anisotropy. Above the upper
limit there is a range of fields that started as phantom ones, which is excluded
for fields with classical Lagrangian as well as tachyonic one considered above.
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Fig. 2.15. The wde− dwde/d ln a phase plane for quintessential scalar fields with barotropic
EoS as models of dynamical dark energy (solid lines). If dwde/d ln a < 0 the fields evolve
from right to left raising their repulsion properties, if dwde/d ln a > 0 the fields evolve from
left to right receding them. Thick dashed lines show the ranges occupied by the thawing and
freezing scalar fields deduced by [298] from the analysis of simplest particle physics scalar
field models of dynamical dark energy. In the left panel the phase plane evolution tracks of the
scalar fields with barotropic EoS are shown in the range 0.5 ≤ a ≤ 1 (0 ≤ z ≤ 1) and in the
same scale as in Fig. 2.1 for easy comparison. In the right panel the phase plane evolution
tracks of the scalar fields with barotropic EoS correspond to the range 0.0001 ≤ a ≤ 10
(−0.9 ≤ z ≤ 10000). Thick solid black lines show the limits for such scalar field models: the
upper line corresponds to c2a = −1, the lower one to c2a = 0 (superimposed with the lower
limit for freezing scalar fields from [298]). The blue solid lines and dot show the phase tracks
of models shown in Figs. 2.13 and 2.14, the red solid lines show the phase tracks of the best
fitting models q1 and q2 from Table 2.1

The scalar fields which are in the phase plane between the lines dwde/d ln a = 0
and dwde/d ln a = 3wde(1 +wde) evolve from right to left in Fig. 2.15 and their
repulsion properties are raising with time. They are unlimited in time and wde
for them tends asymptotically to –1. The scalar fields which are in the phase
plane between the lines dwde/d ln a = 0 and dwde/d ln a = 3(1 + wde)

2 evolve
from left to right in Fig. 2.15 and their repulsion properties are receding with
time (dwde/d ln a > 0, wde increases) to change the accelerated expansion by
decelerated one and even collapse. They can start in the range below the lower
limit for thawing scalar fields, then enter the range of thawing scalar fields
limited by [298], cross it and go out of upper limit dwde/d ln a = 3(1 + wde)
when wde > 0. So, the scalar fields with dwde/d ln a > 0 (c2

a < w0) can only
partially be called thawing.

We propose to call them “scalar fields receding repulsion”, reflecting their
main properties. Symmetrically, the scalar fields with dwde/d ln a < 0 (c2

a >
> w0), occupying the same range as freezing scalar fields from [298], can be
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Table 2.1. The best-fit values and 1σ confidential ranges
of parameters of cosmological model with classical and tachyonic QSF
determined by the Markov chain Monte Carlo technique using two
observational datasets: WMAP7 + HST + BBN + BAO + SN SDSS
SALT2 (q1, t1) and WMAP7 + HST + BBN + BAO + SN SDSS
MLCS2k2(q2, t2). The Hubble constant H0 is in units
km s−1 Mpc−1. We denote the rescaled energy density
of the component X by ωX ≡ ΩXh

2

Parameters
Classical QSF Tachyonic QSF

q1 q2 t1 t2

Ωde 0.73+0.03
−0.05 0.70+0.04

−0.05 0.73+0.03
−0.04 0.71+0.04

−0.05

w0 –0.996+0.16
−0.004 –0.83+0.22

−0.17 –0.989+0.15
−0.011 –0.83+0.20

−0.17

c2a –0.022+0.022
−0.978 –0.88+0.88

−0.12 –0.48+0.48
−0.52 –0.97+0.96

−0.03

10ωb 0.226+0.015
−0.015 0.226+0.016

−0.014 0.226+0.014
−0.014 0.230+0.013

−0.017

ωcdm 0.110+0.011
−0.013 0.108+0.016

−0.012 0.111+0.010
−0.016 0.110+0.014

−0.013

H0 70.2+3.5
−4.3 66.3+4.3

−3.7 70.2+3.2
−4.4 67.1+3.7

−4.9

ns 0.97+0.04
−0.04 0.97+0.04

−0.03 0.97+0.04
−0.03 0.98+0.04

−0.04

log(1010As) 3.09+0.10
−0.10 3.07+0.11

−0.08 3.08+0.11
−0.08 3.08+0.11

−0.09

τrei 0.091+0.040
−0.041 0.089+0.044

−0.037 0.087+0.043
−0.037 0.091+0.042

−0.040

− logL 3865.01 3857.21 3865.09 3857.23

called “scalar fields raising repulsion”. Most of quintessential scalar field models
of dark energy filling the phase plane fit well the current observational data
and main problem consists now in distinguishing between them.

2.6.4. Best-fit parameters of QSF

Let us estimate the parameters of QSF with barotropic EoS
(Ωde, w0, c2

a) simultaneously with other cosmological parameters (ωb, ωcdm,H0,
ns, As and τrei) using the following datasets: (1) CMB temperature fluctuations
and polarization angular power spectra from the 7-year WMAP observations
(hereafter WMAP7) [93—95]; (2) Baryon acoustic oscillations in the space
distribution of galaxies from SDSS DR7 (hereafter BAO) [143]; (3) Hubble
constant measurements from HST (hereafter HST) [231]; (4) Big Bang Nucleo-
synthesis prior on baryon abundance (hereafter BBN) [227,228]; (5) supernovae
Ia luminousity distances from SDSS compilation (hereafter SN SDSS) [77],
determined using SALT2 method of light curve fitting [67] (hereafter SN SDSS
SALT2) and MLCS2k2 [69] one (hereafter SN SDSS MLCS2k2).

In order to find the best-fit values of parameters of cosmological model
with QSF and their confidence limits we perform the Markov chain Monte
Carlo (MCMC) analysis for two combined datasets: WMAP7 + HST + BBN +
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+ BAO + SN SDSS SALT2 and WMAP7 + HST + BBN + BAO + SN SDSS
MLCS2k2. We use the publicly available package CosmoMC [125,126] including
code CAMB [120, 121] for the calculation of model predictions. This code has
been modified to study the dark energy models discussed here. The parameters
w0 and c2

a are determined using the priors −1 < w0 < 0 and −1 < c2
a < 0.

The results of estimations of QSF parameters jointly with the minimal set
of cosmological ones for two sets of observational data (WMAP7 + HST +
+ BBN + BAO + SN SDSS SALT2 and WMAP7 + HST + BBN + BAO +
+ SN SDSS MLCS2k2) are presented in Table 2.1. We denoted the sets
of best-fit parameters for them as q1 and q2 for classical QSF and t1 and
t2 for tachyonic QSF accordingly. The 1σ confidential limits are determined
from the extremal values of the N-dimensional distribution. One can see, that
WMAP7 + HST + BBN + BAO + SN SDSS SALT2 dataset prefers the scalar
field model of dark energy with decreasing EoS parameter: at the current epoch
it is close to –1, at the early epoch it is –0.02. The acceleration has changed
the sign at z ≈ 0.75 and now the deceleration parameter q0 equals –0.59.
In the future such QSF will approach the ΛCDM model with exponential
expansion — late eternal inflation. The dataset WMAP7 + HST + BBN +
+ BAO + SN SDSS MLCS2k2 prefers the scalar field model of dark energy
with slowly increasing EoS parameter: it started from the value –0.88 at the
early epoch and is –0.83 at current one. In this model the decelerated expan-
sion has been changed by the accelerated one at z ≈ 0.66 and at current epoch
the deceleration parameter q0 equals –0.38. While wde continues to increase
the deceleration parameter reaches the minimal value, begins increasing and
becomes positive (start of decelerated expansion) in far future at a ≈ 20.46
(z ≈ −0.95). The turnaround point is at a ≈ 35.5, when Universe will
172.5 Gyrs old. Then the redshifts of galaxies will be changed by blueshifts,
the Universe will start collapsing and will reach the Big Crunch singularity in
the age of 345 Gyrs. Therefore, the model with parameters q2 is limited in
time as opposed to the model with q1, though both match equally well the
observational dataset corresponding to the past and present of the Universe
(see Figs. 2.27—2.32). The differences between obtained best-fit parameters of
these models are caused by differences of SNe Ia distance moduli obtained by
SALT2 and MLCS2k2 methods of light-curve fitting.

Let us analyze now the possibility of distinguishing between the quintes-
sential scalar field models with decreasing and increasing EoS parameters as
well as with classical and tachyonic Lagrangian. Note, that the difference in the
Lagrangian manifests only in the development of cosmological perturbations
due to the different effective sound speed of scalar fields, so we consider two
sets of parameters q1 and q2 for both Lagrangian.

The differences of dynamics of expansion of the Universe in the cosmologi-
cal models with best-fit parameters q1 and q2 are shown in the left panel of
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Fig. 2.16. Dynamics of expansion of the Universe in the redshift range 0 ≤ z ≤ 2 for
cosmological models with best-fit parameters q1 and q2 (left panel) and relative differences
of distance moduli [(m−M)q2 − (m−M)q1 ]/(m−M)q1 (solid line in the right panel). The
symbols show the uncertainties of distance moduli determination of SN SDSS SALT2 and
SN SDSS MLCS2k2 data

Fig. 2.16. The rate of expansion in the model q1 increases slower than in the
model q2, since q0 in it is essentially lower. Both characteristics, H(z)/H0 and
q(a), could be deduced from SNe Ia luminosity distances, if their number would
be sufficient. In their absence the dependence of SNe Ia luminosity distance on
redshift is used. In the right panel the relative differences of distance moduli
[(m−M)q2− (m−M)q1 ]/(m−M)q1 as well as the statistical and systematical
uncertainties of distance moduli determinations of SDSS SNe Ia are presented.
One can see that observational uncertainties are comparable with the model
differences only at low redshifts z < 0.3.

Other tests are based on the evolution of cosmological perturbations in
the multicomponent Universe. The scalar field dark energy affects the evoluti-
on of matter density perturbations via growth factor (dynamics of expansi-
on) and gravitational influence of its own scalar perturbations [131, 255]. The
evolution of density perturbations of main components in the cosmological
models with parameters q1, q2, t1 and t2 is shown in Fig. 2.17. They have
been computed using synchronous gauge, the initial conditions are adiabatic
for matter components and subdominant asymptotic ones for the scalar field
(eqs. (2.26)). The general property is inherent for all models: for positive matter
density perturbation the QSF density perturbation is positive from initial
moment to horizon crossing one, after that it changes the sign and decays.
At the current epoch the density perturbations of QSF are by ∼2—3 orders
lower than matter ones and have opposite sign, so, their imprint in the large
scale structure of the Universe is expected to be small. In the left panel of
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Fig. 2.17. Evolution of Fourier amplitude (k = 0.05Mpc−1) of density perturbations for
cold dark matter (dashed line), baryonic matter (dotted) and QSF (solid). In the left column
the scalar field is classical, in the right one tachyonic. The cosmological parameters for the
computations were taken from Table 2.1

Fig. 2.18 the relative differences of matter power spectra in the models with
q1 and q2 best-fit parameters for classical (solid line) and tachyonic (dashed
line) Lagrangians are shown: |P (k; q2)−P (k; q1)|/P (k; q1). The maximal dif-
ferences ∼8% are for large scale perturbations where observational errors are
essentially larger. At the scales k ∼ 0.1Mpc−1, where errors of determinati-
ons of matter power spectrum are minimal ∼6—7%, the relative differences
between power spectra for q1 and q2 best-fit parameters are ∼4—6% and we
hope that the current observational program will improve accuracy and possi-
bility to distinguish this models.

In the right panel of Fig. 2.18 the relative differences of matter power
spectra in the models with classical and tachyonic Lagrangians |PTSF (k; qi)−
−PCSF (k; qi)|/PCSF (k; qi) are shown for q1 (solid line) and q2 (dashed line).
Here differences are caused solely by influence of scalar field density perturbati-
ons on matter density ones. The maximal differences here are ∼1—2% for the
model with q1 and <1% for the model with q2. So, distinguishing of classical
scalar field from tachyonic one by the observational data on matter density
power spectra in the nearest future looks problematic.

In the procedure of determination of cosmological parameters the data on
the BAO relative distance measure R ≡ rs(zdrag)/DV (z) [143] (see subsection
1.4) have been used instead of data on P (k) because their accuracy is 2–3
times better. In the left panel of Fig. 2.19 the relative differences of the BAO
distance measure |R(q1)−R(q2)|/R(q1) in the cosmological models with best
fitting parameters q1 and q2 are shown for classical and tachyonic scalar fields.
One can see that increasing of accuracy of measurement of this parameter will
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Fig. 2.18. Left panel: the relative difference of matter density power spectra |∆P (k)|/P (k)
in the models with best fitting parameters q1 and q2 for classical scalar field (solid line)
and tachyonic one (dashed line). Right panel: the relative difference of matter density power
spectra |∆P/P | in the models with classical and tachyonic scalar fields for two sets of the best
fitting parameters q1 (solid line) and q2 (dashed line). Dots show observational uncertainties
(1σ) of SDSS LRG DR7 data [163]

Fig. 2.19. Left panel: the relative differences of the BAO distance measure R ≡ rs(zdrag)/
DV (z) in the cosmological models with best fitting parameters q1 and q2 (|R(q1)−
−R(q2)|/R(q1)) for classical scalar field (solid line) and tachyonic one (dashed line). Right
panel: the relative differences of the BAO distance measure |R(ti) − R(qi)|/R(qi) in the
models with best fitting parameters ti and qi (i = 1, 2). Dots show the observational 1σ
uncertainties of R extracted from SDSS DR7 galaxy redshift survey [143] (symbols)

give possibility to distinguish between QSF + CDM models with increasing
and decreasing EoS parameter. But these data cannot be used for distingui-
shing between classical and tachyonic scalar fields since they do not contain the
information about evolution of matter density perturbations and their power
spectrum. In the right panel of Fig. 2.19 the relative differences of the BAO di-
stance measure |R(ti)−R(qi)|/R(qi) (i = 1, 2) it is shown, they are essentially
smaller than |PTSF (k; q1)−PCSF (k; q1)|/PCSF (k; q1), because are caused only
by small differences of cosmological parameters t1 and q1. Therefore, the high
precision power spectrum of matter density perturbations is more informative
about the nature of dark energy than BAO relative distance measure.
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Fig. 2.20. Left panel: the relative difference of CMB temperature fluctuations power spectra
|∆C`|/C` in the models with best fitting parameters q1 and q2 for classical (solid line) and
tachyonic (dashed line) scalar fields (Table 2.1). Right panel: the relative difference of CMB
temperature fluctuations power spectra |∆C`|/C` in the models with classical and tachyonic
scalar fields for two sets of the best fitting parameters q1 (solid line) and q2 (dashed line).
Dots show observational uncertainties (1σ) of WMAP7 data

The dynamical properties of scalar field dark energy and its perturbations
leave slight fingerprints in the map of temperature fluctuations and polarization
of CMB radiation that have been already discussed above (see also [131]). Here
we show the relative differences of CMB power spectra |C`(q1)−C`(q2)|/C`(q1)
for decreasing (q1) and increasing (q2) EoS parameters (left panel of Fig. 2.20)
as well as |CCSF` (qi) − CTSF` (qi)|/CCSF` (qi) (right panel) for parameter sets
q1 and q2. In the left panel the differences at low spherical harmonics (` < 10)
for both scalar fields are caused mainly by different contribution of the late
Sachs—Wolfe effect (∼2—4%), at higher ones mainly by different cold dark
matter content (<2%) and, partially, by different optical depth (∼0.2%) and
geometrical effect 7 (∼0.3%). In the right panel the lines show the differences
caused solely by influence of scalar field density perturbations on formation
of CMB anisotropy. They do not exceed (∼1—2%) for model with decreasing
EoS, in which the differences between amplitudes of CSF and TSF density
perturbations are most substantial, and are �1% for model with increasing
EoS parameters q2. The relative errors of binned CMB power spectrum
|∆C`|/C`, obtained in WMAP seven-year experiment, are somewhat larger
even in the range of acoustic peaks, where accuracy is highest. So, the SN
SDSS SALT2 data prefer the model with decreasing EoS parameter, while SN
SDSS MLCS2k2 data prefer the model with increasing EoS parameter, but
the difference of maxima of likelihood functions for both models is statistically
insignificant. It means, that current observational data do not distinct these
models as well as the models with classical and tachyonic Lagrangian.

7 The particle horizon for model with q1 is 14430 Mpc, for model with q2 is 14470 Mpc.
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2.7. Phantom scalar fields with barotropic EoS

It was mentioned above that current observations allow the
possibility of the equation of state wde < −1, which is generally referred to
as phantom dark energy (PDE) [51, 279]. On the other hand PDE emerges
effectively from the gravity sector of brane-world models [308, 309] (see also
section 4.6 of this book), from superstring theory [310,311], from Brans—Dicke
scalar-tensor gravity [312, 313] and quantum effects that lead to violations of
the weak energy condition on cosmological scales [314, 315]. Some of these
models have phantom properties only at the current stage of evolution of the
Universe but did not have them at early time or they lose this feature in the
future. Let us analyze the possibility of modeling of such dark energy by a
single minimally coupled scalar field.

Primarily note, that scalar fields with classical or tachyonic Lagrangi-
ans cannot be PDE since the field variables for them become imaginary (see
eqs. (2.59)—(2.65)). So, another form of Lagrangians must be considered. The
simplest one is modified canonical Lagrangian with altered sign before the
kinetic term:

Lde = −X − U(φ). (2.66)

In this case the energy density and pressure are following linear combinations
of X and U :

ρde = −X + U(φ), pde = −X − U(φ). (2.67)

The EoS parameter

wde =
−X − U
−X + U

(2.68)

for positive values of X and U is ≤ −1. For explanation of accelerated expansi-
on of the Universe at the current epoch (q0 < 0) the phantom scalar field must
satisfy two conditions:

a) 0 < X(0) < U (0), b) U (0) + 2X(0) > ρ(0)
m /2. (2.69)

Assuming barotropic equation of state the field variable, potential and
kinetic term can be presented in terms of density and EoS parameter as follows:

φ(a)− φ0 = ±
√
−(1 + w0)ρ

(0)
de

a∫
1

da′

a′(
5
2

+ 3
2
c2a)H(a′)

,

U(a) =
(1− c2

a)(1 + w0)a−3(1+c2a) + 2(c2
a − w0)

2(1 + c2
a)

ρ
(0)
de ,

X(a) = −1 + w0

2
a−3(1+c2a)ρ

(0)
de .

(2.70)
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Fig. 2.21. Potentials U(φ − φ0) (left) and dependences of potentials and kinetic terms on
scale factor a (right) for phantom scalar field with Lagrangian (2.66) and barotropic EoS. In
the top panels c2a = −2.0, in the middle ones c2a = −1.2 and in the bottom ones c2a = −1.1,
in all panels w0 = −1.2. Potential and kinetic term are in the units of current critical energy
density, 3c2H2

0/8πG, the field variable in units of
√

3c2/8πG. The current epoch in the left
panels corresponds to φ− φ0 = 0 and field evolves from left to right

One can see that phantom barotropic scalar field (w0 < −1, c2
a < −1) has real

values of field variable and potential if current density of dark energy is positive.
Its kinetic term X(a) is positive at any a, the potential U(a) is always positive
only in the case c2

a ≤ w0. If w0 < c2
a < −1, then U(a) starts from negative

energy density (c2
a − w0)ρ

(0)
de /(1 + c2

a) at a = 0, changes the sign from “−” to

“+” at aρ=0 = [2(w0 − c2
a)/(1 − c2

a)(1 + w0)]
− 1

3(1+c2a) , which is always ≤ 1 for
phantom case. In any case U(a) increases with a, that distinguishes phantom
scalar field from the quintessential one. The potentials U(φ−φ0), evolution of
potentials and kinetic terms for models with c2

a < w0 < −1, c2
a = w0 < −1

and w0 < c2
a < −1 are shown in Fig. 2.21. One can see that accelerated expansi-

on of the Universe is caused by rolling up of field to maximum of its potential,
inversely as in the case of quintessential scalar field. We must note, that energy
density and pressure are smooth monotonous functions of a for all relations
between c2

a and w0, both <−1, while wde has the second kind discontinuity,
caused the passing of scalar field energy density over zero (see Fig. 2.7).
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2.7. Phantom scalar fields with barotropic EoS

The effective sound speed (2.10) for phantom scalar field (2.66) is equal to
the speed of light (c2

s = 1) like in the case of classical one.
One can construct the Lagrangian like DBI one (2.61) for phantom range

of EoS with positive defined kinetic term. Indeed, “relativistic” generalization
of (2.66) is following:

Lde = −Ũ(ξ)
√

1 + 2X̃. (2.71)

The energy density, pressure and EoS parameter for this field are as follows:

ρtach =
Ũ(ξ)√
1 + 2X̃

, ptach = −Ũ(ξ)
√

1 + 2X̃, (2.72)

wde = −2X̃ − 1. (2.73)

One can see, that in the case of phantom field (2.71) the EoS parameter is
always ≤ −1 for positive values of X̃ independently on the value and sign of Ũ .
For explanation of accelerated expansion of the Universe at the current epoch
(q0 < 0) such field must satisfy two conditions:

a) X̃(0), Ũ (0) > 0, b) Ũ (0) 1 + 3X̃(0)√
1 + 2X̃(0)

> ρ(0)
m /2, (2.74)

where index (0) marks the current values of corresponding variables.
In the case of phantom field (2.71) its field variable, potential and ki-

netic term can be presented in terms of dark energy density (2.51) and EoS
parameter (2.49) as follows:

ξ(a)− ξ0 = ±
a∫

1

da′
√
−(1 + wde(a′))

a′H(a′)
,

Ũ(a) = ρde(a)
√
−wde(a),

X̃(a) = −1 + wde(a)

2
.

(2.75)

The potentials U(ξ − ξ0), evolution of potentials and kinetic terms for
models with decreasing, constant and increasing EoS parameters are shown in
Fig. 2.22. As it is in previous case, the accelerated expansion of the Universe
is caused by rolling up of field to maximum of its potential. We must note,
that energy density and pressure are smooth monotonous functions of a for
all relations between c2

a and w0, both <−1, while wde has discontinuity of
second kind, caused by passing of scalar field energy density over zero (see
Fig. 2.7) in the case w0 < c2

a. Moreover, as it follows from (2.75) and Fig. 2.7,
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Fig. 2.22. Potentials U(ξ − ξ0) (left) and dependences of potentials and kinetic terms on
scale factor a (right) for phantom scalar field with Lagrangian (2.71) and barotropic EoS. In
the top panels c2a = −2.0, in the middle ones c2a = −1.2 and in the bottom ones c2a = −1.1,
in all panels w0 = −1.2. Potential and kinetic term are in the units of current critical energy
density, 3c2H2

0/8πG, the field variable is in units of
√

3c2/8πG. The current epoch in the
left panels corresponds to φ− φ0 = 0 and field evolves from left to right

the field variable ξ(a) and potential Ũ(a) are imaginary at a < aρ=0, while
measurable values, ρde(a) and pde(a), are real. Other intriguing property of
such field is effective sound speed: according to (2.10) it is equal to −wde and
for phantom range is superluminal. Therefore, the phantom scalar field (2.71)
can be theoretically interesting model of dark energy but unlikely for realization
in our Universe. So, below we will analyse only phantom scalar field (2.66).

Other distinction of PSF from QSF consists in their asymptotic behavior:
PSF mimics cosmological constant at the Beginning for any c2

a < −1 (wde goes
to −1 when a goes to 0), while QSF mimics it at a-infinity. So, such PSF always
starts as cosmological constant with ρde(a = 0) = ρ

(0)
de (c2

a − w0)/(1 + c2
a),

which is positive for c2
a < w0 and negative when w0 < c2

a < −1. This property
distinguishes PSF from “standard” PDE [51, 279], the density of which starts
from zero at a = 0. But one can see, that PDE is the special case of our
barotropic PSF, when c2

a = w0. In far future, when a � 1, its energy density
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2.7. Phantom scalar fields with barotropic EoS

Fig. 2.23. Dependences of scale
factors on time, a(t), for cosmologi-
cal models with quintessence/phan-
tom scalar fields with w0 = −1±0.2
and c2a = −1±1 (dotted line), −1±
± 0.3 (dashed line), −1±0.2 (dash-
dotted line), −1 ± 0.1 (dash-three-
dotted line). The upper sign is for
QSF, lower one is for PSF. For the
ΛCDMmodel a(t) is shown by thick
solid line. In all models Ωm = 0.3,
Ωde = 0.7, H0 = 70 km/s ·Mpc

will increase as ρde(a) ∝ (1 + w0)/(1 + c2
a)ρ

(0)
de a

−3(1+c2a) while wde will go to
c2
a (see eqs. (2.49) and (2.51)). So, its repulsion properties will increase and in
finite time reach and outmatch firstly forces of gravitationally bound objects,
then electrically ones, then strong force ones. All elements of structure of our
Universe — galaxies, stars, planets, atoms and protons, will be ripped in finite
time. This moment is dubbed the Big Rip 8 [279] and the moment when it
happens can be estimated from the time dependence of scale factor,

t =

a∫
0

da′

a′H(a′)
, (2.76)

which can be calculated numerically using (1.15) for any cosmological models
and parameters of scalar field with barotropic EoS. In Fig. 2.23 we present
the time dependences of scale factors, a(t), for cosmological models with PSF
with the same parameters as in Fig. 2.7. For comparison we show also a(t) for
ΛCDM and QSF+CDM models with symmetrical values of w0 and c2

a relative
to the phantom divide line. The phantom range of a− t space is above a(t)-line
for ΛCDM with the same cosmological parameters, the quintessence range is
below one.

At a� 1, when radiation and matter terms in (1.15) can be neglected, we
obtain the approximate analytic formula for a(t):

a(t) ≈

[
3

2
H0(1 + c2

a)

√
(1 + w0)Ωde

1 + c2
a

(t− t0) + 1

] 2

3(1+c2a)

. (2.77)

It shows, that a-infinity is reached in finite time

tBR − t0 ≈
2

3

1

H0

1

|1 + c2
a|

√
1 + c2

a

(1 + w0)Ωde
, (2.78)

8 The first name of this singularity was “Big Smash”, proposed in the paper [316].
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which is noted as time of Big Rip. Such fast expansion leads also to freezing
of the particle horizon rp at some rmaxp and contraction of the event horizon
re to point when t → tBR. Really, in the co-moving coordinates they are as
follows:

rp(t) = c

a∫
0

da′

a′2H(a′)
, re(t) = c

∞∫
0

da′

a′2H(a′)
− rp(a),

so, starting from af � 1, when matter component in (1.15) can be omitted,
the rest of rp-integral from af to a� af has analytic representation

I(af , a) =
2c

(1 + 3c2
a)H0

√
1 + c2

a

(1 + w0)Ωde
a

(1+3c2a)

2
f

and goes to 0 when af →∞.
Therefore, the positive energy density of PSF becomes infinite at finite

time (2.78), overcoming all other forms of matter. The phantom scalar field
dark energy rips at first the clusters of galaxies, later Milky Way and other
galaxies, then Solar System, a bit later Earth, Sun and stars and ultimately
“the molecules, atoms, nuclei, and nucleons of which we are composed, before
the death of the Universe in a Big Rip” (see Table 1 in [279]). Will this be the
end of Everything? Maybe this will be the beginning of new worlds — if PSF
reaches the Planck density, the quantum fluctuations or interaction of field
with the particles (the phenomenon of confinement) will lead to inflation in
some regions of Planck scales. In the paper [312] it has been demonstrated that
in the case of phantom Big Rip the consideration of quantum gravity effects
might drastically change the future of our Universe, removing the singularity
in a quite natural way.

Another feature of phantom dark energy, discussed in the literature, is
its inluence on quantum stability of vacuum. It was shown [317, 318] that
minimally coupled scalar fields with a linear negative kinetic term may cause
a UV quantum instability of the vacuum manifesting itself in the production
of pairs of ghosts, photons or gravitons as a consequence of the violation of
the null energy condition. It can be prevented by introducing the squared
kinetic term in the Lagrangian as in the ghost condensate model [319, 320] or
by second derivatives of the scalar field as in the kinetic braiding scalar-tensor
model [321]. For late type phantom scalar fields the produced ghosts typically
carry low energy, so, their decay rates are strongly time-dilated. On the other
hand, the time scale of this instability for phantom dark energy can be much
larger than the cosmological one, making this effect unsuitable for constraining
the parameters of the model at the present level of observations. This is why in
this chapter we concentrate our attention on the classical properties of scalar
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field models of dark energy and on possibilities to determine their parameters
by comparison of predictions with available observational data.

2.7.1. Gravitation instability of PSF
and large scale structure formation

Before determination of PSF parameters let us discuss
shortly the gravitational instability of such scalar field and its impact on the
matter clustering. The complete system of evolution equations for cosmologi-
cal perturbations of cold dark matter, baryons, massless and massive neutri-
nos and radiation based on General Relativity, differential conservation law
and Boltzmann equations is presented in [116, 128, 130]. To understand the
gravitational instability of PSF and its impact on the large scale structure
formation in the matter and dark energy dominated epochs it is enough to
analyze the subset of differential equations (2.14)—(2.17) with initial condi-
tions (2.18)—(2.19) or (2.21)—(2.25) with initial conditions (2.26). At ηinit for
positive matter density perturbation 9 (δm > 0) the gravitational potential
hinit in synchronous gauge (or Ψinit in conformal Newtonian gauge) is nega-
tive and the dark energy density perturbation has opposite sign (δde < 0) for
any w0, c

2
a < −1 and c2

s > 0 (see equations (2.26)). The absolute values of their
amplitudes in synchronous gauge increase ∝ a at superhorizon stage of evoluti-
on, but amplitudes of density perturbations of phantom scalar field change the
sign and decay after entering into horizon at η ≈ k−1. It is shown in Fig. 2.24,
where the evolution of Fourier mode k = 0.05 Mpc−1 of density perturbations
for dark matter, baryons and phantom scalar field is presented for two cases:
c2
a < w0 and c2

a = w0.
One can see, that in the case of c2

a = w0 the absolute value of initial ampli-
tude of |δde| is higher than in the case of c2

a < w0, but at the epoch of structure
formation and at current epoch they are essentially lower than δm. It means
that perturbations of minimally coupled scalar fields with initial conditions
(2.26) practically do not impact structure formation in matter components.

Nevertheless the parameters of barotropic scalar field can be constrained
by data on the large scale structure of the Universe, since the rate of increasing
of amplitude of matter density perturbations is enough sensitive to them. It is
illustrated in Fig. 2.25, where the matter density evolution, δm(a), is shown for
models with PSF dark energy. In order to eliminate the k-dependence caused
by the baryonic component at small scales and amphasize the influence of dark
energy we have normalized the amplitude of matter density perturbations to
0.1 at a = 0.1 (free normalization). Then ρm/ρde ∼ 1000, q ≈ 0.5 and ampli-
tudes of all Fourier modes evolve practically equally. For comparison the same

9 In the early Universe for superhorizon scale it includes also relativistic components,
which are density dominating.
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Fig. 2.24. Evolution of Fourier
amplitude (k = 0.05 Mpc−1)
of density perturbations of
cold dark matter (dashed li-
ne), baryonic matter (dotted
line) and PSF (solid line)
with c2a < w0 (top panel) and
c2a = w0 (bottom panel)

Fig. 2.25. Evolution of matter
density perturbations from
Dark Ages to current epoch in
sCDM, ΛCDM, QSF+CDM
(1: w0 = −0.8, c2a = −0.8;
2: w0 = −0.8, c2a = −0.5) and
PSF+CDM (1: w0 = −1.2,
c2a = −1.2; 2: w0 = −1.2,
c2a = −1.5) models. Ampli-
tudes are normalized to 0.1 at
z = 10 (a = 0.1). In the models
with dark energy Ωm = 0.3,
Ωde = 0.7

variables for QSF + CDM, ΛCDM and the standard CDM (sCDM) models are
also presented. So, for the amplitude of large scale structure inhomogeneities
the cosmological model with PSF is distinctive from one with QSF by ∼10%
and from ΛCDM one by few percents at 0 ≤ z ≤ 1.

Let us analyze the evolution of linear density perturbations in the future.
The first question for elucidation is gravitational instability of PSF at strongly
dark energy dominated epoch. We have integrated the system of differential
equations (2.21)—(2.25) with initial conditions (2.26) up to a = 200, when
expansion is already superfast (see Fig. 2.23) and ρde/ρm ∼ 108—1010. The
results for PSF density perturbations are shown in Fig. 2.26 (left column)
for different k-modes (0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.005, 0.01, 0.05,
0.1 Mpc−1) and two expansion rates, which correspond to models with w0 =
= −1.2, c2

a = −1.5 (top panel) and c2
a = −1.2 (bottom panel). One can see, that
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Fig. 2.26. Evolution of different Fourier amplitudes of PSF (left column) and matter (right
column) density perturbations from a = 0.1 to a = 200 for models with w0 = −1.2, c2a = −1.5
(top panels) and w0 = −1.2, c2a = −1.2 (bottom panels). The rest parameters are the same
as in Figs.2.24 and 2.25. The different lines correspond to wave numbers k (in Mpc−1) as
follows: 1 — 0.0005, 2 — 0.001, 3 — 0.0015, 4 — 0.002, 5 — 0.0025, 6 — 0.005, 7 — 0.01, 8 —
0.05, 9 — 0.1 Mpc−1. The amplitudes of all k-modes of δde are normalized to 0.1δde(k =
= 0.05; a = 0.1)/δm(k = 0.05; a = 0.1), the amplitudes of all k-modes of δm are normalized
to 0.1 at a = 0.1

their amplitudes increase slowly and the rate depends on background expansion
rate as well as on wave number. In order to visualize this k-dependence we
remove the dependence on k caused by initial power spectrum and transition
processes in the early epochs by renormalization of amplitudes at a = 0.1 to
δde(k) = 0.1δde(k = 0.05; a = 0.1)/δm(k = 0.05; a = 0.1). So, all k-modes
of PSF density perturbations in Fig. 2.26 have the same amplitudes at a =
= 0.1, but the ratio of matter to PSF ones is the same as for k = 0.05 Mpc−1

mode at that moment, as computed by CAMB and shown in Fig. 2.24. One
can see, that rates of increasing of amplitudes are higher for lower k in the
range a = 0.1—10 and are practically the same for all k-modes at a > 10:
δde ∝ a−3(1+c2a)/2. For the PSF with w0 = −1.2 and c2

a = −1.5 the amplitude
of k = 0.1 Mpc−1 mode increases from a = 0.1 to a = 10 by 693 times,
while the amplitude of k = 0.0005 Mpc−1 mode increases by 10307 times. For
the PSF with w0 = c2

a = −1.2 these numbers are 9 and 125 correspondingly.
Since the evolution of amplitude of gravitational potential h is driven by term
ρmδm + ρde(1 + 3wde)δde (Eq. 2.25), shortly after a = 1 the perturbations of
PSF will become crucial firstly on the largest scales and later on less and less.
They affect the evolution of matter density perturbations, that is shown in the
right panels of Fig. 2.26 in the log-norm scales. At scales with k ≥ 0.05 Mpc−1

(superimposed lines 8, 9 in both panels) the amplitudes of matter density
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perturbations in the models with PSF will increase from a = 1 to a = 10 only
by ∼1.3 times and will freeze at this value. At these scales in this range of a
the influence of PSF density perturbations on the evolution of matter density
ones is inappreciable. In the ΛCDM and QSF + CDM models all k-modes
will evolve similarly as it is shown by line 9. In the PSF + CDM models at
scales with k < 0.05 Mpc−1 the effect of PSF density perturbations on the
evolution of matter density ones becomes important: increasing of amplitude
of PSF density perturbations causes the decaying of matter density ones. The
greater is scale of perturbation, the earlier its amplitude starts to decay 10.

Note, that this decaying of matter density perturbations is caused solely
by influence of phantom scalar field perturbations, not superfast expansion of
background (at a ∼ 2 the rates of expansion in PSF models are close to ones
in ΛCDM and QSF, as it can be seen from Figs. 2.7 and 2.23). Excluding the
effect of perturbations, the amplitudes of all k-modes freeze as it is shown by
line 9. This is not the beginning of the Big Rip mentioned above, but its analog
for linear perturbations.

2.7.2. Best-fit parameters of PSF

Let us estimate the parameters of PSF using the same data,
method and codes which have been applied for QSF (see subsection 2.6.4). To
find the best-fit values of parameters of cosmological model with PSF and their
confidence limits we perform the MCMC analysis for two combined datasets:
WMAP7 + HST + BBN + BAO + SN SDSS SALT2 and WMAP7 + HST +
+ BBN + BAO + SN SDSS MLCS2k2. The difference in the search procedure
consists only in the flat priors for w0 and c2

a and starting values for them. In
the case of PSF the priors are as follows: −2 ≤ w0 ≤ −1 and −2 ≤ c2

a ≤ −1.
Since in the PSF models with w0 < c2

a < −1 the EoS parameter has second
kind discontinuity at a < 1, we exclude them from likelihood analysis by the
additional condition c2

a ≤ w0.
The results of estimation of the PSF parameters jointly with the minimal

set of cosmological parameters for two sets of observational data (WMAP7 +
+ HST + BBN + BAO + SN SDSS SALT2 and WMAP7 + HST + BBN +
+ BAO+ SN SDSSMLCS2k2) are presented in Table 2.2. We denote the sets of
best-fit parameters by p1 and p2. Here pi = (Ωde, w0, c

2
a,Ωb,Ωcdm, H0, ns, As,

τrei). Both SN SDSS distance moduli datasets prefer values of w0 slightly
lower than –1. In the past, when a → 0, wde → −1. Hence, the PSFs with
parameters p1 and p2 mimic the Λ-term from the Big Bang up to the current
epoch, but, due to instability of the value wde = −1, even such a small dif-
ference changes drastically the future fate of the Universe: in ΛCDM model

10 In order to visualize this effect in Fig. 2.26 we have normalized all k-modes of δm to
0.1 at a = 0.1.
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Table 2.2. The best-fit values for cosmological parameters of PSF + CDM
model and their 1σ limits from the extremal values of the N-dimensional
distribution determined by the MCMC technique from the combined
datasets WMAP7 +HST + BBN + BAO + SN SDSS SALT2 (p1)
and WMAP7 + HST + BBN + BAO + SN SDSS MLCS2k2 (p2).
All units and notation are the same as in Table 2.1

Parameters p1 p2 Parameters p1 p2

Ωde 0.72+0.04
−0.04 0.69+0.05

−0.04 H0 70.4+4.0
−3.2 67.8+4.2

−2.9

w0 –1.043+0.043
−0.24 –1.002+0.002

−0.14 ns 0.96+0.04
−0.03 0.96+0.03

−0.04

c2a –1.12+0.12
−0.50 –1.19+0.19

−0.42 log(1010As) 3.09+0.09
−0.09 3.11+0.08

−0.11

10ωb 0.223+0.016
−0.013 0.223+0.014

−0.013 τrei 0.085+0.041
−0.031 0.086+0.036

−0.038

ωcdm 0.115+0.011
−0.010 0.119+0.009

−0.010 − logL 3864.86 3859.30

the Universe as well as existing structures (in principle) are time-unlimited,
while in the PSF + CDM model it reaches the Big Rip singularity in finite
time, preceded by the destruction of the structure from clusters of galaxies to
elementary particles. More precisely, in the PSF + CDM with parameters p1

this happens in ≈152 Gyrs, with p2 in ≈594 Gyrs. Long before tBR the particle
horizon 11 becomes rmaxp ≈ 18710 Mpc in model p1 and ≈19200 in model p2,
just ≈1.3 times larger than the current particle horizon.

2.8. Distinguishing of scalar field
models of dark energy
The key parameters of barotropic scalar field are its current

density in units of critical one Ωde, EoS parameter w0, adiabatic sound speed
c2
a and effective sound speed c2

s. Their reliable determination will unveil the
inherent properties of dark energy: whether it is the cosmological constant
(w0 = c2

a = −1) or dynamical dark energy in the form of QSF or PSF. The
best-fit values and confidential ranges of cosmological parameters for flat
QSF + CDM and PSF + CDM models determined by MCMC method on
the base of WMAP7 + HST + BBN + BAO + SN SDSS SALT2 and
WMAP7 + HST + BBN + BAO + SN SDSS MLCS2k2 datasets are presented
in Tables 2.1 and 2.2 correspondingly. Similar computations have been carri-
ed out for ΛCDM model and the best-fit values and confidential ranges of
cosmological parameters l1 and l2 are presented in Table 2.3.

If we compare the maxima of likelihood functions χ2 = − log (Lmax),
presented in the last rows of Tables 2.1—2.3, we see that the current observa-
tional dataset including SN SDSS SALT2 prefers phantom scalar field model

11 At the current epoch r(0)
p = 14260 Mpc in the model with p1 and 14170 Mpc in the

model with p2.
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of dark energy, since χ2
PSF < χ2

ΛCDM < χ2
QSF . The opposite trend is for the

dataset including SN SDSS MLCS2k2, χ2
QSF < χ2

ΛCDM < χ2
PSF , so, it prefers

quintessential scalar field model of dark energy. The differences between all
χ2 in the tables are not statistically significant, but a clear trend supports
that. In the paper [77] the differences between 2 methods of light-curve fitting,
SALT2 and MLCS2k2, are thoroughly analyzed but convincing arguments for
one or the other are not given. So, we can conclude only that WMAP7+
+ HST + BBN+ BAO+ SN SDSS SALT2 dataset prefers slightly the phantom
scalar field model of dark energy, while WMAP7 + HST + BBN + BAO+
+ SN SDSS MLCS2k2 dataset prefers slightly the quintessence one, but none
of considered QSF + CDM, ΛCDM and PSF + CDM models with best-fit
parameters has statically significant advantages by current datasets, used for
their determination. All these models match well the observational data on
SNe Ia distance moduli (Fig. 2.27), BAO relative distance measure (Fig. 2.29),
power spectrum of matter density perturbations (Fig. 2.30), CMB temperature
fluctuations (Fig. 2.31) and temperature-polarization (Fig. 2.32) power spectra.
Let us analyze the possibility to distinguish QSF + CDM and PSF + CDM
by each type of observational data.

The lines corresponding to different DE models, QSF, PSF and Λ, in the
left panel of Fig. 2.27) look as perfectly superimposed, that means the complete
model degeneracy. The maximal values of relative differences of SNe Ia distance
moduli ∆(m − M)/(m − M) ∼ 0.4 % at low redshifts are for QSF models
with q1 and q2 shown in Fig. 2.16. The similar relative differences between
these dependences for QSF + CDM and PSF + CDM models with best-fit
parameters determined with the same fitters (|µ(qi)−µ(pi)|/µ(qi)) are ≤0.1%
(right panel of Fig. 2.27), that makes these data still quite useless to set the
type of scalar field as dark energy.

Fortunately, other characteristics of dynamics of expansion of the Uni-
verse, based on the measurements of the first and second time derivatives of

Table 2.3. The best-fit values for cosmological parameters of ΛCDM
model and their 1σ limits from the extremal values of the N-dimensional
distribution determined by the MCMC technique from the combined
datasets WMAP7 + HST + BBN + BAO + SN SDSS SALT2 (l1)
and WMAP7 + HST + BBN + BAO + SN SDSS MLCS2k2 (l2).
All units and notation are the same as in Tables 2.1 and 2.2.

Parameters l1 l2 Parameters l1 l2

ΩΛ 0.73+0.03
−0.04 0.70+0.04

−0.04 ns 0.97+0.03
−0.03 0.96+0.03

−0.03

10ωb 0.226+0.012
−0.013 0.224+0.013

−0.013 log(1010As) 3.08+0.09
−0.09 3.10+0.08

−0.08

ωcdm 0.112+0.009
−0.008 0.118+0.008

−0.009 τrei 0.087+0.041
−0.031 0.082+0.038

−0.030

H0 70.4+2.9
−3.4 68.2+3.3

−3.1 − logL 3864.96 3859.15
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2.8. Distinguishing of scalar field models of dark energy

Fig. 2.27. Left panel: the dependences of distance modulus µ ≡ m −M on redshift z for
SNe Ia in the models with best-fit parameters l1, l2, q1, q2, p1 and p2 (superimposed lines)
and observational data SDSS SNe Ia (signs). Right panel: the relative differences of distance
moduli between QSF + CDM and PSF + CDM models with best-fit parameters determined
for the same datasets (lines) and observational uncertainties for SDSS SNe Ia (signs)

Hubble parameter 12 H(η), are essentially more sensitive to the value and time
dependence of EoS parameter. The dependences of dimensionless parameters
describing the dynamics of expansion of the Universe on redshift, such as
the rate of expansion H/H0, the deceleration parameter q = −Ḣ/(aH2) − 1
and the statefinder parameters [322] r = Ḧ/(a2H3) + 2Ḣ/(aH2) + 1 and
s ≡ (r − 1)/3(q − 1/2), are shown in Fig. 2.28 for the models with best-
fit parameters l1, l2, q1, q2, p1 and p2. Here the r-parameter is jerk (1.25),
the s-parameter is linear combination of q and r, not snap one, discussed in
the section 1.3. For matter plus dark energy dominated epoch they can be
presented in our parametrization (2.49) as follows:

r = 1 + 4.5(1 + wde)c
2
aΩde(a), s = (1 + wde)c

2
a/wde,

where Ωde(a) ≡ 8πGρde(a)/3H2. One can see that the differences between
s(qi) and s(pi) at high z as well as between r(qi) and r(pi) at low z are
essentially larger than for parametersH and q. Maybe the future high-precision
measurements of dynamics of expansion of the Universe will give possibility to
distinguish the QSF and PSF models of DE.

The BAO relative distance measure RrD(z) ≡ rs(zdrag)/DV (z) (see sub-
section 1.4) extracted from SDSS DR7 galaxy redshift survey [143] is matched
well by QSF+CDM, PSF+CDM and ΛCDM models with best-fit parameters

12 µ(z) dependence is integral of 1/H over redshift (Eq. 1.23).
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Fig. 2.28. The dependences of dimensionless parameters describing the dynamics of expansi-
on of the Universe on redshift in the models with best-fit parameters l1, l2, q1, q2, p1 and p2:
the rate of expansion H/H0 (left panel, top), the deceleration parameter q = −Ḣ/(aH2)− 1
(left panel, bottom) and the statefinder parameters r = Ḧ/(a2H3) + 2Ḣ/(aH2) + 1 and
s ≡ (r − 1)/3(q − 1/2) (right panel). For the ΛCDM model the last two parameters equal 1
and 0 correspondingly

Fig. 2.29. Left panel: the BAO relative distance measure RrD ≡ rs(zdrag)/DV (z) in the
cosmological models with best-fit parameters l1, l2, q1, q2, p1 and p2 (lines) and observati-
onal data extracted from SDSS DR7 galaxy redshift survey [143] (symbols). Right panel: the
relative difference of the BAO distance measure |∆RrD|/RrD in the models with best fitting
parameters qi and pi. Dots show observational 1σ relative errors of data in the left panel

q1, q2, p1, p2, l1 and l2 correspondingly. (Fig. 2.29, left panel). The relative
differences of RrD(z) for models with QSF and PSF are ≤ 2 % at z ≤ 0.4, while
observational errors are ∼3% at 0.2 ≤ z ≤ 0.35 (right panel of Fig. 2.29). It
means that future extensive measurements of galaxy space inhomogeneities in
principle can distinguish these scalar fields of dark energy. The power spectrum
of matter density perturbations extracted from luminous red galaxies of SDSS
DR7 catalogue by Reid et al. (2010) [163] has not been used for determination
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2.8. Distinguishing of scalar field models of dark energy

Fig. 2.30. Left panel: the power spectrum of matter density perturbations in the cosmologi-
cal models with best-fit parameters l1, l2, q1, q2, p1 and p2. Dots show observational SDSS
LRG DR7 power spectrum [163]. Right panel: the relative difference of matter density power
spectra |∆P (k)|/P (k) in the models with best fitting parameters qi and pi. Dots show
observational uncertainties (1σ) of SDSS LRG DR7 data [163]

Fig. 2.31. Left panel: the power spectra of CMB temperature fluctuations `(`+ 1)CTT` /2π
in the cosmological models with best-fit parameters l1, l2, q1, q2, p1 and p2 (superimposed
lines) and observational one from WMAP7 [93] (dots). Right panel: the relative differences of
CMB temperature fluctuations power spectra |∆CTT` |/CTT` in the models with best fitting
parameters qi and pi (Tables 2.1 and 2.2). Dots show observational uncertainties (1σ) of
WMAP7 `(`+ 1)CTT` /2π

of best-fit parameters of QSF + CDM, PSF + CDM and ΛCDM models,
however the computed for them power spectra match it perfectly too. The
experimental errors of its determination are still too large (8—12%) to distin-
guish between different scalar field models of dark energy. In addition, at the
small scales (k ≥ 0.1 hMpc−1) there are uncertainties in the computation of the
power spectrum associated with the non-linear evolution of perturbations and
unknown type of dark matter, cold or warm, that is being actively discussed
in the literature.

Above we have discussed the importance of data on CMB anisotropy for
determination of cosmological parameters and, particularly, the dark energy
ones. The key cosmological data now are WMAP all sky maps, which contain
information about position and amplitude of acoustic peaks at decoupling
epoch as well as the amplitudes of large scale matter density perturbations
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Fig. 2.32. Left panel: the temperature-polarization power spectra of CMB (` + 1)CTE` /2π
in the cosmological models with best-fit parameters l1, l2, q1, q2, p1 and p2 (superimposed
lines) and observational one from WMAP7 [93] (dots). Right panel: the relative differences of
CMB temperature-polarization power spectra |∆CTE` |/CTE` in the models with best fitting
parameters qi and pi (Tables 2.1 and 2.2). Dots show observational uncertainties (1σ) of
WMAP7 (`+ 1)CTE` /2π

at the late epoch causing the integrated Sachs—Wolfe effect. In Fig. 2.31 (left
panel) the binned power spectrum of temperature fluctuations extracted from
the 7-year WMAP all sky measurements [93—95] is shown. Its accuracy is maxi-
mal (minimal errors ∼2—4%) in the range of acoustic peaks (` ∼ 200—600),
this allows the accurate determination of main cosmological parameters. The
maximal accuracy of determination of parameters of dark energy is achieved
when these data are used together with SNe Ia and BAO relative distance
measure or matter density power spectrum. The computed power spectra
`(`+1)CTT` /2π for cosmological models ΛCDM, QSF + CDM and PSF + CDM
with best-fit parameters l1, l2, q1, q2, p1 and p2 match well the observati-
onal one. The relative differences between power spectra in QSF+CDM and
PSF+CDM models, shown in the right panel of Fig. 2.31, do not exceed the
relative observational uncertainties of `(`+ 1)CTT` /2π. Additional constraints
on the cosmological parameters are obtained when CMB polarization data are
included. For the illustration of agreement between theory and observations in
the left panel of Fig. 2.32 the power spectra of CMB temperature-polarization
(` + 1)CTE` /2π in the cosmological models with best-fit parameters l1, l2,
q1, q2, p1 and p2 as well as WMAP7 [93] one are presented. All lines are
superimposed at ` > 10 with sub-percent accuracy, while minimal errors of
observational power spectrum at high spherical harmonics are ∼4—6% (right
panel of Fig. 2.32).

In the paper [323] we have used the newer data on SNe Ia distance moduli
from SNLS3 compilation (hereafter SNLS3) [84] and Union2.1 compilation
(hereafter Union2.1) [324] together with data on BAO from the WiggleZ Dark
Energy Survey (hereafter WiggleZ) [325]. The results for the combined datasets
WMAP7 + HST + BBN + BAO + WiggleZ + SNLS3 and WMAP7 + HST +
+ BBN + BAO + WiggleZ + Union2.1 are presented in Tables 2.4 and 2.5
correspondingly.
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2.8. Distinguishing of scalar field models of dark energy

Both these combined datasets prefer phantom fields, χ2
PSF < χ2

ΛCDM <
< χ2

QSF , and for both the differences of maximum of likelihoods between
PSF + CDM, ΛCDM and QSF + CDM are still statistically insignificant too.

The results of determination of cosmological parameters, especially H0,
Ωde, wde and c2

a, presented in Tables 2.1—2.3, also indicate certain inconsistency
or tension between fitters SALT2 and MLCS2k2 applied to the same SNe Ia.
It was clearly highlighted and analyzed in the papers [77, 326], but up to now
we have no decisive arguments for favor of one of them.

Therefore, any of the used observational data at the current level of
accuracy cannot prefer QSF + CDM, PSF + CDM or ΛCDM at statistically
significant level. In the framework of each of them the model with best-fit
parameters exists, it matches well each type of data and all together with close
goodness. The increasing of accuracy of observational CMB power spectra
jointly with high precision matter density one and SNe Ia luminosity distance
measurements will give possibility to establish the dynamical properties of dark

Table 2.4. The best-fit values and 1σ confidence ranges of the N-dimensional
distribution for the dark energy parameters in QSF+CDM, ΛCDM and PSF+
+CDM models determined by the Markov chain Monte Carlo technique
using the dataset WMAP7+HST+BBN+BAO+WiggleZ+SNLS3. The
current Hubble parameter H0 is in units km s−1 Mpc−1. (From [323])

Parameters QSF + CDM ΛCDM PSF + CDM

Ωde 0.72+0.04
−0.04 0.73+0.04

−0.04 0.73+0.04
−0.04

w0 –0.994+0.14
−0.006 –1 –1.10+0.10

−0.27

c2a –0.72+0.72
−0.28 –1 –1.29+0.29

−0.33

H0 70.1+3.6
−4.6 70.3+3.5

−3.4 71.5+5.1
−4.1

− logL 3947.00 3946.75 3945.98

Table 2.5. The best-fit values and 1σ confidence ranges of the N-dimensional
distribution for the dark energy parameters in QSF+CDM, ΛCDM and PSF+
+CDM determined by the Markov chain Monte Carlo technique using the
observational dataset WMAP7+HST+BBN+BAO+WiggleZ+Union2.1.
The current Hubble parameter H0 is in units km s−1 Mpc−1. (From [323])

Parameters QSF + CDM ΛCDM PSF + CDM

Ωde 0.72+0.03
−0.04 0.72+0.04

−0.04 0.73+0.03
−0.04

w0 –0.995+0.17
−0.005 –1 –1.13+0.13

−0.23

c2a –0.55+0.55
−0.45 –1 –1.54+0.54

−0.09

H0 69.7+3.1
−4.5 69.8+3.2

−3.2 71.4+4.7
−4.4

− logL 3800.89 3800.76 3800.48
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energy and, maybe, its nature. Indeed, in the papers [327, 328] it was shown
that accuracy of the power spectra that are expected in the experiment Planck
will significantly narrow the allowable range of values of parameters for the
scalar field models of dark energy.

2.9. Summary
In the chapter the different methods of modeling of dark

energy by single scalar field are analyzed. The main attention was paid to
the scalar field with barotropic equation of state and classical or tachyonic
(DBI) Lagrangians. Such field has only three free parameters, Ωde, w0 and
c2
a, which define completely its dynamical behavior from the Big Bang to
the current epoch and in the future as well as the dynamics of expansion
of the Universe. The different combinations of values of w0 and c2

a from the
range [–2, 0] correspond to different types of dark energy, quintessence and
phantom, to different character of evolution of EoS parameter, decreasing,
increasing or constant, and, accordingly, different repulsion properties, raising,
receding or stable. The well studied ΛCDM and wCDM models of dark energy
are partial cases of this barotropic scalar field model when w0 = −1 and
w0 = c2

a correspondingly. If c2
a = 0 and −1 < w0 < −1/3 then the scalar

field with tachyon Lagrangian at the Beginning mimics dust-like matter, but
later becomes quintessential dark energy with decreasing EoS parameter, which
becomes w0 at current epoch and goes asymptotically to –1, mimicking Λ-term
in far future. When Lagrangian of scalar field is classical then dark energy is
never dust-like with the same time evolution of wde since its effective sound
speed is always c2

s = 1. If −1 < w0 < c2
a < 0 then we have quintessential scalar

field model of dark energy with decreasing EoS parameter and raising repul-
sion: wde monotonically decreases from c2

a at the Big Bang to w0 now and will
continue decreasing to –1 up to time infinite. For the other order of inequali-
ty, −1 < c2

a < w0 < 0, we have opposite evolution of wde: it monotonically
increases from c2

a in the Big Bang to w0 now and will continue increase in the
future, will become zero, then positive and will go to discontinuity of second
kind since the energy density of scalar field, ρde, during decreasing will pass
zero. In this model, in contrast to previous ones, the accelerated expansion
will not last forever — it will be changed by the decelerated one, will reach
the turnaround point, then will start to collapse and finally it will end in the
Big Cranch singularity. The accelerated expansion in all these cases is caused
by slow roll of scalar field to minimum of its potential. The energy density of
quintessence scalar field decreases at the stage of expansion of the Universe
much more slowly than for any other component, that explains its crucial role
in the later epochs.

If w0 and c2
a < −1, then the scalar field with barotropic EoS has phantom

properties — its density monotonically increases, that causes the superexponen-
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tial expansion of the Universe and reaching of the Big Rip singularity in finite
time. The field variable φ and potential U are always real when the Lagrangian,
classical or tachyonic, has the opposite sign before kinetic term. Moreover, the
potential and kinetic term are always positive also if c2

a < w0 < −1. The
superfast expansion in this model is caused by roll up of the phantom scalar
field to maximum of its potential which is +∞, but is reached in finite time. The
repulsion properties of PSF increase and in finite time they reach and outmatch
firstly the gravitational force, then electromagnetic forces and finally strong
interactions. All bound structures in the Universe — galaxies, stars, planets,
atoms and protons — will be ripped in finite time. A distinctive feature of
this class of phantom dark energy is that in a general case it mimics the
positive or negative cosmological constant (wde(a) → −1) in the early epoch
(a → 0), that is defined by inequality c2

a < w0 or w0 < c2
a correspondingly.

The inherent “phantom” property, when field starts from zero value of energy
density, occurs only in the particular case w0 = c2

a. In the opposite asymptotic
range, a → +∞, the equation of state parameter wde(a) asymptotically goes
to c2

a, that defines the physical meaning of the term “adiabatic sound speed”
in the case of phantom scalar field with barotropic EoS.

Here it has been shown also that dynamics of expansion of the Universe
depends on values of parameters Ωde, w0 and c2

a of scalar field with barotropic
EoS and this fact allows to estimate them using the cosmological test based
on relations “luminosity distance — redshift” and “angular diameter distance —
redshift” for different classes of astrophysical objects. The “strength” of scalar
field repulsion and its time dependence, defined by these parameters, affect
also the formation of large scale structure of the Universe via growth factor of
linear matter density perturbations.

The important feature of the scalar fields is their gravitational instability,
which was carefully analyzed in the chapter. It was shown that in the case
of adiabatic initial conditions for matter density perturbations and subdomi-
nant asymptotic ones for dark energy the amplitudes of scalar field density
perturbations in the past and current epochs are essentially lower than matter
density ones. However, they leave their subtle “fingerprints” via gravitational
interaction between dark energy and dark matter scalar density perturbati-
ons. It can be used as additional source of information about the nature of
dark energy since it is sensitive to another important parameter of scalar field
model of DE — the effective sound speed c2

s. It was shown that the effect is
more noticeable for smaller values of c2

s. In the case of phantom scalar field
the distinctive property is that the perturbation of energy density and gravi-
tational potential have the same sign. It causes the decay of large scale linear
density perturbations of matter long before the Big Rip singularity.

So, the determination of values of Ωde, w0 and c2
a for barotropic scalar field

with given Lagrangian by comparison of theoretical predictions with observati-
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onal data gives possibility to define the type and main dynamical properties of
dark energy. The best-fit parameters of quintessence and phantom scalar fields
with barotropic EoS have been determined jointly with all relevant cosmologi-
cal parameters by MCMC method using the datasets WMAP7 + HST +
+ BBN + BAO + SN SDSS SALT2 and WMAP7 + HST + BBN + BAO +
+ SN SDSS MLCS2k2. It was shown that the dataset including SNe Ia distance
moduli obtained with SALT2 fitter prefers slightly the phantom model of dark
energy (Ωde = 0.72 ± 0.04, w0 = −1.043+0.043

−0.24 , c2
a = −1.12+0.12

−0.50), while the
dataset with the same SNe Ia but obtained with MLCS2k2 prefers slightly the
quintessence model (Ωde = 0.70 ± 0.05, w0 = −0.83+0.22

−0.17, c
2
a = −0.88+0.0.88

−0.12 ).
However, the difference of the maximum likelihoods between them is stati-
stically insignificant. The same conclusions apply to the datasets WMAP7 +
+ HST + BBN + BAO + WiggleZ + SNLS3 and WMAP7 + HST + BBN +
+ BAO + WiggleZ + Union2.1. The possibility of distinguishing between
quintessence and phantom scalar fields by current and expected datasets is
analyzed and it is concluded that more accurate future observations will enable
us to do that.
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As we have already pointed out in the previous chapters,
the large-scale dynamics of the observable part of our pre-
sent time Universe is well described by the ΛCDM model
with the four-dimensional Friedmann—Robertson—Walker
(FRW) metric. However, it is possible that space-time at
short (Fermi or Planck) distances might have a dimen-
sionality of more than four and possess a rather complex
topology [329]. This idea takes its origin from the pionee-
ring papers by Kaluza and Klein (KK) [330,331]. They were
first who indicated how to unify gravity with electromag-
netism. Moreover, Klein introduced the idea of compacti-
fication of the extra (fifth) dimension which provides the
natural explanation of the extra dimension unobservability
(see [332—334] for review of the KK models).

String theory [335,336] and its recent generalizations —
p-brane, M- and F-theory [337, 338] — widely use this con-
cept and give it a new foundation. The most consistent for-
mulations of these theories are possible in space-times with
critical dimensions Dc > 4, for example, in string theory
there are Dc = 26 or 10 for the bosonic and supersym-
metric version, respectively. In KK models, it is supposed
that aD-dimensional manifoldM undergoes a “spontaneous
compactification” [339—342]: M →M4 ×BD−4, where M4

is the four-dimensional external space-time and BD−4 is
a compact internal space. So it is natural to consider
cosmological consequences of such compactifications. With
this in mind, we shall investigate multidimensional cosmo-
logical models (MCM) with the topology

M = M0 ×M1 × ...×Mn, (3.1)
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where M0 denotes the (D0 = d0 + 1)-dimensional (usually d0 = 3) external
space-time and Mi (i = 1, ..., n) are di-dimensional internal spaces. To
make the extra dimensions unobservable at the present time these internal
spaces Mi have to be compact and reduced to scales near the Fermi length
LF ∼ 10−17 cm.

This scale is dictated by the level of energies achieved up to now in the
accelerators and which were less than 1TeV. In KK models, each type of parti-
cles of the Standard Model has infinite number of partners (the Kaluza—Klein
tower of massive states commonly referred to KK particles (see e.g. [343])) with
masses inversely proportional to the size of the internal space. KK particles
were not detected in all previous experiments. This result can be interpreted
in such a way that energies up to 1TeV were not enough to excite them.
In other words, the size of the internal spaces should be of the order or less
than (1TeV)−1 ∼ 10−17 cm. On the other hand, it was not also registered any
reaction where usual particles disappear in the extra dimensions. For consi-
dered models, it occurs if wavelength of these particles are bigger than the size
of the extra dimensions. In the case of TeV energy particles, their wavelength
is of order of LF. We again arrive at the indicated above restriction on the
size of the internal space. To discover the extra dimensions, it is necessary to
increase energies of accelerators.

Large Hadronic Collider in CERN should reach 14TeV. Therefore, if the
internal spaces have the Fermi length size, we shall detect them in this experi-
ment. Thus, in subsequent sections, we assume that scale factors ai of the
internal spaces should be of order or less of LF.

There is no problem in constructing compact spaces with a positive cur-
vature [344,345]. (For example, every Einstein manifold with constant positive
curvature is necessarily compact [346].) However, Ricci-flat spaces and negati-
ve curvature spaces also can be compact. This can be achieved by appropriate
periodicity conditions for the coordinates [347—351] or, equivalently, through
the action of discrete groups Γ of isometries related to face pairings and to the
manifold’s topology. For example, three-dimensional spaces of constant negati-
ve curvature are isometric to the open, simply connected, infinite hyperbolic
(Lobachevsky) spaceH3 [344,345]. However, there exist also an infinite number
of compact, multiply connected, hyperbolic coset manifolds H3/Γ, which can
be used for the construction of FRW metrics with negative curvature [347,
349]. These manifolds are built from a fundamental polyhedron (FP) in H3

with faces pairwise identified. The FP determines a tessellation of H3 into
cells that are replicas of the FP, through the action of the discrete group Γ
of isometries [349]. The simplest example of Ricci-flat compact spaces is gi-
ven by D-dimensional tori TD = RD/Γ. Thus internal spaces may have non-
trivial global topology, being compact (i.e. closed and bounded) for any sign
of spatial curvature.
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In the cosmological context, internal spaces can be called compactified,
when they are obtained by a compactification in the usual mathematical under-
standing (e.g. by replacements of the type RD → SD, RD → RD/Γ or HD →
→ HD/Γ) with additional contraction of the sizes to Fermi scale. There are a
number of interesting cosmological and astrophysical exact solutions (see, e.g.,
Refs. [352—367]). For the most of exact cosmological solutions, the internal
spaces have dynamical behavior (see section 3.6 below). However, the physical
constants that appear in the effective four-dimensional theory after dimensional
reduction of an originally higher-dimensional model are the result of integrati-
on over the extra dimensions. If the volumes of the internal spaces would
change, so would the observed constants (see Eq. (3.119) below). Because of
limitation on the variability of these constants (see the relevant discussion
in the subsequent sections), the internal spaces should be static or at least
slowly variable since the time of primordial nucleosynthesis and, as we mentio-
ned above, their sizes are of the order of the Fermi length. Obviously, such
compactifications have to be stable against small fluctuations of the sizes (the
scale factors ai) of the internal spaces. This means that the effective potenti-
al of the model obtained under dimensional reduction to a four-dimensional
effective theory should have minima at ai ∼ LF (i = 1, ..., n). These minima
play the role of the cosmological constant (dark energy!) in our effective four-
dimensional Universe.

Additionally, small excitations of a system near a minimum can be obser-
ved as massive scalar fields in the external space-time. These scalar fields
very weakly interact with the Standard Model (SM) particles. Therefore, they
belong to a class of the dark matter particles.

In the next section, we consider in detail the procedure of the dimensio-
nal reduction of KK models. Before that, it worthy to note that the idea of
the multidimensionality of our Universe has received a great deal of renewed
attention over the last few years within the “brane-world” description of the
Universe. In this approach the SU(3)× SU(2)× U(1) Standard Model fields,
related to usual four-dimensional physics, are localized on a three-dimensional
space-like hypersurface (brane) whereas the gravitational field propagates in
the whole (bulk) space-time. This approach is different from KK one and will
be the subject of the third part of our book.
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3.2. Dimensional reduction, stable
compactification, gravitational excitons,
effective cosmological constant
3.2.1. General setup
In this section we present a sketchy outline of the basics of

dimensional reduction and gravitational excitons. A more detailed description
can be found, e.g., in the papers [368—370].

Let us consider a multidimensional space-time manifold M with warped
product topology (3.1) and metric

g = gMN (X)dXM ⊗ dXN = g(0) +
n∑
i=1

e2βi(x)g(i), (3.2)

where x are some coordinates of the (D0 = 4)-dimensional manifold M0 and

g(0) = g(0)
µν (x)dxµ ⊗ dxν . (3.3)

Let further the internal factor manifolds Mi be di-dimensional warped
Einstein spaces with warp factors eβi(x) and metrics g(i) = g

(i)
mini(yi) dy

mi
i ⊗

⊗ dynii , i.e.,
Rmini

[
g(i)
]

= λig(i)
mini , mi, ni = 1, ..., di (3.4)

and R
[
g(i)
]

= λidi ≡ Ri. (3.5)

In the case of constant curvature spaces parameter λi are normalized as
λi = ki(di − 1) with ki = 0,±1. Let bi ≡ eβ

i and b(0)i ≡ eβ
i
0 denote the scales

factors of the internal spaces Mi at arbitrary and at present time. (Obviously,
to get scale factors in dimensional units, we must multiply them by the Planck
length LPl ∼ 10−33cm, e.g. b(0)i = LPle

βi0 .) Then the total volume of the
internal spaces at the present time is given by

VD′ ≡ VI × v0 ≡
n∏
i=1

∫
Mi

ddiy
√
|g(i)| ×

(
n∏
i=1

ediβ
i
0

)
= VI ×

n∏
i=1

bdi(0)i, (3.6)

where D′ =
∑n

i=1 di is the total number of the extra dimensions. The factor VI
is dimensionless and defined by geometry and topology of the internal spaces.
We also denote the deviations of the internal scale factors from their present
day values: β̃i = βi − βi0. (3.7)

For the demonstration of the dimensional reduction we consider a multi-
dimensional action with a bare D-dimensional cosmological constant Λ and a
minimal scalar field Φ:

S =
1

2κ2
D

∫
M

dDx
√
|g| {R[g]− 2Λ}+ Sm + SY GH ,

Sm = −1

2

∫
M

dDx
√
|g|
[
gMN∂MΦ∂NΦ + 2U(Φ)

]
,

(3.8)
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where κ2
D is aD-dimensional gravitational constant 1 and SY GH is the standard

York—Gibbons—Hawking boundary term [371, 372]. The field Φ itself can be
considered in its zero-mode approximation. This means that Φ and its potential
U(Φ) depend only on the coordinates of the external space, and the dimen-
sional reduction of the model can be performed by a simple integration over
the coordinates of the internal spaces. Moreover, we usually assume that Φ
depends only on time to be in concordance with the homogeneity and isotropy
of the Universe.

Scalar curvature of the metric (3.2) reads

R[g] = R[g(0)] +

n∑
i=1

e−2βiR[g(i)]−

−
n∑

i,j=1

(diδij + didj) g
(0)µν ∂β

i

∂xµ
∂βj

∂xν
− 2

n∑
i=1

di∆[g(0)]βi. (3.9)

where ∆[ḡ(0)] is the Laplace—Beltrami operator on M0:

∆[g(0)] =
1√
|g(0)|

∂

∂xµ

(√
|g(0)| g(0)µν ∂

∂xν

)
, (3.10)

Taking into account the relation

1

κ2
D

∫
M

dDx
√
|g|

n∑
i=1

di∆[g(0)]βi =

=
µ

κ2
D

n∑
i=1

di

∫
M0

dD0x
√
|g(0)|

n∏
l=1

edlβ
l 1√
|g(0)|

∂

∂xλ

(√
|g(0)| g(0)λν ∂

∂xν
βi
)

=

=
1

κ2
0

n∑
i=1

di

∫
M0

dD0x

[
∂

∂xλ

(√
|g(0)| g(0)λν

n∏
l=1

edlβ
l ∂

∂xν
βi

)
−

−
√
|g(0)| g(0)λν ∂β

i

∂xν

n∏
l=1

edlβ
l
n∑
j=1

dj
∂βj

∂xλ

]
=

= SY GH −
1

κ2
0

∫
M0

dD0x
√
|g(0)|

n∏
l=1

edlβ
l

n∑
i,j=1

didjg
(0)λν ∂β

i

∂xλ
∂βj

∂xν
, (3.11)

1 κ2
D is connected with the multidimensional fundamental mass scale MPl(D) and the

surface area SD−1 = 2π(D−1)/2/Γ[(D − 1)/2] of a unit sphere in D − 1 dimensions by the
relation

κ2
D = 2SD−1/M

D′+2
Pl(D) .
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the action (3.8) can be easily reduced to the following expression

S =
1

2κ2
0

∫
M0

dD0x
√
|g(0)|

n∏
i=1

ediβ̃
i

{
R
[
g(0)
]
−Gijg(0)µν∂µβ̃

i ∂ν β̃
j+

+

n∑
i=1

R̃ie
−2β̃i − 2Λ− g(0)µνκ2

D∂µΦ∂νΦ− 2κ2
DU(Φ)

}
, (3.12)

where the notations R̃i := Rie
−2βi0 , Gij = δijdi − didj are used. Here, D0-

dimensional gravitational constant κ2
0 ≡ 8πGN = 8π/M2

Pl(4) (GN is the
Newton gravitational constant andMPl(4) is the four-dimensional Planck mass)
is given as

κ2
0 = κ2

D/VD′ . (3.13)

Action (3.12) of the four-dimensional effective model is written in Brans—
Dicke frame, i.e., it has the form of a generalized Brans—Dicke theory. As next
step, we remove the explicit dilatonic coupling term in (3.12) by conformal
transformation

g(0)
µν = Ω2g̃(0)

µν :=

(
n∏
i=1

ediβ̃
i

)−2/(D0−2)

g̃(0)
µν (3.14)

and obtain the effective action in the Einstein frame

S =
1

2κ2
0

∫
M0

dD0x
√
|g̃(0)|

{
R̃
[
g̃(0)
]
− Ḡij g̃(0)µν∂µβ̃

i ∂ν β̃
j−

− g̃(0)µνκ2
D∂µΦ∂νΦ− 2Ueff

}
. (3.15)

The tensor components of the midisuperspace metric (target space metric
on RnT ) Ḡij (i, j = 1, ..., n), its inverse metric Ḡij and the effective potential
are given as

Ḡij = diδij +
1

D0 − 2
didj , Ḡij =

δij

di
+

1

2−D
(3.16)

and

Ueff [β̃,Φ] =

(
n∏
i=1

ediβ̃
i

)− 2
(D0−2)

[
−1

2

n∑
i=1

R̃ie
−2β̃i + Λ + κ2

DU(Φ)

]
. (3.17)

It is obvious that the internal spaces can stabilize if the effective potential
(3.17) has at least one minimum with respect to the scale factors β̃i. Because
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the conformal transformation (3.14) was performed only with respect to the
external metric g(0), the stability of the internal space configurations does
not depend on the concrete choice of the frame (Einstein or Brans—Dicke).
In general, the effective potential Ueff can have more than one minimum so
that transitions between these minima should be possible. In the following we
consider models with the internal space scale factors localized at their present
day values: β̃i = 0, ∂Ueff/∂β̃

i
∣∣∣
β̃i=0

= 0.

With the help of a regular coordinate transformation ψ = Qβ, β = Q−1ψ
midisuperspace metric (target space metric) Ḡ can be transformed to a pure
Euclidean form: κ−2

0 Ḡijdβ
i ⊗ dβj = σijdψ

i ⊗ dψj =
∑n

i=1 dψ
i ⊗ dψi, σ =

= diag (+1,+1, ...,+1). An appropriate transformation to normal modes ψj =

= Qjiβ
i can be found e.g. in [369]. In the special case of only one internal space

(n = 1), this procedure reduces to a simple rescaling 2

β̃1 = −κ0

√
D0 − 2

d1(D − 2)
ψ1, (3.18)

It is usually assumed that metric g̃(0) in action (3.15) is the Friedmann—
Robertson—Walker one. Then, the dynamics of scale factor and scalar fields
for arbitrary form of potential Ueff can be described with the help of numeri-
cal calculation of the system of the first order ordinary differential equations
(ODEs) (A.13)—(A.16).

Below, we show that the stabilization of the internal spaces in model with
the minimal coupled scalar field takes place if scalar field is in its minimum
position Φ0 too. For small fluctuations of the normal modes and scalar field in
the vicinity of the minimum of the effective potential, action (3.15) reads

S =
1

2κ2
0

∫
M0

dD0x
√
|g̃(0)|

{
R̃
[
g̃(0)
]
− 2Λeff

}
−

− 1

2

∫
M0

dD0x
√
|g̃(0)|

{
n∑
i=1

(
g̃(0)µνψi,µψ

i
,ν +m2

iψ
iψi
)

+ g̃(0)µνφ,µφ,ν +m2
φφφ

}
,

(3.19)
where Λeff ≡ Ueff(β̃i = 0,Φ = Φ0) plays the role of a D0-dimensional effective
cosmological constant, m2

i and m
2
φ are mass squared of the normal modes and

scalar field, respectively, and for convenience we use the normalizations for

2 The relation between β̃1 and ψ1 is determined up to sign. For definiteness, we chose
the minus sign.
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scalar field fluctuations:
√
VD′(Φ− Φ0) ≡ φ. In the case of one internal space

m2
1 =

D0 − 2

d1(D − 2)

∂2Ueff

∂(β̃1)
2

∣∣∣∣∣
β̃1=0,Φ=Φ0

. (3.20)

Summarizing this section, we conclude that conformal zero-mode excitati-
ons of the internal factor spaces Mi have the form of massive scalar fields
developing on the background of the external space-time M0. In analogy
with excitons in solid state physics (excitations of the electronic subsystem
of a crystal), we called these conformal excitations of the internal spaces
gravitational excitons [369]. Later, since Refs. [373,374] these geometrical mo-
duli excitations are also known as radions. Within the framework of multi-
dimensional cosmological models such excitations were investigated in [375—
378]. Obviously, positive Λeff plays the role of the dark energy in our Uni-
verse and weakly interacting gravexcitons form the dark matter (see the
following sections).

Now we consider some specific examples of stable compactification.

3.2.2. Stable compactification
with minimal scalar fields

This model is described by effective action (3.15). It is clear
now that stabilization of the internal spaces can be achieved if the effective
potential Ueff (3.17) has a minimum with respect to fields β̃i (or fields ψi). Let
us find conditions which ensure a minimum at β̃i = 0.

The extremum condition yields:

∂Ueff

∂β̃k

∣∣∣∣
β̃i=0

= 0 =⇒ R̃k = − dk
D0 − 2

(
n∑
i=1

R̃i − 2(Λ + κ2
DU(Φ))

)
. (3.21)

The left-hand side of this equation is a constant but the right-hand side is
a dynamical function. Thus, stabilization of the internal spaces in such type of
models is possible only when the effective potential has also a minimum with
respect to the scalar field Φ (in Ref. [379] it was proved that for this model the
only possible solutions with static internal spaces correspond to the case when
the minimal coupled scalar field is in its extremum position too). Let Φ0 be
the minimum position for field Φ. From the structure of the effective potential
(3.17) it is clear that minimum positions of the potentials Ueff [β̃,Φ] and U(Φ)
with respect to field Φ coincide with each other:

∂Ueff

∂Φ

∣∣∣∣
Φ0

= 0⇐⇒ ∂U(Φ)

∂Φ

∣∣∣∣
Φ0

= 0. (3.22)
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Hence, we should look for parameters which ensure a minimum of Ueff at the
point β̃i = 0,Φ = Φ0. Eqs. 3.21 show that there exists a fine tuning condition
for the scalar curvatures of the internal spaces:

R̃k
dk

=
R̃i
di
, (i, k = 1, ..., n). (3.23)

Introducing the auxiliary quantity

Λ̃ ≡ Λ + κ2
DU(Φ)

∣∣
Φ0
, (3.24)

we get the useful relations

Λeff := Ueff

∣∣∣∣
β̃i=0,Φ=Φ0

=
D0 − 2

D − 2
Λ̃ =

D0 − 2

2

R̃k
dk
, (3.25)

which show that signΛeff = sign Λ̃ = signRk. As we already mentioned above,
Λeff plays the role of an effective cosmological constant in the external space-
time. For the masses of the normal mode excitations of the internal spaces
(gravitational excitons) and of the scalar field near the extremum position we
obtain respectively [369]:

m2
1 = ... = m2

n = − 4Λeff

D0 − 2
= −2

R̃k
dk

> 0,

m2
Φ :=

d2U(Φ)

dΦ2

∣∣∣∣
Φ0

.

(3.26)

These equations show that for our specific model a global minimum can
only exist in the case of compact internal spaces with negative curvatureRk < 0
(k = 1, ..., n). The effective cosmological constant is negative also: Λeff < 0.
Obviously, in this model it is impossible to trap the internal spaces at a mini-
mum of Ueff if they are tori (R̃i = 0) because for Ricci-flat internal spaces the
effective potential has no minimum at all. Equations (3.25) and (3.26) show
also that a stabilization by trapping takes place only for Λ̃ < 0. This means
that the minimum of the scalar field potential should be negative U(Φ0) < 0
for non-negative bare cosmological constant Λ ≥ 0 or it should satisfy inequali-
ty κ2

DU(Φ0) < |Λ| for Λ < 0. In paper [376], it is shown a possibility of the
early inflation in this model. However, because of the negative sign of Λeff ,
the configurations with stabilized extra dimensions do not provide a late-time
acceleration of our Universe in the model with minimal scalar field. This confi-
gurations are asymptotically anti-De Sitter. Therefore, there is no dark energy
in this model. To get dark energy, it is necessary to include additional matter. It
may shift a minimum of the effective potential from negative to positive values.
Different forms of matter can be described with the help of a perfect fluid.
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3.2.3. Perfect fluid: no-go theorem

In conventional cosmology matter fields are taken into ac-
count in a phenomenological way as a perfect fluid with equal pressure in
all three spatial directions. It provides homogeneous (if energy density and
pressure depends only on time) and isotropic picture of the Universe. In mul-
tidimensional case we generalize this approach to a m-component perfect fluid
with energy-momentum tensor [355,356,360,362]

TMN =
m∑
c=1

T (c)M

N , (3.27)

T (c)M

N = diag (−ρ(c)(τ), P
(c)
0 (τ), ..., P (c)

0 (τ)︸ ︷︷ ︸
d0 times

, ..., P (c)
n (τ), ..., P (c)

n (τ)︸ ︷︷ ︸
dn times

). (3.28)

The conservation equations we impose on each component separately

T (c)M

N ;M = 0. (3.29)

To investigate dynamical behavior of our Universe and internal spaces for
a model with such perfect fluid, the metric (3.2) should be also written in
homogeneous form:

g = g (0)(x) +

n∑
i=1

e2βi(τ)g(i)(y) ≡

≡ −e2γ(τ)dτ ⊗ dτ + e2β0(τ)q(0)(~x) +
n∑
i=1

e2βi(τ)g(i)(y), (3.30)

where q(0) is a metric of the constant curvature space: R
[
q(0)
]

= kd0(d0 − 1)
with k = 0,±1. The choice of the function γ(τ) defines different gauges, e.g.
the synchronous time gauge γ = 0 or the conformal time gauge γ(τ) = β0(τ),
etc. In what follows, we use the notations a ≡ eβ0 and bi ≡ eβ

i
(i = 1, ..., n) to

describe scale factors of the external and internal spaces, respectively.
Denoting by an overdot differentiation with respect to time τ , the

conservation equations (3.29) for the tensors (3.28) read

ρ̇(c) +
n∑
i=0

diβ̇
i
(
ρ(c) + P

(c)
i

)
= 0. (3.31)

If the pressures and energy density are related via equations of state

P
(c)
i =

(
α

(c)
i − 1

)
ρ(c), i = 0, ..., n, c = 1, ...,m, (3.32)

142



3.2. Dimensional reduction

then Eq. (3.31) has the simple integral

ρ(c)(τ) = A(c)a−d0α
(c)
0 ×

n∏
i=1

b
−diα

(c)
i

i , (3.33)

where A(c) is the constant of integration.
To investigate the problem of the stable compactification, it is helpful to

use the equivalence between the Einstein equations and the Euler—Lagrange
equations for Lagrangian obtained by dimension reduction of the action (3.8)
with

Sm = −
∫
M

dDx
√
|g|ρ, (3.34)

where ρ is given by Eq. (3.33) (see [355, 356, 360, 362] for details). This equi-
valence takes place for homogeneous model (3.30). However, we can generali-
ze it to the inhomogeneous case allowing inhomogeneous fluctuations β̃i(x)
(i = 1, ..., n) over stably compactified background βi0 = const (see Eq. (3.7)).
It can be easily seen that the dimensional reduction of action (3.8) with the
matter term (3.34) results in effective theory (3.15) (where we should drop the
scalar field) with the effective potential

Ueff =

(
n∏
i=1

ediβ̃
i

)−2/(D0−2) [
−1

2

n∑
i=1

R̃ie
−2β̃i + ΛD + κ2

D

m∑
c=1

ρ(c)

]
, (3.35)

where ρ(c) is defined by Eq. (3.33). If we suppose that the external space-time
metric in the Einstein frame has also FRW form:

g̃(0) = Ω−2g(0) = g̃(0)
µν dx

µ ⊗ dxν := −e2γ̂dτ̂ ⊗ dτ̂ + e2β̂0(x)q(0), (3.36)

which results in the following connection between the external scale factors in
the Brans—Dicke frame a ≡ eβ0 and in the Einstein frame ã ≡ eβ̂0 :

a =

(
n∏
i=1

ediβ̃
i

)−1/(D0−2)

ã, (3.37)

then, expression (3.33) for ρ(c) can be rewritten in the form:

κ2
Dρ

(c) = κ2
0ρ

(c)
(d0)

n∏
i=1

e−ξ
(c)
i β̃i , (3.38)

where
ρ

(c)
(d0) = Ã(c)ã−d0α

(c)
0 , Ã(c) = A(c)VI

n∏
i=1

b
di(1−α

(c)
i )

(0)i (3.39)
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and
ξ

(c)
i = di

(
α

(c)
i −

α
(c)
0 d0

d0 − 1

)
. (3.40)

It can be easily verified that Ã(c) has dimension cmd0α
(c)
0 −D0 .

Thus, the problem of stabilization of the extra dimensions is reduced now
to search of minima of the effective potential Ueff with respect to the fluc-
tuations β̃i:

∂Ueff

∂β̃k

∣∣∣∣
β̃=0

= 0,

implying

R̃k = − dk
D0 − 2

[
n∑
i=1

R̃i − 2ΛD

]
+ κ2

0

m∑
c=1

ρ
(c)
(d0)

(
ξ

(c)
k +

2dk
D0 − 2

)
, k = 1, ..., n.

(3.41)
The left-hand side of this equation is a constant but the right-hand side
is a dynamical function because of dynamical behavior of the effective d0-
dimensional energy density ρ

(c)
(d0). Thus, we arrived at the following no-go

theorem [380]:

Multidimensional cosmological Kaluza—Klein models with the perfect fluid
as a matter source do not admit stable compactification of the internal spaces
with exception of two special cases:

I. α
(c)
0 = 0, ∀ α(c)

i , i = 1, ..., n, c = 1, ...,m. (3.42)

II. ξ
(c)
i = − 2di

d0 − 1
=⇒


α

(c)
0 =

2

d0
+
d0 − 1

d0
α(c),

α
(c)
i = α(c), i = 1, ..., n, c = 1, ...,m.

(3.43)

First case corresponds to vacuum in the external space ρ(c)
(d0) = Ã(c) = const and

arbitrary equations of state in the internal spaces. Some bulk matter can mimic
such behavior, e.g. vacuum fluctuations of quantum fields (Casimir effect) [369,
381], monopole form fields [369,378] and gas of branes [382].

In the second case, the energy density in the external space is not a
constant but a dynamical function with the following behavior:

ρ
(c)
(d0)(ã) = Ã(c) 1

ã2+(d0−1)α(c)
=⇒ ρ

(c)
(3) = Ã(c) 1

ã2(1+α(c))
. (3.44)

The corresponding equation of state is:

P
(c)
(d0) = (1/3)(2α(c) − 1)ρ

(c)
(d0) =⇒ P

(c)
(3) = (α

(c)
0 − 1)ρ

(c)
(3), (3.45)

It can be easily seen from Eq. (3.38) that in the case of stabilized internal
spaces (i.e. β̃i = 0) ρ(c)

(d0) = ρ(c)VD′ where the internal space volume VD′ is

defined in Eq. (3.6). Similar relation takes place for P (c)
(d0) and P

(c)
0 : P (c)

(d0) =
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= P
(c)
0 VD′ . Therefore, second case corresponds to ordinary matter in our three-

dimensional space. For example, for d0 = 3, besides the exotic case of gas of
cosmic strings with α(c) = 0, the choice α(c) = 1/2 provides dust in our space:
α

(c)
0 = 1 → P

(c)
(3) = 0 and equation of state α(c)

i = 1/2 → P
(c)
i = −(1/2)ρ(c)

in the internal spaces. It is worth noting that these equations are exactly the
black string/branes equations of state (see section 3.7).

It is clear that the cases I and II are the necessary but not sufficient
conditions for stabilization. As we shall show below, stability is ensured by the
matter from the first case with a proper choice of the parameters of models.
The matter related to the second case provides the standard evolution of the
Universe and does not spoil the stabilization.

The no-go theorem (the case II) clearly shows that the condition of the
internal space stabilization requires the violation of symmetry (in terms of
equations of state) between our three dimensions and the extra dimensions.
The need for such a violation is especially seen in the example of radiation.
It is well known that radiation satisfies the equation of state P = (1/3)ρ.
If we assume equality of all dimensions and allow light to move around all
multidimensional space, then equation of state will be P = (1/D)ρ, which
apparently contradicts the observations for D > 3. Therefore, radiation should
not move in the extra dimensions. Exactly this situation we have in case II.
If we take α(c) = 1, then we obtain the usual equation of state for radiation
in our Universe α(c)

0 = 4/3→ P
(c)
(3) = (1/3)ρ

(c)
(3) and dust in the internal space:

α
(c)
i = 1 → P

(c)
i = 0. The latter means that the light does not move in the

extra dimensions. Such situation is realized if light is localized on a brane [383].

3.2.4. Conventional cosmology
from multidimensional models

Now, we want to present toy models with stabilized internal
spaces and the standard Friedmann-like behavior of the external space (our
Universe). These models give a possibility to demonstrate the typical problems
of KK multidimensional cosmological models.

Dark energy from extra dimensions: fine tuning problem. Let us
consider a model where multicomponent perfect fluid is the combination of the
cases I and II. To be more precise, additionally to the the perfect fluid of the
type II, we endow our model with the monopole form fields [369,378]:

Sm = −1

2

∫
M

dDx
√
|g|

n∑
i=1

1

di!

(
F (i)
)2

= −
∫
M

dDx
√
|g|

n∑
i=1

f2
i

b2dii

, (3.46)

where fi ≡ const are arbitrary constants of integration (free parameters of
the model) and for real form fields f2

i > 0 (see, e.g., Eqs. (3.199)—(3.202)).
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Comparison of this expression with Eqs. (3.34) and (3.33) shows that such
monopole form fields are equivalent to n-component perfect fluid with α(c)

0 = 0,

α
(c)
i = 2δci , c, i = 1, ..., n, i.e. belong to the case I.

Without loss of generality, we can perform our analysis in the case of one
internal space n = 1. Then, the effective potential (3.35) for such combined
model undergoes the following separation:

Ueff =
(
ed1β̃1

)−2/(D0−2)
[
−1

2
R̃1e

−2β̃1
+ ΛD + f̃2

1 e
−2d1β̃1

]
︸ ︷︷ ︸

Uint(β̃1)

+κ2
0

m∑
c=1

ρ
(c)
(d0)(ã)︸ ︷︷ ︸

Uext(ã)

,

(3.47)

where ρ(c)
(d0)(ã) is defined by Eq. (3.44) and f̃2

1 ≡ κ2
Df

2
1 /b

2d1

(0)1. These two terms
Uint(β̃

1) and Uext(ã) depend only on scale factors of the internal and external
spaces, respectively. Therefore, the first term is responsible for the internal
space stabilization due to its minimum and the second term provides the
Friedmann-like behavior of the external space.

First, we investigate the problem of stable compactification of the internal
space. It is clear that such stabilization for our model takes place if potential
Uint has a minimum with respect to the fluctuation field β̃1:

∂Uint

∂β̃1

∣∣∣∣
β̃1=0

= 0 =⇒ D − 2

2d1
R̃1 = ΛD + d0f̃

2
1 . (3.48)

The value of this potential at the minimum plays the role of the effective
four-dimensional cosmological constant:

Λeff := Uint|β̃1=0 = −1

2
R̃1 + ΛD + f̃2

1 . (3.49)

With the help of the extremum condition (3.48), Λeff can be written in the
form

Λeff =
D0 − 2

2d1
R̃1 − (D0 − 2)f̃2

1 = (3.50)

=
D0 − 2

D − 2
ΛD −

(
d0d1

D − 2
− 1

)
f̃2

1 = (3.51)

=
d0 − 1

d0
ΛD −

1

2

(
1− D − 2

d0d1

)
R̃1. (3.52)
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Second derivative of Uint in the extremum position reads

∂2Uint

∂β̃1
2

∣∣∣∣∣
β̃1=0

= −2

(
D − 2

D0 − 2

)2

R̃1 +

(
2d1

D0 − 2

)2

ΛD +

(
2d0d1

D0 − 2

)2

f̃2
1 = (3.53)

=
4

D0 − 2

[
−1

2
(D − 2)R̃1 + 4d0d

2
1f̃

2
1

]
= (3.54)

=
4d1

(D0 − 2)2

[
−(D0 − 2)ΛD + (D − 2)d0

(
d0d1

D − 2
− 1

)
f̃2

1

]
= (3.55)

=
4

(D0 − 2)2

[
−d2

1(d0 − 1)ΛD +
1

2
(D − 2)2

(
d0d1

D − 2
− 1

)
R̃1

]
. (3.56)

For stable compactification, this extremum should be a minimum. Then,
small fluctuations above it describe minimal scalar field (gravitational excitons
[369]) propagated in the external space with the mass squared

m2
1 ≡

D0 − 2

d1(D − 2)

∂2Uint

∂β̃1
2

∣∣∣∣∣
β̃1=0

> 0. (3.57)

Additionally, the effective four-dimensional cosmological constant should be
positive Λeff > 0. This is the necessary condition for the late time acceleration
of the Universe in considered model. Both of these conditions (the positiveness
of Λeff and m2

1) lead to the following inequalities

d1f̃
2
1 <

1

2
R̃1 <

4d0d1

D − 2
× d1f̃

2
1 , (3.58)

D − 2

D0 − 2

(
d0d1

D − 2
− 1

)
f̃2

1 < ΛD < d0 ×
D − 2

D0 − 2

(
d0d1

D − 2
− 1

)
f̃2

1 , (3.59)

1

2

D − 2

d1(d0 − 1)

(
d0d1

D − 2
− 1

)
R̃1 < ΛD <

D − 2

d1
× 1

2

D − 2

d1(d0 − 1)

(
d0d1

D − 2
− 1

)
R̃1.

(3.60)

The inequality on the left-hand side follow from the condition Λeff > 0
applied to Eqs. (3.50)—(3.52), whereas the inequalities on the right-hand side
follow from the minimum condition m2

1 > 0 applied to Eqs. (3.54)—(3.56).
Thus, for the most reasonable case f̃2

1 > 0 of the real form field we get R̃1,
ΛD > 0. It can be easily seen that the case f̃2

1 = 0 results in negative effective
cosmological constant [384]. To shift it to non-negative values we introduced
the real form fields.

According to the present day observations, our Universe undergoes the
late time accelerating expansion due to dark energy. The origin of the dark
energy is the great challenge of the modern theoretical physics and cosmology.
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The cosmological constant is one of the most probable candidate for it. The
observations give ΛDE ∼ 10−123ΛPl(4) ∼ 10−57 cm−2. Let us estimate now
a possibility for our effective cosmological constant to admit this quantity:
Λeff ∼ ΛDE ∼ 10−57 cm−2.

As we noted in section (3.1), in KK models the size of the extra dimensions
at present time should be of the order or less than b(0)1 ∼ 10−17 cm ∼ 1TeV−1.
In the case of the upper limit b(0)1 ∼ 10−17 cm, we get R̃1 ∼ b−2

(0)1 ∼ 1034 cm−2.
On the other hand, inequalities (3.58)—(3.60) show that R̃1, ΛD and f̃2

1

are of the same order of magnitude, i.e. R̃1 ∼ ΛD ∼ f̃2
1 ∼ 1034 cm−2, and

have the same sign. Thus, these parameters should be extremely fine tuned
(in Eq. (3.49)) to compensate each other in such a way that to leave only
10−57 cm−2. One of possibilities to avoid this problem consists in inclusion
of different form fields/fluxes which may result in a big number of minima
(landscape) [385] with sufficient large probability to find oneself in a dark
energy minimum.

It is clear that extreme fine tuning has arisen because of two extremely
different scales present in the model, namely Λeff ∼ 10−57 cm−2 and R̃1 ∼
∼ 1034 cm−2. We can avoid this problem by removing one of the scales (or
both of them). Let us consider these possibilities.

(i) R̃1 = Λeff = 0 This case does not work because Eqs. (3.48) and (3.49)
contradict each other for d0 > 1.

(ii) R̃1 6= 0, Λeff = 0 Here, R̃1 = 2d1f̃
2
1 and ΛD = (d1− 1)f̃2

1 . Hence, R̃1 ∼
∼ ΛD ∼ f̃2

1 . Additionally, condition m2
1 > 0 requires that these parameters are

positive. Therefore, if b(0)1 ∼ 10−17 cm ∼ 1TeV−1, then we obtain the physi-
cally reasonable result that all parameters in this model are of the TeV scale,
e.g. m1 ∼ 1TeV. Unfortunately, the condition Λeff = 0 makes it impossible to
solve the problem of dark energy.

(iii) R̃1 = 0, Λeff > 0 Here, ΛD = −2d0f̃
2
1 and Λeff = −(d0 − 1)f̃2

1 =

= [(d0 − 1)/d0]ΛD which result in conditions ΛD > 0, f̃2
1 < 0 for Λeff > 0.

However, the condition m2
1 > 0 requires the opposite inequalities: ΛD < 0,

f̃2
1 > 0. Therefore, we arrive at a contradiction. Nevertheless, models with
Ricci-flat (R̃1 = 0) internal spaces are not excluded. For example, this space
can be an orbifold with branes in fixed points [386]. This model is investigated
in the next section.

Now, we turn to the dynamical behavior of the external factor space. We
consider zero order approximation, when all excitations are frozen out (or heavy
enough to decay long before the present time 3). Because our Universe (external

3 Gravexcitons with masses m1 ∼ 1TeV decay (e.g. due to reaction ψ → 2γ) before
primordial nucleosynthesis and they do not contradict the observational data [387,388] (see
section 3.4.3). Therefore, in this case the effective potential contributes in the form of the
effective cosmological constant (3.49).
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space) is homogeneous and isotropic, functions γ̂ and β̂0 depends only on time:
γ̂ = γ̂(τ̂) and β̂0 = β̂0(τ̂). Then, the action functional (3.15) (without scalar
field and for the effective potential (3.47)) after dimensional reduction reads:

S =
1

2κ2
0

∫
M0

dD0x
√
|g̃(0)|

{
R̃
[
g̃(0)
]
− 2Ueff

}
=

=
V0

2κ2
0

∫
dτ̂

{
eγ̂+d0β̂0

e−2β̂0
R[q(0)] + d0(1− d0)e−γ̂+d0β̂0

(
dβ̂0

dτ̂

)2

−

− 2eγ̂+d0β̂0

(
Λeff + κ2

0

m∑
c=1

ρ
(c)
(d0)

)}
+

V0

2κ2
0

d0

∫
dτ̂

d

dτ̂

(
e−γ̂+d0β̂0 dβ̂0

dτ̂

)
, (3.61)

where V0 :=
∫
M0

dd0x
√
|q(0)| is the volume of the external space, ρ(c)

(d0) is defined
by Eq. (3.44) and usually R[q(0)] = kd0(d0 − 1), k = ±1, 0. The constraint
equation ∂L/∂γ̂ = 0 in the synchronous time gauge γ̂ = 0 yields(

1

ã

dã

dt̃

)2

= − k

ã2
+

2

d0(d0 − 1)

(
Λeff + κ2

0

m∑
c=1

ρ
(c)
(d0)(ã)

)
, (3.62)

which results in

t̃+ const =

∫
dã[

−k +
2Λeff

d0(d0 − 1)
ã2 +

2κ2
0

d0(d0 − 1)

m∑
c=1

Ã(c)

ã(d0−1)α(c)

]1/2
,

=

∫
dã[

−k +
Λeff

3
ã2 +

κ2
0

3

m∑
c=1

Ã(c)

ã2α(c)

]1/2
, (3.63)

where in the last line we put d0 = 3.
Thus in zero order approximation we arrived at a Friedmann model in

the presence of positive cosmological constant Λeff > 0 and a multicomponent
perfect fluid. It is assumed that Λeff defines dark energy observed now. The
perfect fluid has the form of a dust for α(c) = 1/2 and radiation for α(c) = 1.

There is also a possibility for a primordial inflation. For this purpose we can
consider one component perfect fluid with α(1) < 0, e.g. α(1) = −1/2⇒ α

(1)
0 =

= 1/3 which describes a frustrated network of domain walls in the external
space. It is well known that such perfect fluid results in acceleration of the
Universe. The flat Universe (k = 0) in the case α(1)

0 = 1/3 undergoes the
power law inflation at early times: ã ∼ t̃2. If domain walls decay into ordinary
matter, then the described above Friedmann-like scenario follows the inflation.
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Dark energy in the universal extra dimension models. In this secti-
on, to avoid the fine tuning problem, we consider Ricci-flat internal spaces. In
this case scalar curvatures of the internal spaces are absent and there is no need
for extreme fine tuning of the parameters to get the observable dark energy.

Among such models, Universal extra dimension models (UED) are of speci-
al interest [386]. Here, the internal spaces are orbifolds 4 with branes in fixed
points. The compactification of the extra dimensions on orbifolds has a number
of very interesting and useful properties, e.g. breaking (super)symmetry and
obtaining chiral fermions in four dimensions (see, e.g., paper by H.-C. Cheng
at al in [386]). The latter property gives a possibility to avoid famous no-go
theorem of KK models (see e.g. [389]).

In UED models, the Standard Model fields are not localized on the brane
but can move in the bulk. Branes in fixed points contribute in action functional
(3.8) in the form: ∑

fixed
points

∫
d4x
√
g(0)(x)Lb

∣∣∣∣
fixed
point

, (3.64)

where g(0)(x) is induced metric (which for our geometry (3.2) coincides with
the metric of the external space-time in the Brans—Dicke frame) and Lb is the
matter Lagrangian on the brane. In what follows, we consider the case where
branes are characterized by their tensions Lb(k) = −τ(k), k = 1, 2, ...,m and m
is the number of branes.

After conformal transformation (3.14), the action (3.64) reads

1

2κ2
0

∫
d4x
√
g̃(0)(x)

(
n∏
i=1

ediβ̃
i

)−2/(D0−2)[
−2κ2

0

m∑
k=1

τ(k)

n∏
i=1

e−diβ̃
i

]
. (3.65)

The comparison of this expression with Eqs. (3.33) and (3.35) shows that
branes contribute in the effective potential in the form of one component perfect
fluid (c = 1) with equations of state: α(1)

0 = 0, α
(1)
i = 1, i = 1, ..., n, i.e., from

the case I of the no-go theorem. It means that they contribute only to the Uint:

Uint =
(
ed1β̃ 1

)−2/(D0−2)[
ΛD + f̃2

1 e
−2d1β̃ 1 − λe−d1β̃ 1

]
, (3.66)

where we consider the case of one internal space i = 1 and introduce notation
λ ≡ −κ2

0

∑m
k=1 τ(k).

Obviously, the internal space is stabilized if potential (3.66) has a minimum
with respect to β̃ 1. The extremum condition reads:

∂Uint

∂β̃ 1

∣∣∣∣
β̃ 1=0

= 0 =⇒ d1D0

D0 − 2
λ =

2d1

D0 − 2
ΛD +

2d1(D0 − 1)

D0 − 2
f̃2

1 . (3.67)

4 For example, S1/Z2 and T 2/Z2 which represent circle and square folded onto them-
selves due to Z2 symmetry.

150



3.2. Dimensional reduction

The value of this potential at the minimum plays the role of effective four-
dimensional cosmological constant:

Λeff := Uint|β̃ 1=0 = ΛD + f̃2
1 − λ > 0, (3.68)

which we assume to be positive. For the mass of gravexcitons we obtain:

m2
1 ∼

∂2Uint

∂β̃1
2

∣∣∣∣∣
β̃ 1=0

=

(
2d1

D0 − 2

)2

ΛD+

+

(
2d1(D0 − 1)

D0 − 2

)2

f̃2
1 −

(
d1D0

D0 − 2

)2

λ > 0. (3.69)

It can be easily seen from condition (3.67) and inequality (3.68) that
all three parameters are positive: f̃2

1 ,ΛD, λ > 0. Thus, from λ > 0 follows
that summarized tensions of branes should be negative. Taking into account
inequality (3.69), it can be easily verified that all these parameters have the
same order of magnitude:

f̃2
1 ∼ ΛD ∼ λ ∼ Λeff ∼ m2

1. (3.70)

Therefore, there is no need for fine tuning of parameters to obtain the
observable value of dark energy. To get it, it is sufficient to suppose that all
these parameters, including Λeff , are of the order of ΛDE ∼ 10−123ΛPl(4) ∼
∼ 10−57 cm−2. However, it is natural to assume that parameters of the model
have the same order of magnitude. On the other hand, our model does not
answer why this value is equal to 10−123LPl. According to the anthropic
principle, it takes place because human life is possible only at this value of
dark energy.

If we assume that our parameters are defined by ΛDE ∼ 10−123 ΛPl(4), then
we get for the gravexciton masses m1 ∼ 10−33 eV ∼ 10−61MPl(4). These ultra-
light particles have a period of oscillations t ∼ 1/m1 ∼ 1018 sec (see section
3.4.2) which is of the order of the Universe age. So, up to now these cosmologi-
cal gravexcitons did not start to oscillate but slowly move to the position of
minimum of the effective potential. In this case it is hardly possible to speak
about stabilization of the internal space (the effective potential Uint is too
flat) and we arrive at the problem of the fundamental constant variations (see
section 3.4.4).

Of course, this problem is absent for gravexcitons with sufficiently large
masses. For example, we can put m1 ∼ 1TeV. Then, as it follows from (3.69),
ΛD, f̃

2
1 , λ ∼ m2

1 ∼ 1TeV2 and to get observable dark energy Λeff ∼ ΛDE ∼
∼ 10−123M2

Pl(4) ∼ 10−91 TeV2 the parameters ΛD, f̃
2
1 , λ should be extremely

fine tuned each other.
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Similarly to the previous section, we can avoid this problem, if we give up
the dark energy in this model: Λeff = 0. In this case we get ΛD = f̃2

1 = λ/2
and m2

1 = 2d2
1ΛD. Thus, if we naturally assume that ΛD ∼ 1TeV, then all

parameters of the model (including m1) are of the TeV scale, which is physi-
cally reasonable.

Thus, the two previous sections demonstrate the typical problems of the
KK models, when we want to both stabilize the internal spaces and to solve
the problem of dark energy. Either we are faced with an extremely fine tuning
of parameters or the effective potential is very flat, which leads to the problem
of variation of fundamental constants.

3.3. Abelian gauge fields
in KK models, dimensional reduction

In the section 3.2.1 we have shown that conformal zero-mode
excitations of the internal factor spacesMi have the form of massive scalar fields
(gravexcitons/radions) developing on the background of the external space-
timeM0 i.e. in our Universe. It is of interest to consider the interaction of these
scalar particles with fields from the Standard Model. In this section, we study
the interaction of gravitational excitons with Abelian gauge fields, and in parti-
cular with the standard electromagnetic field of U(1)EM symmetry. Strictly
speaking, the photon will not exist as a separate gauge boson at temperatures
higher than the electroweak scale MEW ∼ 246GeV where the full electroweak
SU(2) × U(1) model should be considered. Nevertheless, our results should
reproduce the correct coupling term between the gravexciton sector and the
EM gauge field sector of the theory. In the next section we will use this coup-
ling term for estimating the strength of cosmological and astrophysical effects
related to the corresponding interaction channel.

In order to derive the concrete form of the coupling term in the dimensi-
onally reduced, four-dimensional effective theory, we start from the simplified
toy model ansatz

SEM = −1

2

∫
M

dDX
√
|g|FMNF

MN , (3.71)

where the gauge field is assumed Abelian also in the higher-dimensional setup.
Additionally, we work in the zero mode approximation for these fields, i.e.
we keep only the zero modes of the harmonic expansion in mass eigenstates
of the higher-dimensional fields 5, [391, 392]. In this case, the Abelian vector
potential depends only on the external coordinates, AM = AM (x), (M =
= 1, ..., D), and the corresponding non-zero components of the field strength

5 The excitation of Kaluza—Klein modes of Abelian gauge fields was considered, e.g., in
Ref. [390].
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tensor are Fµν = ∂µAν − ∂νAµ, (µ, ν = 1, ..., D0) and Fµmi = ∂µAmi−∂miAµ =
= ∂µAmi , (mi = 1, ..., di; i = 1, ..., n).

Dimensional reduction of the gauge field action (3.71) yields

SEM = −1

2

∫
M0

dD0x
√
|g(0)|

n∏
i=1

ediβ̃
i×

×

{
FµνF

µν + 2g(0)µν
n∑
i=1

e−2β̃i(x)ḡ(i)mini∂µAmi∂νAni

}
, (3.72)

where we introduced the metric integral

ḡ(i)mini :=
1

Vdi

∫
Mi

ddiy
√
|g(i)|g(i)mini(yi) (3.73)

and included the factor
√
VD′ into AM for convenience:

√
VD′AM → AM . Due

to this redefinition, the field strength tensor Fµν acquires the usual dimensi-
onality cm−D0/2 (in geometrical units ~ = c = 1). In Eq. (3.72) we assumed
Fµν = g(0)µκg(0)νδFκδ.

It is easily seen that the Ami components play the role of scalar fields
in the D0-dimensional space-time. In what follows, we will not investigate
the dynamics of these fields. Instead, we will concentrate on the interaction
between gravexcitons and the 2-form field strength F = dA, A = Aµdx

µ which
is described by the first term of the action functional (3.72). The corresponding
truncated action (without Ami terms) will be denoted by S̄EM .

The exact field strength 2-form F = dA with components Fµν is invariant
under gauge transformations A 7→ Af = A + df , F f = dA + d2f = dA = F ,
with f(x) any smooth and single-valued function. Accordingly, S̄EM is gauge
invariant too (see Eq. (3.72)).

The action functional (3.72) is written in a Brans—Dicke frame. For passing
by the conformal transformation (3.14) to the Einstein frame we choose an
ansatz

A = ΩkÃ (3.74)

for the vector potential and introduce the auxiliary field strength F̄ by the
relation

F = dA = d(ΩkÃ) = ΩkF̄ ,

F̄ = d(ln Ωk) ∧ Ã+ dÃ.
(3.75)

The conformally transformed effective action reads then

S̄EM = −1

2

∫
M0

dD0x
√
|g̃(0)|

{
Ω2(k−1)F̄µνF̄

µν
}
, (3.76)
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where the external space indices are raised and lowered by the metric g̃(0).
With F̃ = dÃ, we have in Eq. (3.76) explicitly

F̄µνF̄
µν = F̃µνF̃

µν − 2F̃µν
[
Ãµ∂ν(ln Ωk)− Ãν∂µ(ln Ωk)

]
+

+ 2

[
g̃(0)µκ∂µ(ln Ωk)∂κ(ln Ωk)ÃνÃν −

(
Ãµ∂µ(ln Ωk)

)2
]
. (3.77)

In order to fix the conformal weight k of the vector potential in Eq. (3.74),
we require the effective external field strength tensor F̄µν in Eq. (3.76) to be
gauge-invariant, i.e. to be invariant under Ã 7→ Ãf = Ã+ df . From Eq. (3.75)
we have for this transformation

F̄ 7→ F̄ f = dÃ+ d2f + d(ln Ωk) ∧ (Ã + df) = F̄ + d(ln Ωk) ∧ df, (3.78)

so that for non-trivial Ω 6= 1 the gauge invariance F̄ = F̄ f is only achieved for
zero conformal weight k = 0. The same result follows also directly from the
gauge invariance of the field strength tensor F in Eq. (3.72) and the ansatz
(3.74): One checks immediately that F̄ is invariant under a transformation
Ã 7→ Ǎ = Ã+ Ω−kdf, which only for k = 0 is a gauge transformation.

This means that in order to preserve the gauge invariance of the action
functional, when passing from the Brans—Dicke frame to the Einstein frame, we
have to keep the vector potential unchanged, i.e. we have to fix the conformal
weight at k = 0. As a result, we arrive at the action functional

S̄EM = −1

2

∫
M0

dD0x
√
|g̃(0)|

{
e

2
D0−2

∑n
i=1 diβ̃

i(x)
FµνF

µν
}

(3.79)

with dilatonic coupling of the Abelian gauge fields to the gravitational exci-
tons [387].

For completeness, we note that for k = 1, according to Eqs. (3.76) and
(3.77), we obtain a theory with a pure free action term F̃µνF̃

µν without any
prefactor (Ω2(k−1) = 1) but with explicitly destroyed gauge invariance. The
corresponding effective action reads

S̄EM = −1

2

∫
M0

dD0x
√
|g̃(0)|

{
F̃µνF̃

µν − 4F̃µνÃ[µ∂ν](ln Ω)+

+ 2

[
g̃(0)µκ∂µ (ln Ω) ∂κ (ln Ω) ÃνÃν −

(
Ãµ∂µ ln Ω

)2
]}
. (3.80)

Obviously, the localization of the internal space scale factors at their
present values implies β̃i = 0 which yields Ω ≡ 1. Then, both approaches
(3.79) and (3.80) coincide with each other. However, the presence of small scale
factor fluctuations above this background will restore the dilatonic coupling of
Eq. (3.79) (see also the next section).
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3.4. Gravitational excitons and their
cosmological and astrophysical implications.
Dark matter from extra dimensions

In this section, we discuss some cosmological and astrophysi-
cal implications related to the possible existence of gravitational excitons. We
suppose that the scale factor background of the internal spaces is localized in
one of the minima of the effective potential and that gravexcitons are present
as small fluctuations above this static background. Our analysis is based on the
dilatonic coupling (3.79) which describes the interaction between gravexcitons
and zero mode photons 6. Hereafter, we treat these KK zero mode photons as
our usual SM matter photons. In particular, the vector potential Aµ(x) of the
previous section corresponds to our 4D photons.

In the following we consider the simplest example — the interaction
between gravitational excitons and photons in a system with only one internal
space (n = 1) with its scale factor β1 localized in one of the minima of the
effective potential (e.g. potential (3.35)). Then, for small scale factor fluctuati-
ons β̃1 � 1 action (3.19) (without minimal scalar field) together with (3.79)
reads

S =
1

2κ2
0

∫
M0

dD0x
√
|g̃(0)|

{
R̃
[
g̃(0)
]
− 2Λeff

}
+

+
1

2

∫
M0

dD0x
√
|g̃(0)|

{
−g̃(0)µνψ,µψ,ν −m2

ψψψ
}
−

− 1

2

∫
M0

dD0x
√
|g̃(0)|

{
FµνF

µν − 2

√
d1

(D0 − 2)(D − 2)
κ0ψFµνF

µν

}
+ ... (3.81)

We have used the notation of the action (3.19), mψ := m1 and relation
(3.18) between β̃1 and the rescaled fluctuational component ψ ≡ ψ1. As menti-
oned in section 3.2.1, κ2

0 = 8π/M2
Pl(4) is the D0-dimensional (usually D0 = 4)

gravitational constant. The last term in Eq. (3.81) describes the interacti-
on between gravitational excitons and photons. In the lowest-order tree-level
approximation, this term corresponds to the vertex 1/MPl(4) of Fig. 3.1 [387]
and describes the decay of a gravitational exciton into two photons. The
probability of this decay is easily estimated as 7

Γ ∼
(

1

MPl(4)

)2

m3
ψ =

(
mψ

MPl(4)

)3 1

tPl
� mψ, (3.82)

6 Brane-world models with on-brane dilatonic coupling terms have been considered, e.g.,
in Refs. [393,394]. In a rough approximation, the results of the present section will also hold
for these models.

7 Exact calculations give Γ = [2d1/(d1 + 2)](m3
ψ/M

2
Pl(4)).
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Fig. 3.1. Planck-scale suppressed
gravexciton decay: ψ −→ 2γ

which results in a life-time τ of the gravi-
tational excitons with respect to this decay
channel of

τ =
1

Γ
∼
(
MPl(4)

mψ

)3

tPl. (3.83)

For example, for light excitons with
masses mψ ≤ 10−21MPl ∼ 10−2 GeV ∼ 20me

(where me is the electron mass) we get that
their life-time τ is greater than the age of the
Universe τ ≥ 1019 sec > tuniv ∼ 1018 sec (see
also section 3.4.2).

Similar to Polonyi particles in sponta-
neously broken supergravity [395,396], scalarons in the (R+R2) fourth order
theory of gravity [397] or moduli fields in the hidden sector of SUSY [398—
401], gravitational excitons are WIMPs (Weakly-Interacting Massive Particles
[402]) because their coupling to the observable matter is suppressed by powers
of the Planck scale. Thus, the gravexcitons/radions can contribute to dark
matter 8 (DM). As we have shown above, light gravexcitons with massesmψ ≤
≤ 10−21MPl(4) ∼ 10−2 GeV have life-time τ greater than the age of the Uni-
verse. However, there are strong cosmological restrictions on masses of gravexci-
tons. To show it, we investigate now the role of gravexcitons in different
cosmological scenarios [388].

3.4.1. Effective equation
of motion for gravexcitons

The effective equation of motion for massive gravexcitons in
FRW metric (3.36) is

ψ̈ + (3H + Γ)ψ̇ +m2
ψψ = 0, (3.84)

where H = ˙̃a/ã is the Hubble constant, ã is the scale factor of the external
space in the Einstein frame, and dots denote the derivatives with respect to
the synchronous time t̃ in the Einstein frame. In sections 3.4.1—3.4.5, for
simplicity of notations we shall write a and t without symbol tilde above
them. In Eq. (3.84) (by analogy with Ref. [403]) we took into account the
effective decay of gravexcitons into ordinary matter, e.g. into 4D photons
(3.82). In Refs. [387,404] it was shown that the gravexciton production due to
interactions with matter fields is negligible for the models under consideration.

8 The type of the DM depends on the masses of the particles which constitute it. It is hot
formDM ≤ 50—100 eV, warm for 100 eV ≤ mDM ≤ 10KeV and cold formDM ≥ 10—50KeV∼
∼ 10−5 GeV.
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3.4. Gravitational excitons

A corresponding source term on the right-hand side of Eq. (3.84) can, hence,
be omitted.

The investigation of Eq. (3.84) is most conveniently started by a sub-
stitution

ψ := B(t)u(t) := MPl(4)e
− 1

2

∫
(3H+Γ)dtu(t), (3.85)

which, for constant Γ, leads to the following differential equation for the auxi-
liary function u(t):

ü+

[
m2
ψ −

1

4
(3H + Γ)2 − 3

2
Ḣ

]
u = 0. (3.86)

This equation shows that at times when the Hubble parameter H = s/t ∼ 1/t
is less than the mass

H < mψ =⇒ t > tin ∼ H−1
in ∼

1

mψ
, (3.87)

the scalar field oscillates
ψ ≈ CB(t) cos(mψt+ δ). (3.88)

The time tin roughly indicates the beginning of the oscillations. Substi-
tuting the Hubble parameter H = s/t into the definition of B(t) we obtain

B(t) = MPl(4) e
− 1

2
Γt 1

(MPl(4) t)3s/2
, (3.89)

where s = 1/2, 2/3 for radiation dominated (RD) and matter dominated (MD)
stages, respectively. The parameter C in Eq. (3.88) can be obtained from the
amplitude of the initial oscillation ψin:

ψin ∼ CB(tin) =⇒ Cr ∼
ψin

MPl(4)

(
MPl(4)

mψ

)3/4

, Cm ∼
ψin
mψ

. (3.90)

Cr and Cm correspond to particles which start to oscillate during the RD and
MD stages. Additionally, we took into account that Γtin ∼ Γ/mψ � 1.

Further useful differential relations are those for B(t) in (3.85), (3.89) and
for the energy density ρψ and the number density nψ of the gravexcitons. It
can be easily seen from the definition of B(t) that this function satisfies the
differential equation d

dt

(
a3B2

)
= −Γa3B2, (3.91)

with a(t) ∼ ts as scale factor of the Friedmann Universe. The energy density
of the gravexciton field and the corresponding number density, which can be
approximated as

ρψ =
1

2
ψ̇2 +

1

2
m2
ψ ψ

2 ≈ 1

2
C2B2m2

ψ, nψ ≈
1

2
C2B2mψ, (3.92)
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satisfy the DEs
d

dt
(a3ρψ) = −Γa3ρψ and

d

dt
(a3nψ) = −Γa3nψ (3.93)

with solutions ρψ ∼ e−Γta−3 and nψ ∼ e−Γta−3. (3.94)

This means that during the stage mψ > H � Γ the gravexcitons perform
damped oscillations and their energy density behaves like a red-shifted dust-
like perfect fluid (ρψ ∼ a−3) with slow decay e−Γt ∼ 1:

ρψ ≈ ψ2
inm

2
ψ

(
T

Tin

)3

. (3.95)

Tin denotes the temperature of the Universe when the gravexcitons started
to oscillate. According to the Friedmann equation (the 00-component of the
Einstein equation), the Hubble parameter and the energy density (which defi-
nes the dynamics of the Universe) are connected (for flat spatial sections) by
the relation

H(t)MPl(4) =

√
8π

3
ρ(t) ∼

√
ρ(t). (3.96)

During the RD stage it holds ρ(t) ∼ T 4 and, hence, H2 ∼ T 4/M2
Pl(4). For

gravexcitons which start their oscillations during this stage, the temperature
Tin is now easily estimated as

Hin ∼ mψ ∼
T 2
in

MPl(4)
=⇒ Tin ∼

√
mψMPl(4). (3.97)

If there is no broad parametric resonance (“preheating”) [403], then the
decay plays the essential role when H . Γ and the evolution of the energy
density of the gravexcitons is dominated by an exponential decrease. The most
effective decay takes place at times

tD ∼ H−1
D ∼ Γ−1 ∼

(
MPl(4)

mψ

)2

m−1
ψ . (3.98)

3.4.2. Light and ultra-light
gravexcitons: mψ ≤ 10−2 GeV

If the decay time tD of the gravexcitons exceeds the age of
the Universe tuniv ∼ 1018 sec then the decay can be neglected. Eq. (3.98) shows
that this is the case for particles with masses mψ ≤ 1021MPl(4) ∼ 10−2 GeV ∼
∼ 20me (where me is the electron mass).

Subsequently, we split our analysis, considering separately particles which
start to oscillate before matter/radiation equality teq ∼ H−1

eq (i.e. during the
RD stage) and after teq (i.e. during the MD stage). According to present
WMAP data for the ΛCDM model, the following holds:

Heq ≡ meq ∼ 10−56MPl(4) ∼ 10−28 eV. (3.99)
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An obvious requirement is that gravexciton should not over-close the
observable Universe. This means that for particles with masses mψ > meq

the energy density at the time teq should not exceed the critical density 9:

√
ρψ
∣∣
teq∼H−1

eq
. HeqMPl(4) =⇒ mψ . meq

(
MPl(4)

ψin

)4

. (3.100)

Here we used the estimate ρψ ∼ (ψin/t)
2(mψt)

1/2 which follows from
Eqs. (3.89), (3.90) and (3.92). For particles with masses mψ & meq, relati-
on (3.100) implies the additional consistency condition ψin . MPl(4), or more
exactly

ψin .

(
meq

mψ

)1/4

MPl(4) .MPl(4). (3.101)

Let us now consider particles with massesmψ . meq which start to oscilla-
te during the MD stage. From Eqs. (3.89), (3.90) and (3.92) one finds for these
particles ρψ ∼ (ψin/t)

2 so that the inequality

√
ρψ
∣∣
tin∼H−1

in
. HinMPl(4) =⇒ ψin .MPl(4) (3.102)

ensures under-criticality of the energy density with respect to over-closure of
the Universe.

It is worth noting that the combination −(9/4)H2 − (3/2)Ḣ in (3.86)
vanishes for the MD stage because of H = 2/(3t). Hence, for times t ≥ teq ∼
∼ 1/meq the solutions of equation (3.86) have an oscillating behavior (provided
thatmψ > Γ) with a period of oscillations tosc ∼ 1/mψ. For light particles with
masses mψ ≤ meq this implies that the initial oscillations start at tin ∼ 1/mψ.

Particles with masses mψ ∼ 10−33 eV ∼ 10−61MPl(4) are of special interest
because via Λeff ∼ m2

ψ (see section 3.2.4) they are related to the recently
observed value of the effective cosmological constant (dark energy) Λeff ∼
∼ 10−123ΛPl(4) ∼ 10−57 cm−2. These ultra-light particles begin to oscillate at
characteristic times t ∼ 1018 sec which is of order of the Universe age. Thus,
these particles did not oscillate coherently up to the present time and a split-
ting of the scale factor of the internal space into a background component and
gravexcitons makes no sense. A more adequate interpretation of the scale factor
dynamics would be in terms of a slowly varying background in the sense of a
quintessence scenario [236, 405]. However, such light gravexcitons will lead to
a temporal variability of the fine structure constant above the experimentally
established value [387] (see section 3.4.4).

9 It is clear that the ratio between the energy densities of gravexciton and matter
becomes fixed after teq. If ρψ is less than the critical density at this moment then it will
remain under-critical forever.
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Finally, it should be noted that light gravexcitons can lead to the ap-
pearance of a fifth force with characteristic length scale λ ∼ 1/mψ. Recent
gravitational (Cavendish-type) experiments (see e.g. [406]) exclude fifth force
particles with masses mψ . 1/(10−2 cm) ∼ 10−3 eV. This sets an additional
restriction on the allowed mass region of gravexcitons. Thus, physically sensible
models should allow for parameter configurations which exclude such ultra-
light gravexcitons.

3.4.3. Heavy gravexcitons: mψ ≥ 10−2 GeV

This section is devoted to the investigation of gravexcitons/
radions with masses mψ ≥ 10−2 GeV for which the decay plays an important
role. Because of mψ � meq, the corresponding modes begin to oscillate during
the RD stage. We consider two scenarios separately. The first one contains
an evolutionary stage with transient gravexciton dominance (ψ-dominance),
whereas in the second one gravexcitons remain always sub-dominant.

The transiently ψ-dominated Universe. In this subsection we consider
a scenario where the Universe is already at the RD stage when the gravexcitons
begin their oscillations. The initial heating could be induced, e.g., by the decay
of some additional very massive (inflaton) scalar field. We assume that the
Hubble parameter at this stage is defined by the energy density of the radiation.
The gravexcitons start their oscillations when the radiation cools down to the
temperature Tin ∼

√
mψMPl(4) (see Eq. (3.97)). From the dust-like red-shifting

of the energy density ρψ (see Eq. (3.95)) follows that the ratio ρψ/ρrad increases
like 1/T when T decreases. At some critical temperature Tcrit this ratio reaches
∼1 and the Universe becomes ψ-dominated:

m2
ψψ

2
in

(
T

Tin

)3

∼ T 4 =⇒ Tcrit ∼ Tin
(

ψin
MPl(4)

)2

. (3.103)

After that the Hubble parameter is defined by the energy density of the
gravexcitons: H2M2

Pl(4) ∼ ρψ (with ρψ from Eq. 3.95). This stage is transient
and ends when the gravexcitons decay at the temperature TD:

H2
DM

2
Pl(4) ∼ Γ2M2

Pl(4) ∼ m
2
ψψ

2
in

(
TD
Tin

)3

=⇒

=⇒ TD ∼ Tin
(
MPl(4)

ψin

)2/3( mψ

MPl(4)

)4/3

. (3.104)

We assume that, due to the decay, all the energy of the gravexcitons
is converted into radiation and that a reheating occurs. The corresponding
reheating temperature can be estimated as:

H2
DM

2
Pl(4) ∼ Γ2M2

Pl(4) ∼ T
4
RH =⇒ TRH ∼

√
m3
ψ

MPl(4)
. (3.105)

160



3.4. Gravitational excitons

Because the Universe before the gravexciton decay was gravexciton-dominated,
it is clear that the reheating temperature TRH should be higher than the decay
temperature TD. This provides a lower bound for ψin:

TRH ≥ TD =⇒ ψin ≥
√
mψMPl(4) ∼ Tin. (3.106)

Substitution of this estimate into Eq. (3.103) shows that the minimal critical
temperature (at which the Universe becomes ψ-dominated) is equal to the
reheating temperature: Tcrit(min) ∼ TRH .

If we additionally assume the natural initial condition ψin ∼MPl(4), then
it holds Tcrit ∼ Tin and the Universe will be ψ-dominated from the very begin-
ning of the gravexciton oscillations. The upper bound on ψin is set by the
exclusion of quantum gravity effects: m2

ψψ
2
in ≤ MPl(4)qu. Hence, in the consi-

dered scenario it should hold

Tin ≤ ψin ≤MPl(4)

(
MPl(4)

mψ

)
. (3.107)

A successful nucleosynthesis requires a temperature T & 1MeV during
the RD stage. If we assume that this lower bound is fulfilled for the reheating
temperature (3.105), then we find the lower bound on the gravexciton mass

mψ & 104 GeV. (3.108)

It is also possible to consider a scenario where the ψ−field acts as inflaton
itself. In such a scenario, the Universe is ψ-dominated from the very beginning
and for the amplitude of the initial oscillations one obtains:

HMPl(4) ∼
√
ρψ =⇒ HinMPl(4) ∼ mψMPl(4) ∼ ψinmψ =⇒ ψin ∼MPl(4).

(3.109)
The reheating temperature is then again given by the estimate (3.105) and the
gravexciton masses should also fulfill the requirement (3.108).

Sub-dominant gravexcitons. In this subsection we consider a scenario
where the ψ-field undergoes a decay, but the gravexcitons never dominate the
dynamics of the Universe. The Hubble parameter of the Universe is then defined
by the energy density of other (matter) fields which behave as radiation for
t ≤ teq and as dust for t ≥ teq. The energy density ρψ is always much less than
the total energy density of the other fields.
i. Decay during the RD stage

Here, we analyze the behavior of ψ-particles that decay during the RD
stage, when H2 ∼ T 4/M2

Pl(4). Again we will clarify for which masses mψ and
initial oscillation amplitudes ψin such a scenario can hold. A decay during RD
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implies that the decay temperature TD, estimated as

Γ ∼ HD ∼
T 2
D

MPl(4)
=⇒ TD ∼

√
m3
ψ

MPl(4)
, (3.110)

should be higher than the temperature

Teq ∼
√
HeqMPl(4) ∼ 1 eV (3.111)

of the matter/radiation equality. This yields the following restriction on the
gravexciton masses:

TD & Teq =⇒ mψ &MPl(4)

(
Teq

MPl(4)

)2/3

≡ md ∼ 1GeV. (3.112)

The mass parameter md corresponds to particles which decay at the
moment teq: Γ ∼ Heq. The bound on the initial oscillation amplitude ψin
can be found from the energy sub-dominance condition for the gravexcitons at
the moment of their decay tD

ρψ|tD ≈ ψ
2
inm

2
ψ

(
TD
Tin

)3

< T 4
D. (3.113)

It reads
ψin <

√
mψMPl(4) ∼ Tin, (3.114)

where Tin is defined by Eq. (3.97). It can be easily seen that condition (3.114)
is supplementary to the condition (3.106). During the decay, the energy of the
gravexcitons is converted into radiation: ρψ → ρr,2 with temperature T 4

r ∼
∼ ρψ|tD . For a scenario with ρψ|tD � T 4

D, and hence Tr � TD, the energy
density ρr,2 contributes only negligibly to the total energy density and the
gravexciton decay does not spoil the standard picture of a hot Universe with
successful big bang nucleosynthesis (BBN).
ii. Gravexciton decay during the MD stage

At the MD stage (for t > teq) the Hubble parameter reads (see e.g. [402],
page 504)

t ∼ H−1 ∼
MPl(4)

T 3/2T
1/2
eq

=⇒ HMPl(4) ∼ T 3/2T 1/2
eq , (3.115)

and the decay temperature TD of the gravexcitons can be estimated as

Γ ∼ HD ∼
T

3/2
D T

1/2
eq

MPl(4)
=⇒

=⇒ T 3
D ∼

(ΓMPl(4))
2

Teq
∼ T 3

eq

(
mψ

MPl(4)

)4(mψ

meq

)2

. (3.116)
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For a decay during MD this decay temperature should be less then Teq,
and as implication a restriction on the mass of the ψ-field can be obtained

TD < Teq =⇒ mψ < MPl(4)

(
Teq

MPl(4)

)2/3

= md, (3.117)

which is supplementary to the inequality (3.112). The restriction on the ini-
tial amplitude ψin can be found from the condition of matter dominance and
the fact that heavy gravexcitons begin to oscillate at the RD stage when
Tin ∼

√
mψMPl(4)

ψ2
inm

2
ψ

(
TD
Tin

)3

∼ T 4
r < H2

DM
2
Pl(4) ∼

T 3
DTeq
M2

Pl(4)

M2
Pl(4) =⇒

=⇒ ψin < MPl(4)

(
Teq
Tin

)1/2

∼MPl(4)

(
Heq

mψ

)1/4

�MPl(4). (3.118)

Condition (3.118) guarantees that there is no additional reheating and the
BBN is not spoiled.

In this section, we discussed different cosmological scenarios affected by
the dynamics of gravitational excitons/radions. These massive moduli fields
describe the conformal excitations of the internal spaces in higher dimensional
models and are WIMPs in the external space-time. We demonstrated that
observable cosmological data set strong constraints on the gravexciton masses
and the amplitudes of their initial oscillations.

3.4.4. Variation
of the fine-structure constant

As we have seen in section (3.4.2), light gravexcitons with
massesmψ ≤ 10−2 GeV have a decay time greater than the age of the Universe.
Moreover, ultra-light particles with massesmψ ≤ 10−33 eV have not yet started
to oscillate. It means that, in the case of such ultra-light particles, the internal
spaces are not stabilized up to present time in the minimum of the effective
potential. However, there is very strong restrictions on dynamical behavior of
the internal spaces following from experiments on the time variation of the
fine-structure constant α = e2/~c. In KK models the effective fine-structure
constant is inversely proportional to the volume of the internal spaces: α ∼
∼ V −1

D′ (t), where VD′(t) = exp(
∑n

i=1 diβ̃
i)VD′ is the internal space volume at

the moment t and VD′ is defined in Eq. (3.6). The origin of such dependence can
be easily seen from action (3.79) where the Lagrangian density can be rewritten
in the form 10 L = −(1/2)

√
|g̃(0)|(VD′(t)/VD′)(1/e2)F 2 and we chose D0 = 4.

10 It is well known that the theory of electromagnetic field can be described with the
help of the Lagrangian density of the form L = −(1/2)

√
|g|(1/e2)F 2 where e is the electron

charge.
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Therefore, we can introduce an effective electron charge e2
eff(t) = e2VD′/VD′(t),

which defines the written above dependence of the fine-structure constant on
the internal space volume. Thus, for the variation of α with time we obtain
the following equation 11: ∣∣∣∣ α̇α

∣∣∣∣ =

∣∣∣∣∣ V̇D′(t)VD′(t)

∣∣∣∣∣. (3.119)

In the case of one internal space n = 1 this formula yields∣∣∣∣ α̇α
∣∣∣∣ = d1| ˙̃β1| =

√
8π

MPl(4)

√
2d1

D − 2
|ψ̇1| =

√
8π

MPl(4)

√
2d1

D − 2

∣∣∣∣∆ψ1

∆t

∣∣∣∣, (3.120)

where we used the relation (3.18).
The experimental bounds on the time variation of α have been consi-

derably refined during recent years (see, e.g., [407—411] and references therein).
Different experiments give different bounds on |α̇/α| (see Table II in [411]),
from . 10−12 yr−1 (following from the data analysis of the observed cosmic
microwave background [407]) to . 10−17 yr−1 (following from the Oklo experi-
ment [412]). Estimates on primordial nucleosynthesis require |∆α/α| . 10−4

at a redshift of order z = 109—1010 [413], i.e. |α̇/α| . 10−14 yr−1. The WMAP
data analysis [414] gives upper bounds on the variation of α during the ti-
me from re-ionization/recombination (z ∼ 1100) until today: |∆α/α| . 2×
×10−2—6 × 10−2, i.e. |α̇/α| . 2 × 10−12—6 × 10−12 yr−1. In all these esti-
mates α̇ = ∆α/∆t is the average rate of change of α during the time interval
∆t (corresponding to a redshift z). For our estimates, we use the bound
|α̇/α| . 10−15 yr−1 [409], which follows from observations of the spectra of
quasars at a Hubble time scale ∆t ∼ H−1 ∼ 1010 years.

Coming back to Eq. (3.120) for the fine-structure constant variation, we
obtain in our model ∣∣∣∣ α̇α

∣∣∣∣ ∼ √8π

√
2d1

D − 2
10−10yr−1, (3.121)

where for the Hubble time scale ∆t ∼ H−1 ∼ 1010 we used |∆ψ1| ∼ ψin ∼
∼MPl(4) yr which is usual assumption for light gravexcitons (see section 3.4.2).
It is obvious that this value is many orders of magnitude larger than the
experimental bounds 10−15 yr−1. This contradiction means that light gravexci-
tons with masses mψ . 10−2 GeV and initial amplitude ψin ∼ MPl(4) should
have decayed at sufficiently early times of the evolution of the Universe in
order not to contradict the experimental bounds on the variation of the fine

11 We remind that dots denote the derivatives with respect to the synchronous time in
the Einstein frame. We omit here the symbol “tilde” for t.
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structure constant. From this point of view, the presence of such light gravexci-
tons is unacceptable for the time after the end of primordial nucleosynthesis.
This restriction can be circumvented in the case ψin � MPl(4) (see the next
section 3.4.5).

The above estimate shows that too much variation of the fine-structure
constant is a typical problem of models with dynamical behavior of the
internal spaces if they are not stabilized at sufficiently early times (see, e.g.,
section 3.6).

3.4.5. Lorentz invariance violation

Obviously, the term, describing interaction between gravexci-
tons and photons in action (3.81), modifies the Maxwell equations, and, con-
sequently, results in a modified dispersion relation for photon [415]. In this
section we demonstrate that this modification has a rather specific form. For
simplicity we assume that g̃0 in action (3.81) is the flat FRW metric and for the
scale factors ã and synchronous time t̃, we omit the tilde symbol. It is worth
noting that action (3.81) (the third line) is conformally invariant in the case
when D0 = 4, D0-dimensional field strength tensor, Fµν , is gauge invariant
and the electromagnetic field is antisymmetric as usual, Fµν = ∂µAν − ∂νAµ.
Varying (3.81) with respect to the electromagnetic vector potential,

∂ν
[√
−g (1− Gκ0ψ)Fµν

]
= 0, (3.122)

where G := 2
√
d1/[(D0 − 2)(D − 2)]. The second term in the round brackets

Gκ0ψF
µν reflects the interaction between photons and the scalar field ψ, and

as we show below, it is responsible for Lorentz invariance violation (LV). In
particular, coupling between photons and the scalar field ψ makes the speed
of photons different from the standard speed of light. Eq. (3.122) together
with Bianchi identity, F(µν,λ) = 0, (which is preserved in the considered model
due to gauge-invariance of the tensor Fµν [387]) defines a complete set of the
generalized Maxwell equations. As we noted, the electromagnetic part of action
(3.81) is conformally invariant in the 4D dimensional space-time. So, it is
convenient to present the flat FRW metric g̃0 in the conformally flat form:
g̃0
µν = a2ηµν , where ηµν is the Minkowski metric.

Using the standard definition of the electromagnetic field tensor Fµν :

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

, Fµν =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

, (3.123)
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we obtain the complete set of the Maxwell equations in vacuum 12,

∇ ·B = 0, (3.124)

∇ ·E =
Gκ0

1− Gκ0ψ
(∇ψ ·E), (3.125)

∇×B =
∂E

∂η
− Gκ0ψ̇

1− Gκ0ψ
E +

Gκ0

1− Gκ0ψ
[∇ψ ×B], (3.126)

∇×E = −∂B
∂η

, (3.127)

where all operations are performed in the Minkowski space-time, η denotes
conformal time related to physical time t as dt = a(η)dη, and an overdot
represents a derivative with respect to conformal time η.

Eqs. (3.124) and (3.127) correspond to Bianchi identity, and since it is
preserved, Eqs. (3.124) and (3.127) keep their usual forms. Eqs. (3.125) and
(3.126) are modified due to interactions between photons and gravexcitons
(∝ κ0ψ). These modifications have simple physical meaning: the interaction
between photons and the scalar field ψ acts in Eq. (3.125) as an effective
electric charge eeff . This effective charge is proportional to the scalar product
of the ψ field gradient and the E field, and it vanishes for an homogeneous
ψ field. The modification of Eq. (3.126) corresponds to an effective current
Jeff , which depends on both electric and magnetic fields. This effective current
is determined by variations of the ψ field over the time (ψ̇) and space (∇ψ).
For the case of a homogeneous ψ field the effective current is still present and
LV takes place. The modified Maxwell equations are conformally invariant.
To account for the expansion of the Universe we rescale the field components
as B,E → Ba2,Ea2 [416]. Thus, the components of the physical electric and
magnetic field are diluted as 1/a2.

To obtain a dispersion relation for photons, we use the Fourier transform
between position and wave number spaces as,

F(k, ω) =

∫ ∫
dη d3x e−i(ωη−k·x)F(x, η),

F(x, η) =
1

(2π)4

∫ ∫
dω d3kei(ωη−k·x)F(k, ω).

(3.128)

Here, F is a vector function describing either the electric or the magnetic
field, ω is the angular frequency of the electromagnetic wave measured today,

12 The electric (E) and magnetic (B) fields are related to the vector potentials (scalar φ
and vector A) as

B = ∇×A, E = −∇φ− ∂A

∂η
,

where the operator ∇ denotes the spatial derivatives in 3-dimensional flat space.
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3.4. Gravitational excitons

and k is the wave vector. We assume that the field ψ is an oscillatory field with
the frequency ωψ and the momentum q, so ψ(x, η) = C exp[i(ωψη − q · x)],
C = const. Eq. (3.124) implies B ⊥ k. Without loosing of generality, and for
simplicity of description we assume that the wave vector k is oriented along the
z axis. Using Eq. (3.127) we get E ⊥ B. Therefore, Eqs. (3.125) and (3.127)
in the component form read

(1− Gκ0ψ)kEz = Gκ0ψ(qxEx + qyEy + qzEz) (3.129)

and kEy = ωBx, (3.130)

kEx = −ωBy. (3.131)

Eq. (3.126) in components can be rewritten as

(1− Gκ0ψ)kBy = −(1− Gκ0ψ)ωEx + Gκ0ψ (ωψEx + qzBy), (3.132)

(1− Gκ0ψ)kBx = (1− Gκ0ψ)ωEy − Gκ0ψ (ωψEy − qzBx), (3.133)

0 = (1− Gκ0ψ)ωEz − Gκ0ψ (ωψEz + qyBx − qxBy). (3.134)

A linearly polarized wave can be expressed as a superposition of left (L, −)
and right (R, +) circularly polarized (LCP and RCP) waves. Using the polari-
zation basis of Sec. 1.1.3 of Ref. [417], we derive E± = (Ex ± iEy)/

√
2. From

Eqs. (3.130)—(3.133), for LCP and RCP waves we get

(1− n2
+)E+ = 0, (1− n2

(−))E
− = 0, (3.135)

where n+ and n− are refractive indices for RCP and LCP electromagnetic
waves

n2
+ =

k2 [1− Gκ0ψ(1 + qz/k)]

ω2 [1− Gκ0ψ(1 + ωψ/ω)]
= n2

−. (3.136)

In the case when Lorentz invariance is preserved, the electromagnetic waves
propagating in vacuum have n+ = n− = n = k/ω ≡ 1. For the electromagnetic
waves propagating in the magnetized plasma, k/ω 6= 1, and the difference
between the LCP and RCP refractive indices describes the Faraday rotation
effect, α ∝ ω(n+ − n−) [418]. In the considered model, since n+ = n− the
rotation effect is absent, but the speed of electromagnetic waves propagation
in vacuum differs from the speed of light c (see also Ref. [419] for LV induced
by electromagnetic field coupling to other generic field). This difference implies
the propagation time delay effect

∆t = ∆l

(
1− ∂k

∂ω

)
, (3.137)
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where ∆l is a propagation distance, ∆t is the difference between the photon
travel time and that for a “photon” which travels at the speed of light c. Here,
t is physical synchronous time. This formula does not take into account the
evolution of the Universe. However, it is easy to show that the effect of the
Universe expansion is negligibly small. To get ∂k/∂ω, we should note that
we have defined the system of 6 equations (3.129)—(3.134) with respect to 6
components of the vectors E and B. This system has non-trivial solutions only
if its determinant is zero. From this condition we get the dispersion relation:

ω2
(
1− Gκ0ψ

(
1 +

ωψ
ω

))
= k2

(
1− Gκ0ψ

(
1 +

qz
k

))
. (3.138)

Solving the dispersion relation as a square equation with respect to k, we
can obtain

∂k

∂ω
' ±

{
1 +

1

2

[
ω2
ψ − q2

z

4ω2

]
(Gκ0ψ)2

}
, (3.139)

where ± signs correspond to photons forward and backward directions res-
pectively.

The modified inverse group velocity (3.138) shows that the LV effect can
be measured if we know the gravexciton frequency ωψ, z-component of the
momentum qz and its amplitude ψ. For our estimates, we assume that ψ is
the oscillatory field, satisfying (in local Lorentz frame) the dispersion relation,
ω2
ψ = m2

ψ + q2, where mψ is the mass of gravexcitons 13. Unfortunately, we do
not have any information concerning parameters of gravexcitons (some esti-
mates are given in sections 3.4.2 and 3.4.3). Thus, we intend to use possible
LV effects (supposing it is caused by interaction between photons and gravexci-
tons) to set limits on gravexciton parameters. For example, from Eqs. (3.137)
and (3.139) we can easily get the following estimate for the upper limit of the
amplitude of gravexciton oscillations:

|ψ| ≈ 1√
π G

√∣∣∣∣∆t∆l

∣∣∣∣ ωmψ
MPl(4), (3.140)

where for ω and mψ we can use their physical values. In the case of gamma-ray
burst (GRB) with ω ∼ 1021 ÷ 1022 Hz ∼ 10−4 ÷ 10−3 GeV and ∆l ∼ 3÷ 5×
×109 y ∼ 1017 sec, the typical upper limit for the time delay is ∆t ∼
∼ 10−4 sec [420].

For these values the upper limit on gravexciton amplitude of oscillations is

|κ0ψ| ≈
10−13 GeV

mψ
. (3.141)

13 To get physical values of the corresponding parameters we should rescale them by the
scale factor a.
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This estimate shows that our approximation κ0ψ < 1 works for gravexciton
masses mψ > 10−13 GeV. Future measurements of the time-delay effect for
GRBs at frequencies ω ∼ 1—10GeV would increase significantly the limit up
to mψ > 10−9 GeV. On the other hand, as we wrote in section 3.4.2, the
Cavendish-type experiments exclude fifth force particles with masses mψ .
. 1/(10−2 cm) ∼ 10−12 GeV, which is rather close to our lower bound for ψ
field masses. Respectively, we slightly shift the considered mass lower limit
to be mψ ≥ 10−12 GeV. These masses are considerably higher than the mass
corresponding to the equality between the energy densities of the matter and
radiation (matter/radiation equality), meq ∼ Heq ∼ 10−37 GeV, where Heq is
the Hubble “constant” at matter/radiation equality. It means that such ψ-
particles start to oscillate during the radiation dominated epoch (see section
3.4.2). Another bound on the ψ-particles masses comes from the condition
of their stability. With respect to decay ψ → γγ the life-time of ψ-particles is
τ ∼ (MPl(4)/mψ)3tPl (see Eq. (3.83)), and the stability conditions requires that
the decay time should be greater than the age of the Universe. According to this
we consider light gravexcitons with masses mψ ≤ 10−21MPl(4) ∼ 10−2 GeV ∼
∼ 20me (where me is the electron mass).

An additional restriction arises from the condition that such cosmologi-
cal gravexcitons should not overclose the observable Universe. This results in
conditions (3.100) and (3.101) for mψ and ψin, respectively. Thus, for the
range of masses 14 10−12 GeV ≤ mψ ≤ 10−2 GeV, we obtain respectively ψin .
. 10−6MPl(4) and ψin . 10−9MPl(4). Now, we want to estimate the amplitude
of oscillations of the considered gravexciton at the present time. To perform
it, we should mention that prefactors Cr and B(t) in Eq. (3.88) are given by
(Eqs. 3.90) and (3.89), respectively. We are interested in the gravexciton oscil-
lations at the present time t = tuniv. In this case s = 2/3 and for B(tuniv)
we obtain: B(tuniv) ∼ t−1

univ ≈ 10−61MPl(4), where we took into account that
for considered masses Γtuniv . 1. Thus, the amplitude of the light gravexciton
oscillations at the present time reads:

|κ0ψ| ∼ 10−60 ψin
MPl(4)

(
MPl(4)

mψ

)3/4

. (3.142)

Together with the nonovercloseness condition, we obtain from this expressi-
on that |κ0ψ| ∼ 10−43 for mψ ∼ 10−12 GeV and ψin ∼ 10−6MPl(4) and |κ0ψ| ∼
∼ 10−53 for mψ ∼ 10−2 GeV and ψin ∼ 10−9MPl(4). Obviously, it is much less
than the upper limit (3.141). Note, as we mentioned above, gravexcitons with
masses mψ & 10−2 GeV can start to decay at the present epoch. However,
taking into account the estimate |κ0ψ| ∼ 10−53, we can easily get that their
energy density ρψ ∼ (|κ0ψ|2/8π)M2

Pl(4)m
2
ψ ∼ 10−55 g/cm3 is much less than

14 Gravexcitons with such masses are either warm or cold dark matter (see footnote 8).
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the present energy density of the radiation ργ ∼ 10−34 g/cm3. Thus, ρψ contri-
butes negligibly in ργ . Otherwise, the gravexcitons with massesmψ & 10−2 GeV
should be observed at the present time, which, obviously, is not the case.

Additionally, it follows from section 3.4.4 that to avoid the problem of
the fine structure constant variation, the amplitude of the initial oscillations
should satisfy the condition: ψin . 10−5MPl(4) which, obviously, completely
agrees with our upper bound ψin . 10−6 GeV.

In summary, we shown that LV effects can give additional restrictions
on parameters of gravexcitons. First, gravexcitons should not be lighter than
10−13 GeV. It is very close to the limit following from the fifth-force experi-
ment. Moreover, experiments for GRB at frequencies ω > 1GeV can result in
significant shift of this lower limit making it much stronger than the fifth-force
estimates. Together with the nonovercloseness condition, this estimate leads
to the upper limit on the amplitude of the gravexciton initial oscillations. It
should not exceed ψin . 10−6 GeV. Thus, the bound on the initial amplitude
obtained from the fine structure constant variation is one magnitude weaker
than the bound found from LV even for the limiting case of the gravexciton
masses. This limit becomes stronger for heavier gravexcitons. Our estimates
for the present-day amplitude of the gravexciton oscillations, following from
the above obtained limitations, show that we cannot use the LV effect for the
direct detections of the gravexcitons. Nevertheless, the obtained bounds can
be useful for astrophysical and cosmological applications. For example, let us
suppose that gravexcitons with masses mψ > 10−2 GeV are produced during
late stages of the Universe expansion in some regions and GRB photons travel
to us through these regions. Then, Eq. (3.142) is not valid for such gravexci-
tons having astrophysical origin and the only upper limit on the amplitude of
their oscillations (in these regions) follows from Eq. (3.141). In the case of TeV
masses we get |κ0ψ| ∼ 10−16. If GRB photons have frequencies up to 1 TeV,
ω ∼ 1TeV, then this estimate is increased by six orders of magnitude.

3.5. Dark energy in curvature-non-linear f(R)
multidimensional cosmological models
Starting from the pioneering paper [397], the non-linear

(with respect to the scalar curvature R) theories of gravity f(R) have attracted
the great deal of interest because these models can provide a natural mecha-
nism of the early inflation. Non-linear models may arise either due to quantum
fluctuations of matter fields including gravity [421], or as a result of compactifi-
cation of extra spatial dimensions [422]. Compared, e.g., to others higher-order
gravity theories, f(R) theories are free of ghosts and of Ostrogradski instabi-
lities [423]. Recently, it was realized that these models can also explain the
late-time acceleration of the Universe. This fact resulted in a new wave of
papers devoted to this topic (see e.g., recent reviews [424,425]).
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The most simple, and, consequently, the most studied models are poly-
nomials of R: f(R) =

∑k
n=0CnR

n (k > 1), e.g., quadratic R + R2 and
quartic R + R4 ones. Active investigation of these models, which started in
80-th years of the last century [426, 427], continues up to now. Obviously, the
correction terms (to the action of Hilbert—Einstein type) with n > 1 give the
main contribution in the case of large R, e.g., in the early stages of the Uni-
verse’s evolution. As it was shown first in [397] for the quadratic model, such
modification of gravity results in early inflation. On the other hand, functi-
on f(R) may also contain negative degrees of R. For example, the simplest
model is R + R−n, n ≥ 1. In this case the correction term plays the main
role for small R, e.g., at the late stage of the Universe’s evolution (see, e.g.,
numerous references in [428, 429],). Such modification of gravity may result
in the late-time acceleration of our Universe [430]. Non-linear models with
polynomial as well as R−n-type correction terms have also been generalized
to the multidimensional case (see, e.g., [377, 378, 428, 429, 431—435]). Speci-
al emphasis was laid on finding parameter regions (regions in moduli space)
which ensure the existence of at least one minimum of the effective potential
for the volume moduli of the internal spaces and which in this way allow for
their stabilization. Additionally, positive minimum of the effective potential
plays the role of the positive cosmological constant which gives the possibility
to resolve the dark energy problem. It is well known that non-linear models
are equivalent to linear-curvature models with additional minimal scalar field
φ (dubbed scalaron in [397]). This scalar field corresponds to additional degree
of freedom of non-linear models. This equivalence is very useful tool for the
investigation of the problems of the internal space stabilization and the external
space acceleration. Let us show it in more detail.

3.5.1. Internal space stabilization
for pure geometrical f(R) models

We consider a D = (4 + D′) — dimensional non-linear pure
gravitational theory with action

S =
1

2κ2
D

∫
M

dDx
√
|g|f(R), (3.143)

where f(R) is an arbitrary smooth function with mass dimension O(m2) (m
has the unit of mass) of a scalar curvature R = R[g] constructed from the
D-dimensional metric gab (a, b = 1, ..., D).

The equation of motion for this theory reads

f ′Rab −
1

2
f gab −∇a∇bf ′ + gab�f

′ = 0, (3.144)
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where f ′ = df/dR, Rab = Rab[g]. ∇a is the covariant derivative with respect
to the metric gab; and the corresponding Laplacian is denoted by

� = �[g] = gab∇a∇b =
1√
|g|
∂a

(√
|g| gab∂b

)
. (3.145)

Eq. (3.144) can be rewritten in the form

f ′Gab +
1

2
gab
(
Rf ′ − f

)
−∇a∇bf ′ + gab�f

′ = 0, (3.146)

where Gab = Rab − 1
2R gab. The trace of Eq. (3.144) is

(D − 1)�f ′ =
D

2
f − f ′R (3.147)

and can be considered as a connection between R and f .
It is well known, that for 15 f ′(R) > 0 the conformal transformation

gab = Ω2gab, (3.148)

with
Ω =

[
f ′(R)

]1/(D−2)
, (3.149)

reduces the non-linear theory (3.143) to a linear one with an additional scalar
field. The equivalence of the theories can be easily proven with the help of the
following auxiliary formulas:

� = Ω−2
[
�+ (D − 2)gabΩ−1Ω,a∂b

]
⇐⇒ � = Ω2�− (D − 2)gabΩ Ω,a∂b,

(3.150)

Rab = Rab +
D − 1

D − 2
(f ′)−2∇af ′∇bf ′ − (f ′)−1∇a∇bf ′ −

1

D − 2
gab(f

′)−1�f ′

(3.151)
and

R = (f ′)2/(2−D)

{
R+

D − 1

D − 2
(f ′)−2gab∂af

′∂bf
′ − 2

D − 1

D − 2
(f ′)−1�f ′

}
. (3.152)

Thus, Eqs. (3.146) and (3.147) can be rewritten as

Gab = φ,aφ,b −
1

2
gabg

mnφ,mφ,n −
1

2
gab e

−D√
(D−2)(D−1)

φ (
Rf ′ − f

)
(3.153)

15 We consider the positive branch f ′(R̄) > 0. Although the negative f ′ < 0 branch can
be considered as well (see e.g. Refs. [378,427,428]). However, negative values of f ′(R̄) result
in negative effective gravitational “constant” Geff = κ2

D/f
′. Thus f ′ should be positive for

the graviton to carry positive kinetic energy (see, e.g., [425]).
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and
�φ =

1√
(D − 2)(D − 1)

e
−D√

(D−2)(D−1)
φ
(
D

2
f − f ′R

)
, (3.154)

where
f ′ =

df

dR
:= eAφ > 0, A :=

√
D − 2

D − 1
. (3.155)

Eq. (3.155) can be used to express R as a function of the dimensionless field
(scalaron) φ: R = R(φ).

It is easily seen that Eqs. (3.153) and (3.154) are the equations of motion
for the action

S =
1

2κ2
D

∫
M

dDx
√
|g|
(
R[g]− gabφ,aφ,b − 2U(φ)

)
, (3.156)

where
U(φ) =

1

2
e−Bφ

[
R(φ)eAφ − f

(
R(φ)

)]
, B :=

D√
(D − 2)(D − 1)

(3.157)

and they can be written as follows:

Gab = Tab [φ, g], (3.158)

�φ =
∂U(φ)

∂φ
. (3.159)

Here, Tab [φ, g] is the standard expression of the energy–momentum tensor
for the minimally coupled scalar field with potential (3.157). Eq. (3.159) can
be considered as a constraint equation following from the reduction of the
non-linear theory (3.143) to the linear one (3.156).

Let us consider what will happen if, in some way, the scalar field φ tends
asymptotically to a constant: φ → φ0. From Eq. (3.155) we see that in this
limit the non-linearity disappears and (3.143) becomes a linear theory f(R) ∼
∼ c1R+ c2 with c1 = f ′ = exp(Aφ0) and a cosmological constant −c2/(2c1).
In the case of homogeneous and isotropic space-time manifolds, linear
purely geometrical theories with constant Λ-term necessarily imply an (A)dS
geometry. Thus, in the limit φ → φ0 the D-dimensional theory (3.143) can
asymptotically lead to an (A)dS with scalar curvature:

R→ − D

D − 2

c2

c1
. (3.160)

Clearly, the linear theory (3.156) would reproduce this asymptotic (A)dS-limit
for φ→ φ0:

R→ 2
D

D − 2
U(φ0) = − D

D − 2
c2 c
− D
D−2

1 . (3.161)

Hence, in this limit R/R→ c
D
D−2

1 in accordance with Eq. (3.152) and f ′ = c1.
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Next, we assume that the D-dimensional bulk space-time M undergoes a
spontaneous compactification to a warped product manifold

M = M0 ×M1 × ...×Mn (3.162)

with metric
ḡ = ḡab(X)dXa ⊗ dXb = ḡ(0) +

n∑
i=1

e2β̄i(x)g(i). (3.163)

The coordinates on the (D0 = d0 + 1)-dimensional manifold M0 (usually
interpreted as our observable (D0 = 4)-dimensional Universe) are denoted by
x and the corresponding metric by

ḡ(0) = ḡ(0)
µν (x)dxµ ⊗ dxν . (3.164)

The internal factor manifolds Mi are taken in the form of di-dimensional
Einstein spaces (3.4) and (3.5). The specific metric ansatz (3.163) leads to a
scalar curvature R̄ which depends only on the coordinates x of the external
space: R̄[ḡ] = R̄(x). Correspondingly, also the non-linearity field φ depends on
x only: φ = φ(x).

Passing from the R̄-non-linear theory (3.143) to the equivalent R-linear
theory (3.156) the metric (3.163) undergoes the conformal transformation
ḡ 7→ g [see relation (3.148)]

g = Ω2ḡ =
(
eAφ
)2/(D−2)

ḡ := g(0) +
n∑
i=1

e2βi(x)g(i) (3.165)

with
g(0)
µν :=

(
eAφ
)2/(D−2)

ḡ(0)
µν , βi := β̄i +

A

D − 2
φ. (3.166)

Therefore, the problem of the internal spaces stabilization can be solved in
full analogy with sections 3.2.1 and 3.2.2 where in formulas of the latter section
we should put Λ = 0 (for simplicity of notations, in the present section 3.5 we
use φ instead of Φ of section 3.2.2.). In section 3.2.2, we have shown that in the
case Λ = 0, the stabilization 16 of the extra dimensions automatically results in

16 It is worth noting that despite the existence of a negative minimum of the effective
potential, the internal spaces are not fully stabilized in the case of flat external space. This
follows easily from the equations of Appendix A. Indeed, for the Hubble parameter H > 0
(expanding external space), the friction term in (A.9) results in decrease of the amplitude of
ϕi and its velocity ϕ̇i with time (see also section 3.4.1). This decrease continues until H in
(A.4) becomes equal to 0. Then, the scale factor of the Universe reaches its maximum and H
changes the sign (respectively, the friction term in (A.9) changes its sign). After that, scalar
fields ϕi start to oscillate around the minimum position with increasing amplitude. Therefore,
at the present stage of expanding Universe, the internal spaces are not fully stabilized at
the minimum position but oscillate with decreasing amplitude. The frequency of oscillations
is equal to the gravexciton masses (see Eq. (3.88)) and the period of oscillations Tosc is
quite short for sufficiently large masses. For example, Tosc ∼ 10−12 sec for mψ ∼ 10−2 GeV.
Obviously, for time intervals t � Tosc, with a high degree of accuracy, the internal space
scale factors are equal to their values at the equilibrium positions.
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condition φ→ φ0 with U(φ0) < 0. Thus, the D-dimensional space-time (bulk)
becomes asymptotically AdSD (see Eq. (3.161)) and there is no dark energy in
these pure geometrical theories. The main difference from section 3.2.2 is that
in non-linear f(R) models the potential of the scalar field is not arbitrary, but
completely determined by the form of the scalar curvature non-linearity. Let
us consider a few examples.

i. 1/R non-linearity:

f(R̄) = R̄− µ/R̄, µ > 0. (3.167)

In front of the R̄−1-term, the minus sign is chosen, because otherwise the
potential U(φ) will have no extremum. With the help of definition (3.155), we
express the scalar curvature R̄ in terms of scalaron φ and obtain two real-valued
solution branches

R̄± = ±√µ
(
eAφ − 1

)−1/2
=⇒ φ > 0 (3.168)

of the quadratic equation f ′(R̄) = eAφ.
The corresponding potentials (3.157)

U±(φ) = ±√µ e−Bφ
√
eAφ − 1 (3.169)

have extrema for curvatures

R̄0,± = ±√µ
√
D + 2

D − 2
=⇒ eAφ0 =

2B

2B −A
=

2D

D + 2
> 1 forD ≥ 3 (3.170)

and take for these curvatures the values

U±(φ0) = ±√µ
√
D − 2

D + 2
e−Bφ0 = ±√µ

√
D − 2

D + 2

(
2D

D + 2

)−D/(D−2)

. (3.171)

The stability defining second derivatives at the extrema (3.170),

∂2
φU±

∣∣
φ0

= ∓√µ D

D − 1

√
D + 2

D − 2
eBφ0 =

= ∓√µ D

D − 1

√
D + 2

D − 2

(
2D

D + 2

)−D/(D−2)

, (3.172)

shows that only the negative curvature branch R̄− yields a minimum with
stable internal space components. The positive branch has a maximum with
U+(φ0) > 0. According to (3.25) (where Λ = 0) it can provide an effective
dark energy contribution with Λeff > 0, but due to its tachyonic behavior
with ∂2

φU(φ0) < 0 it cannot give stably frozen internal dimensions [428].
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ii. curvature-squared non-linearity:

f(R) = R+ αR
2 − 2ΛD, (3.173)

For this theory we obtain

1 + 2αR = eAφ ⇐⇒ R =
1

2α

(
eAφ − 1

)
, −∞ < φ <∞, (3.174)

and
U(φ) =

1

2
e−Bφ

[
1

4α

(
eAφ − 1

)2
+ 2ΛD

]
. (3.175)

The parameter region which ensures the stabilization of the internal space
is described in [377]. In this region, the effective potential has a negative global
minimum. Thus, the D-dimensional space-time becomes asymptotically AdS.

iii. curvature-quartic non-linearity:

f(R̄) = R̄+ γR̄4 − 2ΛD. (3.176)

For this model, R̄ and scalaron φ are related as

R̄ = (4γ)−1/3
(
eAφ − 1

)1/3
, −∞ < φ <∞, (3.177)

and potential U(φ) reads

U(φ) =
1

2
e−Bφ

[
3

4
(4γ)−1/3

(
eAφ − 1

)4/3
+ 2ΛD

]
. (3.178)

The internal space stability region in parameter space is described in
[428]. It is shown that this stability region depends on the total dimension
D = dim(M) of the higher dimensional space-time M . For D > 8 the stabili-
ty region consists of a single (absolutely stable) sector which is shielded from
a conformal singularity (and an antigravity sector beyond it) by a potential
barrier of infinite height and width. This sector is smoothly connected with
the stability region of a curvature-linear model. For D < 8 an additional
(meta-stable) sector exists which is separated from the conformal singulari-
ty by a potential barrier of finite height and width so that systems in this
sector are prone to collapse into the conformal singularity. This second sector
is not smoothly connected with the first (absolutely stable) one. As we menti-
oned above, the external space-time in this model is necessary AdS and the
corresponding negative effective cosmological constant, Λeff < 0, forbids a late-
time acceleration.

iv. curvature-squared and curvature-quartic non-linearities:

f(R̄) = R̄+ αR̄2 + γR̄4 − 2ΛD. (3.179)
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The relation between the scalar curvature R̄ and the scalaron field φ is

f ′ = eAφ = 1 + 2αR̄+ 4γR̄3. (3.180)

This equation has three solutions R̄1,2,3(φ), where one or three of them are
real-valued. Therefore, in general, the potential

U(φ) = (1/2)e−Bφ
(
αR̄2 + 3γR̄4 + 2ΛD

)
(3.181)

is multivalued and consists of a number of branches. The case of one real-valued
solution for (D = 8)-dimensional space-time was investigated in [432] where
the parameter region for the freezing stabilization of the internal spaces was
described. The external space-time is asymptotically AdS.

Very interesting case of multivalued solutions for (D = 4)-dimensional
space-time was considered in [435]. Here, the branches of the potential U(φ)
are fitted with each other in the branching and monotonic points. It was shown
that the monotonic points are penetrable for the scalaron, while in the vicinity
of the branching points, the scalaron has the bouncing behavior and cannot
cross these points. Moreover, there are branching points where the scalaron
bounces an infinite number of times with decreasing amplitude, and the Uni-
verse asymptotically approaches the de Sitter stage. Such accelerating behavior
was called bouncing inflation. For this accelerating expansion, there is no need
for original potential U(φ) to have a minimum or to check the slow-roll condi-
tions. A necessary condition for such inflation is the existence of the branching
points. This is a new type of inflation. Such bouncing inflation takes place both
in the Einstein and Brans—Dicke frames. This type of inflation was found for
the model with the curvature-squared and curvature-quartic correction terms
which play an important role during the early stages of the Universe evoluti-
on. However, the branching points take also place in models with R̄−1-type
correction terms [436]. These terms play an important role at late times of the
evolution of the Universe. Therefore, bouncing inflation may be responsible for
the late-time accelerating expansion of the Universe (dark energy).

3.5.2. Dark energy in f(R) models with form fields

As we saw above, in the pure geometrical non-linear models,
the internal space freezing stabilization is achieved due to negative minimum
of the effective potential. Thus, these models are asymptotically AdS without
accelerating behavior of our Universe (see, however, comments with respect to
the bouncing inflation). However, the inclusion of matter can uplift potential
to the positive values. In this section, we shall demonstrate such uplifting for
non-linear models with form fields.
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To start with, let us present general theory of such models [378]. We consi-
der a D = (4 +D′)-dimensional non-linear gravitational theory with action

S =
1

2κ2
D

∫
M

dDx
√
|g|f(R)− 1

2

∫
M

dDx
√
|g|

n∑
i=1

1

di!

(
F (i)
)2
, (3.182)

where f(R) is an arbitrary smooth function with mass dimension O(m2) (m
has the unit of mass) of the scalar curvature R = R[g] constructed from the
D-dimensional metric gab (a, b = 1, ..., D). In action (3.182), F (i) = F

(i)
mini...qi ,

i = 1, ..., n is an antisymmetric tensor field of rank di (a di-form field strength)
with indices from an index set s(i) = {mi : max(mi)−min(mi) = di}, where
mi, ni, ..., qi ∈ s(i). For simplicity, we suppose that the index sets s(i), s(j) of
tensors F (i), F (j) with i 6= j contain no common elements as well as no indices
corresponding to the coordinates of the D0-dimensional external space-time
(usually D0 = 4). Additionally, we assume that for the sum of the ranks holds∑n

i=1 di = D −D0 := D′. Obviously, this model can be generalized to tensor
configurations F (i), F (j) with intersecting (overlapping) index sets. In this
case explicit field configuration can be obtained, e.g., when the indices satisfy
special overlapping rules [364]. Such a generalization is beyond the scope of
our consideration. Furthermore, we assume in our subsequent considerations
that the index sets mi, ni, ..., qi 6= 0 do not contain the coordinates of the
external space-time M0 and, hence, the field strengths F (i) can be associated
with a magnetic (solitonic) p-brane system located in the extra dimensions as
discussed, e.g., in Refs. [364,437,438].

The equation of motion for the gravitational sector of (3.182) reads

f ′Rab −
1

2
fgab −∇a∇bf ′ + gab�f

′ = κ2
DTab [F, g], (3.183)

where a, b = 1, ..., D, f ′ = df/dR, Rab = Rab[g], R = R[g]. ∇a and � denote
the covariant derivative and the Laplacian with respect to the metric gab (see
equation (3.145)). Eq. (3.183) can be rewritten in the form

f ′Gab +
1

2
gab
(
Rf ′ − f

)
−∇a∇bf ′ + gab�f

′ = κ2
DTab [F, g], (3.184)

where Gab = Rab − 1
2R gab, with its trace

(D − 1)�f ′ =
D

2
f − f ′R+ κ2

DT [F, g]. (3.185)

The energy momentum tensor (EMT) Tab [F, g] is defined in the standard
way as

Tab [F, g] ≡ 1√
|g|

δ
(√
|g|
∑n

i=1
1
di!

(
F (i)

)2)
δgab

=
n∑
i=1

Tab

[
F (i), g

]
, (3.186)
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where

Tab

[
F (i), g

]
=

1

di!

(
−1

2
gabF

(i)
mini...qiF

(i)mini...qi + diF
(i)
ani...qiF

(i)ni...qi
b

)
. (3.187)

For the trace of this tensor we obtain

T [F, g] =

n∑
i=1

T
[
F (i), g

]
(3.188)

with
T
[
F (i), g

]
=

2di −D
2(di!)

F (i)
mini...qiF

(i)mini...qi. (3.189)

The field strengths F (i) satisfy the equations of motion

F (i)mini...qi
; qi = 0⇐⇒ 1√

|g|

(√
|g| F (i)mini...qi

)
,qi

= 0, i = 1, ..., n. (3.190)

and the Bianchi identities

F
(i)
[mini...qi, a] = 0, i = 1, ..., n. (3.191)

Similar to the previous section, we perform the conformal transformation
(3.148) and reduce the non-linear gravitational theory to a linear one with
additional scalar field φ (scalaron). This transformation is well defined for
f ′(R) > 0 (see footnote 15). The equivalence of the theories can be easily
proven with the help of the auxiliary formulas (3.150)—(3.152).

Defining the scalar φ by the relation (3.155), and making use of (3.150)—
(3.152), equations (3.184) and (3.185) can be rewritten as

Gab = κ2
DTab [F, φ, g] + Tab [φ, g] (3.192)

and
�φ =

1√
(D − 1)(D − 2)

e
−D√

(D−1)(D−2)
φ
(
D

2
f − f ′R

)
+

+
1√

(D − 1)(D − 2)
κ2
DT [F, φ, g]. (3.193)

The EMTs read

Tab [φ, g] = φ,aφ,b −
1

2
gabg

mnφ,mφ,n −
1

2
gab e

−D√
(D−1)(D−2)

φ (
Rf ′ − f

)
, (3.194)

Tab [F, φ, g] =
n∑
i=1

e
2di−D√

(D−1)(D−2)
φ
Tab

[
F (i), g

]
(3.195)
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and

T [F, φ, g] =
n∑
i=1

e
2di−D√

(D−1)(D−2)
φ
T
[
F (i), g

]
, (3.196)

where Tab
[
F (i), g

]
, T

[
F (i), g

]
are given by replacing g → g in equations

(3.187), (3.189). The indices of the field strengths F (i) are now raised and
lowered with the metric g.

The equations of motion (3.190) for F (i) transform to

1√
|g|

(√
|g| e

2di−D√
(D−1)(D−2)

φ
F (i)mini...qi

)
, qi

= 0, i = 1, ..., s, n, (3.197)

whereas the Bianchi identities (3.191) do not change.
It can be easily checked that Eqs. (3.192), (3.193) and (3.197) are the

equations of motion for the action

S =
1

2κ2
D

∫
M

dDx
√
|g|

{
R[g]− gabφ,aφ,b − 2U(φ)−

− κ2
D

n∑
i=1

1

di!
e

2di−D√
(D−1)(D−2)

φ
F (i)
mini...qiF

(i)mini...qi

}
, (3.198)

where potential U(φ) is defined by formula (3.157). The scalaron φ is the result
and the carrier of the curvature non-linearity of the original theory (3.182).
Correspondingly, Eq. (3.193) has a two-fold interpretation. It is the equation
of motion for the field φ and at the same time it can be considered as constraint
equation following from the reduction of the non-linear theory (3.182) to the
linear one (3.198). Furthermore, we note that in the linear theory (3.198) the
form fields are non-minimally coupled with the scalaron φ. (A minimal coupling
occurs only for a model with n = 1, d1 = D0, where according to (3.189) the
trace of the form field EMT vanishes.) A comparison of the action functional
with (3.195) shows that the last term in (3.198) coincides with the expression
for the energy density −T 0

0 [F, φ, g] of the solitonic form field (due to F (i)
0niq̇i

≡ 0

by the definition of F (i)).
Now, we assume that the multidimensional space-time manifold undergoes

a spontaneous compactification (3.162) in accordance with the block-orthogo-
nal structure of the field strength F , and that the form fields F (i), each nested
in its own di−dimensional factor space Mi, respect a generalized Freund—
Rubin ansatz [439] (see also [364,438,440,441]). The factor spaces Mi are then
Einstein spaces with metrics ĝ(i) ≡ e2βi(x)g(i) which depend only through the
warp factors ai(x) := e2βi(x) on the coordinates x of the external space-timeM0

(see Eqs. (3.163)—(3.166)). This allows us to perform a dimensional reduction
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of our model and the internal space stabilization along the lines of section
3.2. Additionally, it is not difficult to show that in the case of the freezing
stabilization 17 (βi = 0, φ = φ0), the asymptotic multidimensional space-time
is built up from Einstein-space blocks, but is itself a non-Einsteinian space due
to an additional terms which depend on form fields [378].

Similar to the previous section, it can be easily seen that for considered
product manifold ansatz, the scalar curvatureR depends only on the coordinate
x of the D0−dimensional external space-time M0: R[g] = R(x). This implies
that the scalaron field φ is also a function only of x: φ = φ(x).

We choose the form-field components in the generalized Freund—Rubin
ansatz as

F (i)
mini...qi =

√
2
√
|ĝ(i)| εmini...qif (i)(x),

F (i) mini...qi =

(√
2/
√
|ĝ(i)|

)
εmini...qif (i)(x).

(3.199)

For the Levi—Civita symbol εmini...qi we use conventions where for Rie-
mann spaces holds εmini...qi = εmini...qi and εmini...qiε

mini...qi = di !. It can
be easily seen that the ansatz (3.199) satisfies Eq. (3.197) (because φ and f

depend only on x and the
√
|g(i)| factors cancel). The Bianchi identities (3.191)

reduce to the equations

∂
(
adii (x)f (i)(x)

)
∂xµ

= 0 (3.200)

with solutions
f (i)(x) =

fi

adii
(3.201)

and fi ≡ const. With (3.201) the energy density of the solitonic form field, and
correspondingly the last term in action (3.198), reads

−T 0
0 [F, φ, g] =

1

2

n∑
i=1

1

di!
e

2di−D√
(D−1)(D−2)

φ
F (i)
mini...qiF

(i)mini...qi =

=
n∑
i=1

e
2di−D√

(D−1)(D−2)
φ f2

i

a2di
i

:= ρ(β, φ), (3.202)

where for real form fields f2
i ≥ 0. Again we see that for models with

n = 1 and d1 = D0 this energy density decouples from the scalaron field φ:
ρ(β1, φ)→ρ(β1).

17 Without loss of generality, we can choose the stability position βi0 = 0. Then, the
internal space fluctuations β̃i in section 3.2 coincide with βi.
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Let us consider now a model with only one d1-dimensional internal space.
After dimensional reduction and subsequent conformal transformation to the
Einstein frame (along the lines of section 3.2), the action functional (3.198)
reads

S =
1

2κ2
0

∫
M0

dD0x
√
|g̃(0)|

{
R
[
g̃(0)
]
− g̃(0)µν∂µϕ∂νϕ−

− g̃(0)µν∂µφ∂νφ− 2Ueff(ϕ, φ)

}
, (3.203)

where field ϕ is defined by equation (3.18):

ϕ = −

√
d1(D − 2)

D0 − 2
β1. (3.204)

A stable compactification of the internal space M1 is ensured when its scale
factor ϕ is frozen at one of the minima of the effective potential

Ueff(ϕ, φ) = e
2ϕ

√
d1

(D−2)(D0−2) ×

×
[
−1

2
R1e

2ϕ
√

D0−2
d1(D−2) + U(φ) + κ2

D ρ(ϕ, φ)

]
, (3.205)

where R
[
g(1)
]
≡ R1 is the scalar curvature of the factor-space M1 (see

Eq. (3.5)) and the energy density (3.202) of the solitonic form field reads

κ2
D ρ(ϕ, φ) = κ2

D f
2
1 e

2d1−D√
(D−1)(D−2)

φ
e

2ϕ
√
d1(D0−2)
D−2 . (3.206)

The value of the effective potential at the minimum plays the role of the
effective D0-dimensional cosmological constant: Ueff |min ≡ Λeff . It can be dark
energy in the case of positive Λeff > 0.

The potential U(φ) of the scalaron field is given by Eq. (3.157) and its
exact expression depends on the form of non-linearity f(R). The 1/R and
R2 non-linearities were considered in detail in papers [378] and [429]. It was
shown that for all these models, there exist parameter configurations that can
provide positive values of the effective four-dimensional cosmological constant.
Thus, an accelerated expansion of the Universe (dark energy) is possible in
accordance with observational data. However, the observational value of dark
energy is achieved with the help of fine tuning of parameters, similar to how
it happens for the linear model in section 3.2.4.
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To conclude this section, we would like to note that there is also a possibi-
lity to consider non-linear models with form fields where the action functional
reads [434]:

S =
1

2κ2
D

∫
M
dDx

√
|g|f(R)− 1

2

∫
M

dDx
√
|g| 1

d1!

(
F (1)

)2
−

−
m∑
k=1

∫
M0

d4x
√
|g(0)(x)| τ(k). (3.207)

The main difference between this expression and the action functional
(3.182) is that the form field F (1) is originally coupled with metric g but not
with g. Additionally, we suppose that the internal space M1 is a flat orbifold
with m branes in fixed points and branes are uniquely characterized by their
tensions τk (see section 3.2.4). Then, the effective potential for this model reads

Ueff(ϕ, φ)e
2ϕ

√
d1

(D−2)(D0−2)×

×
[
U(φ) + κ2

Df
2
1 e

2ϕ
√
d1(D0−2)
D−2 − λeϕ

√
d1(D0−2)
D−2

]
, (3.208)

Therefore, in this approach the energy density of the solitonic form field
decouples from the scalaron field φ for any number of dimensions d1: ρ(ϕ, φ)→
→ ρ(ϕ), and this greatly simplifies the calculations. This model was investi-
gated in [434] for R2 and R4 non-linearities. To avoid the fine-tuning problem,
the main attention was paid to the case of zero effective cosmological constant
Λeff = 0. Conditions, that ensure stable compactification of the internal space
in zero minimum of the effective potentials, were defined. Such effective potenti-
als have interesting and rather complicated form with a number of local mi-
nima, maxima and saddle points. It was shown (with the help of numerical
calculation of equations in Appendix A) that the R2- and R4 models can
produce up to 10 and 22 e-foldings, respectively. These values are not suffici-
ent to solve the homogeneity and isotropy problem but big enough to explain
the recent CMB data. Additionally, the R4 model, with saddle points of the
effective potential, can provide conditions for eternal topological inflation.
The main drawback of the obtained inflationary models consists in a spectral
index ns that is less than the presently observed ns ≈ 1. For the R4 model,
e.g., ns ≈ 0.61.

3.6. Sp-branes. Dynamical
dark energy from extra dimensions

As we have repeatedly noted above, recent astronomical ob-
servations abundantly evidence that our Universe underwent stages of accelera-
ting expansion during its evolution. There are at least two of such stages:
early inflation and late-time acceleration. The latter began approximately at
the redshift z ∼ 0.35 (see, e.g., [442]) and continues until now. Thus, the
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construction and investigation of models with stages of acceleration is one of the
main challenge of the modern cosmology. In previous sections (3.2)—(3.5), we
demonstrated theories where dark energy appears in multidimensional models
due to minima of the effective potentials. Such dark energy is time independent.
There are also models with dynamical dark energy. Among such models, the
models originating from fundamental theories (e.g. string/M-theory) are of the
most of interest. For example, it was shown that some of space-like brane (S-
brane) solutions have a stage of the accelerating expansion. In D-dimensional
manifold, Sp-branes are time dependent solutions with (p + 1)-dimensional
Euclidean world volume and, apart from time, they have (D−p−2)-dimensional
hyperbolic, flat or spherical spaces as transverse/additional dimensions [443]:

ds2
D = −e2γ(τ)dτ2 + a2

0(τ)
(
dx2

1 + ... + dx2
p+1

)
+ a2

1(τ)dΣ2
(D−p−2), σ, (3.209)

where γ(τ) fixes the gauge of time, a0(τ) and a1(τ) are time dependent scale
factors, and σ = −1, 0,+1 for hyperbolic, flat or spherical spaces respectively.
Obviously, p = 2 if brane describes our 3-dimensional space. These branes are
known as SM2-branes if original theory is 11-dimensional M-theory and SD2-
branes in the case of 10-dimensional Dirichlet strings. For this choice of p, the
evolution of our Universe is described by the scale factor a0. In general, the
scale factor a1 can also determine the behavior of our 3-dimensional Universe.
Hence,D−p−2 = 3 and we arrive to SM6-brane in the case of the M-theory and
SD5-brane for the Dirichlet string. Usually, Sp-brane models include form fields
(fluxes) and massless scalar fields (dilatons) as a matter sources. If SDp-branes
are obtained by dimensional reduction of 11-dimensional M-theory, then the
dilaton is associated with the scale factor of a compactified 11-th dimension.

Starting from [443], the S-brane solutions were also found, e.g., in Refs.
[444—447]. It was quite natural to test these models for the accelerating
expansion of our Universe. Really, it was shown in [448] that the SM2-brane
as well as the SD2-brane have stages of the accelerating behavior. This result
generalizes conclusions of [449] for models with hyperbolic compact internal
spaces. Here, the cosmic acceleration (in Einstein frame) is possible due to a
negative curvature of the internal space that gives a positive contribution to
an effective potential. This acceleration is not eternal but has a short period
and the mechanism of such short acceleration was explained in [450]. It was
indicated in [448] that the solution of [449] is the vacuum case (the zero flux
limit) of the S-branes. It was natural to suppose that if the acceleration takes
place in the vacuum case, it may also happen in the presence of fluxes. Indeed,
it was confirmed for the case of the compact hyperbolic internal space. Even
more, it was found that periods of the acceleration occur in the cases of flat
and spherical internal spaces due to the positive contributions of fluxes into
the effective potential. Similar effect of uplifting of the effective potential due
to the form field was already considered in section 3.5.2 for non-linear models.
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Along with Ref. [448] mentioned above, the accelerating S-brane cosmolo-
gies (in the Einstein frame) were obtained and investigated, e.g., in Refs.
[451—455]. Accelerating solutions closely related to them were also found in
Refs. [456,457]. It should be noted that some of these solutions are not new ones
but either rediscovered or written in different parametrization (see correspon-
ding comments in Refs. [445,457]). For example, the first vacuum solution for
a product manifold (consisting of (n − 1) Ricci-flat spaces and one Einstein
space with non-zero constant curvature) was found in [359]. This solution was
generalized to the case of a massless scalar field in Refs. [353,354]. Obviously,
solutions in Refs. [353, 354, 359] are the zero flux limit of the Sp-branes and
the result of [449] is a particular case of [354]. Some of solutions in [454, 456]
coincides with corresponding solutions in Refs. [353, 354, 359, 458]. An elegant
minisuperspace approach for the investigation of the product space manifolds
consisting of Einstein spaces was proposed in [368]. Here, it was shown that the
equations of motion have the most simple form in a harmonic time gauge 18

because the minisuperspace metric is flat in this gauge. Even if the authors
of the above-mentioned papers were not aware of it, they intuitively used this
gauge to get exact solutions. New solutions also can be generated (from the
known solutions) with the help of a topological splitting when the Einstein
space with non-zero curvature is split into a number of Einstein spaces of the
same sign of the curvature (see Refs. [459, 460]). This kind of solutions was
found, e.g., in Refs. [454,456].

Now, to show the main characteristic properties of Sp-brane solutions, we
consider some particular solutions from [353] and [354]. To start with, we derive
the connection between different quantities in the Einstein and Brans—Dicke
frames. The dimensionally reduced actions in these frames have, e.g., forms
of equations (3.12) and (3.15). The conformal transformation between the
external space-time metrics in the Einstein and Brans—Dicke frames is given by
Eq. (3.14). For simplicity, we consider the case of one internal space, i.e. n = 1
in (3.14). Additionally, for the model with dynamical internal spaces, there is no
sense to split the internal space scale factors into background and fluctuations.

Therefore, β̃i ≡ βi in (3.14) and Ω2 =
(
ed1β1

)−2/(d0−1)
=
(
ad1

1

)−2/(d0−1)
. Thus,

the metric (3.209) in different gauges reads (see also Eqs. (3.36) and (3.37))

g = −e2γ0dτ ⊗ dτ + a2
0q

(0) + a2
1g

(1) = −dt⊗ dt+ a2
0q

(0) + a2
1g

(1) =

= Ω2
(
−dt̃⊗ dt̃+ ã2

0q
(0)
)

+ a2
1g

(1), (3.210)

where the first equality is the metric in the harmonic time gauge (γ = γ0 =
= d0β

0 +d1β
1) in the Brans—Dicke frame, the second equality is the metric in

18 For Eq. (3.209), it reads γ = (p + 1) ln a0 + (D − p − 2) ln a1. In the harmonic time
gauge, time satisfies equation ∆[g]τ = 0 [368].
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the synchronous time gauge in the Brans—Dicke frame, and the third equality
is the metric in the synchronous time gauge in the Einstein frame. Equati-
ons (3.210) show that the external scale factors in the Einstein and Brans—
Dicke frames are related as in Eq. (3.37):

ã0 = Ω−1a0 (3.211)

and there exists the following correspondence between different times 19:

dt = eγ0(τ)dτ =⇒ t =

∫
eγ0(τ)dτ + const, (3.212)

dt̃ = Ω−1eγ0(τ)dτ =⇒ t̃ =

∫
Ω−1eγ0(τ)dτ + const. (3.213)

For two component cosmological model with R[q(0)] = 0, R[g(1)] ≡ R1 6= 0
and minimally coupled free scalar field, the explicit expressions for the scale
factors (in the Brans—Dicke frame) and scalar field as functions of harmonic
time read [353,354]:

a0(τ) = exp(β0(τ)) = A0 exp

(
ξ1

d0
τ

)
, (3.214)

a1(τ) = exp
(
β1(τ)

)
= a(c)1 exp

(
− ξ1

d1 − 1
τ

)
× 1

g±(τ)
, (3.215)

ϕ(τ) = p2τ + q, (3.216)
where

g+ = cosh1/(d1−1) (ξ2τ), (−∞ < τ < +∞), (3.217)

for R1 > 0 and
g− = sinh1/(d1−1) (ξ2|τ |), (|τ | > 0), (3.218)

for R1 < 0. Here, a(c)1 = A1(2ε/|R1|)1/2(d1−1), ξ1 = [d0(d1 − 1)/(D − 2)]1/2p1,
ξ2 = [(d1 − 1)/d1]1/2(2ε)1/2 and 2ε = (p1)2 + (p2)2. Parameters A0, A1, p

1, p2

and q are the constants of integration and A0, A1 satisfy the following const-
raint: Ad0

0 A
d1
1 = A0. It was shown in [461] that p1 and p2 are the momenta

in the minisuperspace (p1 is related to the momenta of the scale factors and
p2 is responsible for the momentum of the scalar field) and ε plays the role of
energy. Obviously, these solutions are the zero flux limit of the Sp-branes.

This model was investigated in detail in [462]. Here, both the Ricci-flat
space and non-zero curvature space may play the role of our Universe (with
corresponding changes in Eqs. (3.210)—(3.213)). The analysis was performed
in the Brans—Dicke and Einstein frames. It was shown that in the context
of the considered models, the Brans—Dicke gravity provides more possibilities
for accelerating cosmologies than the Einsteinian one. Such different behavior

19 To have the same directions of the arrows of time, we choose the plus sign for the
square root.
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of the external space scale factors in both of these frames is not surprisi-
ng because these scale factors are described by different variables connected
with each other via the conformal transformation in Eqs. (3.210)—(3.213).
Moreover, the synchronous times in both of these frames are also different. As
a consequence of these discrepancies, the scale factors of the external space
in both frames behave differently. In the Brans—Dicke frame, stages of the
accelerating expansion exist for all types of the external space (flat, spherical
and hyperbolic). However, in the Einstein frame, the model with flat external
space and hyperbolic compactification of the internal space is the only one with
the stage of the accelerating expansion. The presence of a minimally coupled
free scalar field does not help the acceleration because this field does not contri-
bute to the potential. Nevertheless, it make sense to include such field in the
model because it results in more reach and interesting dynamical behavior.
For example, it was shown that scalar field can prevent the acceleration in the
Einstein frame.

As it was shown in section 3.4.4, the dynamical behavior of the internal
spaces results in the variation of the fine-structure constant (see Eq. (3.119)).
Thus, any multidimensional cosmological models with time dependent internal
spaces should be tested from this point of view. It was demonstrated that
the examined model runs into significant problems related to the too large
variations of the fine-structure constant. The case of the hyperbolic external
space in the Brans—Dicke frame is the only possibility to avoid this problem.

3.6.1. Dark energy in pure geometrical Sp-brane
model with hyperbolic internal space

The considered above Sp-brane model was carefully investi-
gated in [462] for an arbitrary range of parameters. Is it possible to fix these
parameters with the help of the modern observational data? This interesting
problem was investigated in paper [463] where the metric (3.210) is defined on
the manifold with product topology

M = R× Rd0 × Hd1/Γ, (3.219)

where Rd0 is d0-dimensional Ricci-flat external (our) space with metric q(0):
R[q(0)] = 0 and scale factor a0, and Hd1/Γ is d1-dimensional hyperbolic (com-
pact) internal space with metric g(1): R[g(1)] = −d1(d1−1) and scale factor a1.
Both a0 and a1 depend only on time. As we already mentioned, the first equality
in (3.210) is the metric in the Brans—Dicke frame in the harmonic time gauge
where eγ0 = ad0

0 a
d1
1 . The third equality in (3.210) is the metric in the Einstein

frame in the synchronous time gauge. According to formulas (3.37) and (3.211),
the scale factors a0 of the external space in the Brans—Dicke frame is connected
with the scale factor ã0 in the Einstein frame as follows: ã0 = Ω−1a0, where
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conformal factor Ω = a
−d1/(d0−1)
1 . Harmonic time τ is related to synchronous

time t̃ as dt̃ = f(τ)dτ , where f(τ) = Ω−1ad0
0 a

d1
1 = ãd0

0 . Hereafter we consider
3-dimensional external space: d0 = 3. Taking into account these relations, the
solutions (3.214) and (3.215) (in the case of the absence of scalar field: p2 ≡ 0)
in the Einstein frame can be rewritten as follows:

ã0(τ) = A
d1+2

6
1

(√
2ε

|R1|

) d1
2(d1−1) exp

(
−
√

d1 + 2

12(d1 − 1)
2ε τ

)
sinhd1/[2(d1−1]

(
−
√
d1 − 1

d1
2ε τ

) , (3.220)

and

a1(τ) = A1

(√
2ε

|R1|

) 1
d1−1 exp

(
−
√

3

(d1 − 1)(d1 + 2)
2ε τ

)
sinh1/(d1−1)

(
−
√
d1 − 1

d1
2ε τ

) , (3.221)

where A1 and ε are the constants of integration. The function f(τ) can be
easily obtained from Eq. (3.220) via expression f(τ) = ã3

0(τ).
Solutions (3.220) and (3.221) for the metric (3.210) is a particular case

of the Sp-branes with (p + 1 = d0)-dimensional Ricci-flat external space. In
the case d0 = 3 we obtain p = 2. Therefore, if underlying model is (D = 11)-
dimensional M-theory, we arrive at M2-branes where the number of internal
dimensions is equal to 7. As we already mentioned above, such models with
hyperbolic internal space undergo the stage of accelerating expansions [462].
However, the parameters of the model in (3.220) and (3.221) are still not
connected with observational data. So, now we want to use the modern cos-
mological data (the present day value for the Hubble parameter and the red-
shift when our external space transits from deceleration to acceleration) to
fix all arbitrary parameters of the considered model and obtain corresponding
dynamical behavior for the scale factors, the Hubble parameter, the decelerati-
on parameter and the fine-structure “constant”.

Besides the external ã0 and internal a1 scale factors described by
Eqs. (3.220) and (3.221), we also consider the Hubble parameter for each of
the factor spaces

H0 =
1

ã0

dã0

dt̃
=

1

ã0f(τ)

dã0

dτ
=

= −
√

2ε

f(τ)

(√
d1 + 2

12(d1 − 1)
+

√
d1

4(d1 − 1)
coth

(√
d1 − 1

d1
2ε τ

))
, (3.222)
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H1 =
1

a1

da1

dt̃
=

1

a1f(τ)

da1

dτ
=

= −
√

2ε

f(τ)

√
3

(d1 − 1)(d1 + 2)

(
1 +

√
d1 + 2

3d1
coth

(√
d1 − 1

d1
2ε τ

))
, (3.223)

the external space deceleration parameter 20

q0 = −d
2ã0

dt̃2
1

H2
0 ã0

= − 1

f(τ)

d

dτ

(
1

f(τ)

dã0

dτ

)
1

H2
0 ã0

=

= −2 sinh−2

(√
d1 − 1

d1
2ε τ

)
×

×

[√
d1 + 2

3(d1 − 1)
+

√
d1

d1 − 1
coth

(√
d1 − 1

d1
2ε τ

)]−2

+ 2 (3.224)

and the variation of the fine-structure constant (as a function of redshift z)

∆α =
α(z)− α(0)

α(0)
=
ad1

1 (0)

ad1
1 (z)

− 1, (3.225)

where we took into account that for d0 = 3 the fine-structure constant α ∼ a−d1
1

(see section 3.4.4). We also assume that the solution (3.220), (3.221) describes
the M2-brane, that is d1 = 7.

According to the recent observational data (see, e.g., [442, 464]), the pre-
sent acceleration stage began at redshift z ≈ 0.35 and the Hubble parameter
now is H0(t̃p) ≡ Hp ≈ 72 km/sec/Mpc = 2.33 × 10−18 sec−1. Hereafter, the
letter p denotes the present day values. Additionally, at the present time the
value of the external space scale factor can be estimated as ã0(t̃p) ≈ cH−1

p ≈
≈ 1.29 × 1028 cm. We shall use these observational conditions to fix the free
parameters of the model A1 and ε (the constants of integration) and to define
the present time 21 t̃p. Observational data also show that for different redshifts
the fine structure constant variation does not exceed 10−5: |∆α| < 10−5 [411].

Below, all quantities are measured in the Hubble units. For example, the
scale factors are measured in cH−1

p and synchronous time t is measured in
H−1
p . Therefore, ã0(t̃p) = 1 and Hp = 1.

20 Note that overdots in definition of Hubble and deceleration parameters after Eqs. (1.15)
and (1.16) denote the derivatives with respect to the conformal time η.

21 It is obvious that our model cannot pretend to describe the full history of the Universe.
We try to apply this model to explain the late time acceleration of the Universe which
starts at the redshift z ≈ 0.35. Before this time, the Universe evolution is described by the
standard Big Bang cosmology. Therefore, in our model t̃ = 0 corresponds to z = 0.35 (i.e.
q0(z = 0.35) = 0) and t̃p is the time from this moment to the present day.
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Fig. 3.2. The scale factors (in the Einstein frame) of the external space (left panel) and
internal space (right panel) versus synchronous time t̃

To fix all free parameters of the model, we use the following logic chain.
First, from the equation q0(τ) = 0 we obtain the harmonic time τin of the
beginning of the stage of acceleration. We find that this equation has two roots
which describe the beginning and end of the acceleration. Second, we define the
constant of integration A1 from the equation z = 0.35 = 1/ã0(τin) − 1 where
we use the condition that acceleration starts at z = 0.35 and that ã0(τp) = 1.
Third, we find the present harmonic time τp from the condition ã0(τp) = 1. It
is worth noting that τin, τp and A1 are the functions of ε. To fix this parameter,
we can use the condition H0(τp) = 1. Finally, to find the value of the present
synchronous time, we use the equation t̃p =

∫ τp
τin
f(τ)dτ where f(τ) = ã3

0(τ).
In the case d1 = 7, direct calculations give for the constants of integration
A1 = 1.23468 and ε = 1.53097. It results in t̃p = 0.296 ∼ 4Gyr, q0(t̃p) =
= −0.960572 and for the internal space a1(t̃p) = 1.24319, H1(tp) = 0.0500333.

Dynamical behavior of the considered model is depicted in Figs. 3.2—3.4
[463]. Fig. 3.2 shows the dynamics of the external space scale factor ã0(t̃) (left
panel) and the internal space scale factor a1(t̃)( right panel). Here, t̃ = 0.296 is
the present time, and t̃ = 0 and t̃ = 1.28 correspond to the beginning and the
end of the stage of acceleration, respectively. It follows that the internal space is
the same order of magnitude as the external one at the present time. However,
for the standard Kaluza—Klein models there is the experimental restriction
on sizes of the extra dimensions: lextra ≤ 10−17 cm. That is ã0/a1 ≥ 1045.
Obviously, our model does not satisfy this condition. One of the possible way
to avoid this problem consists in proposal that the Standard Model matter is
localized on a brane. In this case the extra dimensions can be much bigger that
10−17 cm (even an infinite). However, such model requires the generalization
of our metric (3.210) to the non-factorisable case and this investigation is out
of the scope of this section.

We plot in Fig. 3.3 the evolution of the Hubble parameters H0(t̃) (left
panel) and H1(t̃) (right panel). We can see that their values are comparable
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Fig. 3.3. The Hubble parameters of the external space (left panel) and internal space (right
panel) versus synchronous time t̃

Fig. 3.4. The deceleration parameter of the external space (left panel) and variation of the
fine structure constant (right panel) versus synchronous time t̃

with each other. Thus, the internal space is rather dynamical and this fact is the
main reason of too large variations of the fine structure constant (see Fig. 3.4).

We present in Fig. 3.4 the evolution of the deceleration parameter q0(t̃)
(left panel) and the variation of the fine structure constant ∆α(t̃) (right panel).
Left picture clearly shows that the acceleration stage has the final period for the
considered model. It starts at t̃ = 0 and finishes at t̃ = 1.28. The right picture
demonstrates that ∆α does not satisfy the observable restrictions |∆α| < 10−5.
There is the only very narrow region in the vicinity of z = 0.13 (or equivalently
t̃ = 0.17 in synchronous time) where ∆α changes its sign. However, it is the
exceptional region but restriction |∆α| < 10−5 works for very large diapason
of redshifts z [411].

Therefore, despite the satisfactory description of the accelerated expansion
of our Universe at the late stages of its evolution, this model has two signifi-
cant drawbacks. On the one hand, the internal space is too big with respect
to the standard Kaluza—Klein restrictions ainternal ≤ 10−17cm and, on the
other hand, this space is not sufficiently constant to satisfy the observable
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limits on the fine-structure constant variations. These are typical problems
for the Kaluza—Klein multidimensional cosmological models with dynamical
internal spaces.

3.7. Problematic aspects of Kaluza—Klein models

In this section we want to point out some problems of Kalu-
za—Klein models. We first consider a model with a matter source in the
form of a point-like mass. This approximation seems physically reasonable at
sufficiently large distances from the compact material sources. Moreover, this
approach works very well in General Relativity for calculation in a weak-field
limit of the formulas for the well known gravitational experiments: perihelion
shift, deflection of light and time delay of radar echoes [465]. Thus, we expect
that such approach will be also applicable to Kaluza—Klein models. However,
it is not the case.

To prove it, we can use asymptotic expression for the metric coefficients 22

in (D = 1 + D)-dimensional space-time with toroidal extra dimensions. For a
point-like mass m at rest the line element is [466]:

ds2 ≈

(
1− rg

r3
+

r2
g

2r2
3

)
c2dt2 −

(
1 +

1

D − 2

rg
r3

)(
dr2

3 + r2
3dΩ2

2

)
−

−
(

1 +
1

D − 2

rg
r3

) N∑
i=1

ds2
i , (3.226)

where r3 is the length of a radius vector in three-dimensional space, rg =
= 2GNm/c

2 is three-dimensional Schwarzschild radius, GN is the Newtonian
gravitational constant, ds2

i =
∑di

j=1 dξ
2
(i)j is a metric of di-dimensional torus,

and we used three-dimensional isotropic (with respect to our three-dimensional
space) coordinates. We suppose that the (D = 3 +D′)-dimensional space has
the factorisable geometry of a product manifold MD = R3×T d1

1 × ...×T dNN . R3

describes the three-dimensional asymptotically flat external (our) space and
the internal space consists of N di-dimensional tori with the total number of
the extra dimensions D′ =

∑N
i=1 di.

We would like to mention that metrics (3.226) is written for the distances
from gravitating mass m which much larger than periods of tori. In this case
we can restrict ourselves to the zero Kaluza—Klein mode (see [472, 473]). For
example, this approximation is very well satisfied for the planets of the solar

22 In this section 3.7, we use the sign convention of the book [465]. We also indicate
explicitly the speed of light c, because in weak-field approximation we expand quantities in
powers of 1/c. It is also convenient to use the letter D to indicate the total number of spatial
dimensions and the dimension of space-time is denoted by the letter D, i.e. D = 1 +D.
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system because the inverse-square law experiments show that the extra di-
mensions in Kaluza—Klein models should not exceed submillimeter scales [406].
Then, the gravitational potential reads ϕ(r) ≈ −GNm/r3 = −rgc2/(2r3). Mo-
reover, in the case of gravitating mass uniformly smeared over the extra di-
mensions, the Newton’s law preserves its shape for arbitrary distances and this
approximate formula for ϕ(r) becomes the exact equality [472,473].

Now, we can use the metric (3.226) to calculate the perihelion shift and
deflection of light, and to compare the results with the observations. Such
calculations were performed in [466] where it was shown that considered
model significantly contradicts the experimental data. However, there is more
short way to show it with the help of parameterized post-Newtonian (PPN)
parameters. According to PPN formalism (see, e.g., Refs. [467,468]), the static
spherically symmetric metrics in isotropic coordinates is parameterized as
follows:

ds2 =

(
1− rg

r3
+ β

r2
g

2r2
3

)
c2dt2 −

(
1 + γ

rg
r3

)(
dr2

3 + r2
3dΩ2

2

)
. (3.227)

In General Relativity we have β = γ = 1. To get β and γ in the case of a
point-like mass, it is sufficient to compare the metric coefficients in (3.227)
with the corresponding asymptotic expression (3.226) what immediately gives
the PPN parameters for the point-like mass

β = 1, γ =
1

1 +D′
. (3.228)

The latter expression shows that parameter γ coincides with the correspon-
ding value of General Relativity if the number of extra dimensions D′ = 0.
Only in this case γ = 1. According to the experimental data, γ should be very
close to 1. The tightest constraint on γ comes from the Shapiro time-delay
experiment using the Cassini spacecraft: γ− 1 = (2.1± 2.3)× 10−5 [469—471].
On the other hand, for the point-like mass we get γ−1 = −D′/(1+D′) ∼ O(1)
what is very far from the experimental data.

After this negative (and, to some extent unexpected) result with respect to
point-like masses, it is of interest to find metrics which are in good agreement
with observations. From this point the soliton solutions play important role.
These solutions belong to a class of metrics of the form

ds2 = A(r3)c2dt2 +B(r3)(dr2
3 + r2

3dΩ2
2) +

N∑
i=1

Ci(r3)ds2
i . (3.229)

They are vacuum solutions of Einstein equations with the proper boundary
conditions. The dependence of the metric coefficients in (3.229) only on r3

means that the matter source for such metrics is uniformly smeared over the
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extra dimensions [472,473]. It is clear that in this case the non-relativistic gravi-
tational potential depends only on r3 and exactly coincides with the Newtonian
one. However, as we shall see below, in general case this coincidence is not suffi-
cient to be agreement with observations.

In 5-dimensional space-time, soliton solutions were found in papers [474—
476]. Then, they have been generalized to an arbitrary number of dimensions
in [358, 477–479]. To our knowledge, the most general form of these solutions
was given in [478] and in isotropic coordinates it reads

ds2 =

(
ar3 − 1

ar3 + 1

)2α

c2dt2 −
(

1− 1

a2r2
3

)2(ar3 + 1

ar3 − 1

)2α(1−τ)(
dr2

3 + r2
3dΩ2

2

)
−

−
N∑
i=1

(
ar3 + 1

ar3 − 1

)2αγi

ds2
i , (3.230)

where parameters α and γi satisfy the condition

α2[(τ − 1)2 + σ + 1] = 2, τ ≡
N∑
i=1

diγi, σ ≡
N∑
i=1

diγ
2
i . (3.231)

In the weak-field limit 1/(ar3)� 1, the metric coefficients are

A(r3) ≈ 1− 4α

ar3
+

16α2

a2

1

2r2
3

, (3.232)

B(r3) ≈ −1− 4α(1− τ)

ar3
, (3.233)

Ci(r3) ≈ −1− 4αγi
ar3

. (3.234)

The comparison of these asymptotes with the metric coefficients in Eq. (3.226)
gives a possibility to single out the soliton solution which corresponds to the
point-like mass. To get such correspondence, first, the following relation must
hold: 4α

a
= rg. (3.235)

It follows that sign a = signα. Because the solution (3.230) is invariant
under the simultaneous change a → −a, α → −α, we can choose a, α > 0.
Second, the parameters γi should take the same value for all internal spaces:

γ1 = γ2 = ... = γN =
1

1 +D′
, (3.236)

and, third, the parameters α and a are

α =

√
2(1 +D′)

2 +D′
, a =

4

rg

√
2(1 +D′)

2 +D′
, (3.237)

where we also took into account the constraint (3.231) and the relation (3.235).
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Therefore, Eqs. (3.235)—(3.237) completely define the point-mass soliton,
i.e. the solution where delta-shaped T00 is the only non-zero component of the
energy-momentum tensor. To demonstrate it, we derive in the next subsection
equations of state for general soliton solution (3.230). In 5-dimensional space-
time, the experimental bounds as well as equations of state for soliton soluti-
ons were investigated in [480]. In the present section we consider the general
case (3.230) of arbitrary number of dimensions and perform our investigations
following Ref. [481].

3.7.1. Equations of state in general case

As we noted above, the dependence of the metric coefficients
in (3.230) only on r3 means that the matter source for such metrics is uni-
formly “smeared” over the extra dimensions. It is clear that in this case the
non-relativistic gravitational potential depends only on r3 and exactly coin-
cides with the Newtonian one [472, 473]. Because the function A(r3) is the
metric coefficient g00 (which in the weak-field limit defines the non-relativistic
potential) this demand leads to the condition of the form of (3.235): 4α/a =
= rg = 2GNm/c

2. Then, the expansions (3.232)—(3.234) become

A(r3) ≈ 1− rg
r3

+
1

2

r2
g

r2
3

, (3.238)

B(r3) ≈ −1− (1− τ)
rg
r3
, (3.239)

Ci(r3) ≈ −1− γi
rg
r3
. (3.240)

From these expressions, we can easily get the perturbations h00 = −rg/r3,
hαα = −(1 − τ)rg/r3 and hµiµi = −γirg/r3 of the order of 1/c2 over the flat
space-time, that gives us the possibility to find components of Ricci tensor up
to the same order:

R00 ≈
1

2
4h00 =

1

2
κ2

0mδ(r3)c2 =
1

2
κ2

0ρ(3)c
2, (3.241)

Rαα ≈
1

2
4hαα =

1

2
(1− τ)κ2

0ρ(3)c
2, α = 1, 2, 3, (3.242)

Rµiµi ≈
1

2
4hµiµi =

1

2
γiκ

2
0ρ(3)c

2, (3.243)

µi = 1 +
i−1∑
j=0

dj , ..., di +
i−1∑
j=0

dj ; i = 1, ..., N,

where d0 = 3, κ2
0 ≡ 8πGN/c

4 and 4 = δik∂2/∂xi∂xk is the D-dimensional
Laplace operator (see [466] for details). We also introduced the non-relativistic
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three-dimensional mass density ρ(3) = mδ(r3), which is connected with D-
dimensional mass density ρ = ρ(3)/VD′ . Here, VD′ is the total volume of
the internal spaces. For example, if i-th torus has periods a(i)j , then VD′ =

=
∏N
i=1

∏di
j=1 a(i)j .

Now, we want to define the components of the energy-momentum tensor
with the help of Einstein equation in (1 +D)-dimensional space-time:

Rik =
2SDG̃D
c4

(
Tik −

1

D − 1
gikT

)
, (3.244)

where SD = 2πD/2/Γ(D/2) is the total solid angle (surface area of the (D − 1)-
dimensional sphere of unit radius) and G̃D is the gravitational constant in
the (D = 1 + D)-dimensional space-time. Introducing the quantity κ2

D ≡
≡ 2SDG̃D/c

4 (see also footnote 1 where we should replace D by D = 1 + D)
and keeping in mind that we consider compact astrophysical object at rest in
our three-dimensional space (it results in T11 = T22 = T33 = 0), we arrive at
the following Einstein equations:

1

2
κ2

0ρ(3)c
2 ≈ κ2

D

(
T00 −

1

D − 1
Tg00

)
, (3.245)

1

2
(1− τ)κ2

0ρ(3)c
2 ≈ κ2

D

(
− 1

D − 1
Tgαα

)
, (3.246)

1

2
γiκ

2
0ρ(3)c

2 ≈ κ2
D

(
Tµiµi −

1

D − 1
Tgµiµi

)
. (3.247)

Therefore, the required components of the energy-momentum are

T00 ≈
κ2

0VD′

κ2
D

(
1− τ

2

)
ρc2, Tαα = 0, (3.248)

Tµiµi ≈
κ2

0VD′(γi − 1 + τ)

2κ2
D

ρc2. (3.249)

The equation for the 00-component shows that the parameter τ cannot be
equal to 2 because for τ = 2 we get T00 = 0, what corresponds to uninteresting
case of absence of matter. Moreover, T 0

0 = ε is the energy density of matter
(remind that in this section we use the sign convention of the book [465]).
Therefore, up to the terms 1/c2, we have T00 ≈ ε ≈ ρc2. It requires the following
relation between Newtonian and multidimensional gravitational constants:

κ2
0 =

2

2− τ
κ2
D/VD′ =⇒ 4πGN =

2

2− τ
SDG̃D/VD′ . (3.250)
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In the particular case of a point-like mass source with τ = D′/(1 + D′), this
relation was given in [473, 480]. From Eqs. (3.248) and (3.249) we also obtain
the relation

Tµiµi ≈
γi − 1 + τ

2− τ
T00. (3.251)

Taking into account that up to the terms 1/c2, components Tµiµi define
pressure in i-th internal space: Tµiµi ≈ Pi, we get from Eq. (3.251) the following
equations of state in these spaces:

Pi =
γi − 1 + τ

2− τ
ε, i = 1, ..., N. (3.252)

Since T11 = T22 = T33 = 0, in our three-dimensional space we have dust-
like equation of state: P0 = 0. In the case of a point-like mass, the parameters
γi satisfy the condition (3.236). It can be easily seen that for these values of
γi, all Tµiµi are equal to zero. Therefore, in this case, T00 is the only non-zero
component and in the external/our space, as well as in all internal spaces, we
have the same dust-like equations of state: Pi = 0, i = 0, ..., N.

3.7.2. Latent solitons

Asymptotic expressions (3.238) and (3.239) also enable to
get the PPN parameters in general case. Comparing these equations with the
corresponding metric coefficients in (3.227), we immediately find for solitons:

βs = 1, γs = 1− τ. (3.253)

With the help of these PPN parameters, we can easily get formulas for the
famous gravitational experiments [467,470]:

(i) Perihelion shift

δψ =
6πmGN

λ (1− e2) c2

1

3
(2 + 2γs − βs) =

=
6πmGN

λ (1− e2) c2

3− 2τ

3
=

πrg
λ (1− e2)

(3− 2τ), (3.254)

where λ is the semi-major axis of the ellipse and e is its eccentricity.
(ii) Deflection of light

δψ = (1 + γs)
rg
ρ

= (2− τ)
rg
ρ
, (3.255)

where ρ is the distance of closest approach (impact parameter) of the ray’s
path to the gravitating mass m.
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(iii) Time delay of radar echoes (Shapiro time-delay effect)

δt = (1 + γs)
rg
c

ln

(
4rEarthrplanet

R2
Sun

)
=

= (2− τ)
rg
c

ln

(
4rEarthrplanet

R2
Sun

)
. (3.256)

Comparison of the formulas (3.254)—(3.256) with the experimental data
gives the possibility to restrict parameters of the soliton solutions. In fact, as
in the case of the point-like mass, we can also get it directly from experimental
restriction on PPN parameter γ: γ−1 = (2.1 ± 2.3)×10−5. Thus, from (3.253)
we find that solitonic parameter τ should satisfy the condition

τ = −(2.1± 2.3)× 10−5. (3.257)

In the case of the point-like massive soliton described by Eqs. (3.235)—
(3.237), we have τ = D′/(1 + D′) ∼ O(1), what obviously contradicts to
Eq. (3.257).

Equation (3.253) shows that there is very interesting class of solitons which
are defined by the condition

τ =

N∑
i=1

diγi = 0. (3.258)

With the help of the gravitational experiments mentioned above, it is
impossible to differ these Kaluza—Klein solitons from general relativity because
they have γs = 1 as in general relativity 23. For this reason we called these
solutions latent solitons [481]. For these latent solitons, equations of state
(3.252) in the internal spaces are

Pi =
γi − 1

2
ε, i = 1, ..., N. (3.259)

Black strings (N = 1, d1 = 1) and black branes (N > 1) are characterized
by the condition that all γi = 0, i ≥ 1. Obviously, they belong to the class of
latent solitons and they have the equations of state

Pi = −1

2
ε, i = 1, ..., N. (3.260)

23 It can be easily seen from equations (3.238)—(3.240) that the parameter τ defines also
the difference between perturbations h00 and hαα: h00 − hαα = −τrg/r3. Precisely because
of this difference gravitational experiments in KK models and in General Relativity lead to
different results. When τ → 0, this difference disappears. The additional limit γi → 0 =⇒
=⇒ hµiµi → 0 provides stabilization of the internal spaces [380,480].
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It is known (see section (3.2.3) and Refs. [380, 480]) that in the case of
three-dimensional external/our space such equations of state are the only ones
which do not spoil the condition of the internal space stabilization for the
compact astrophysical objects with the dust-like equation of state P0 = 0 in
the external space. Therefore, it is tempting to treat non-zero parameters γi as a
measure of the latent soliton destabilization 24. However, a careful analysis (see
[483])shows that the variation of the total volume of the internal space is equal
to zero. Consequently, in the case of latent solitons variation of fundamental
constants are also absent.

We would like to stress the following: It is well known that black strings
(branes) have the topology

(4-dimensional Schwarzschild space-time)× (flat internal spaces).

In this case, it does not seem surprising that gravitational experiments lead
to the same results as for general relativity. However, the latent solitons, in
general case, do not have either Schwarzschildian metrics for 4-dimensional part
of space-time nor flat metrics for the extra dimensions. Nevertheless, within
the considered accuracy, it is also impossible to distinguish them from General
Relativity. This is really surprising.

To conclude this section, we would like to mention that the relation
between Newtonian and multidimensional gravitational constants for latent
solitons is reduced to the equation (3.13):

4πGN = SDG̃D/VD′ . (3.261)

3.7.3. Experimental restrictions on the equations
of state of a multidimensional perfect fluid

Now, we want to show in general case that for static spheri-
cally symmetric perfect fluid with dust-like equation of state in our space,
the condition h00 = hαα (which ensures the agreement with the gravitational
experiments at the same level of accuracy as General Relativity) results in
the latent soliton condition (3.258) and equations of state (3.259), and addi-
tional condition Rµiµi = 0 =⇒ hµiµi = 0 reduces (3.259) to (3.260) (which
is necessary for the internal space stability) and singles out d0 = 3 for the
number of the external dimensions.

24 If we rewrite equations of state in the form of Eq. (3.32) Pi = (αi − 1)ε, i = 0, ..., N ,
then for the latent solitons we have α0 = 1, αi = (1 + γi)/2, i = 1, ..., N . For these values
of α0, αi, we get on the right-hand side of the equation (3.41) (for d0 = 3) the terms
(γidi/2)κNρ(3). These terms are dynamical functions because of dynamical behavior of the
energy density ρ(3). This results in violation of the necessary condition for the internal space
stabilization.
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Let us consider a static spherically symmetric perfect fluid with energy-
momentum tensor (see footnote 22 about the sign convention in this section):

T ik = diag (ε,−P0, ...,−P0︸ ︷︷ ︸
d0 times

, ...,−PN , ...,−PN︸ ︷︷ ︸
dN times

). (3.262)

We recall that we are using the notations: i, k = 0, 1, ..., D; a, b = 1, ..., D;
α, β = 1, ..., d0 and µi = 1 +

∑i−1
j=0 dj , ..., di +

∑i−1
j=0 dj , i = 1, ..., N . For static

spherically symmetric configurations we have g0a = 0 and gab = 0, a 6= b.
Since we want to apply this model to ordinary astrophysical objects where
the condition T 0

0 � |Tαα| usually holds, we assume the dust-like equation of
state in d0-dimensional external space: P0 = 0, but the equations of state are
arbitrary ones in i-th internal space: Pi = ωiε. Obviously, ε is equal to zero
outside the compact astrophysical objects.

Moreover, we consider the weak-field approximation where the metric
coefficients can be expressed in the form

g00 ≈ 1 + h00, gaa ≈ −1 + haa, h00, haa ∼ O(1/c2). (3.263)

As an additional requirement, we impose that the considered configuration
does not contradict the observations. It will be so if the following conditions
hold: h00 = hαα and hµiµi = 0 (see Ref. [480]). In what follows, we define
which equations of state are obtained as a result of these restrictions. Taking
into account that T =

∑D
i=0 T

i
i = ε(1−

∑N
i=1 ωidi), Tαα = 0, ε ∼ O(c2) and,

up to terms c2, that T00 ≈ T 0
0, Tµiµi ≈ −Tµiµi , we get from the Einstein

equation (3.244) the non-zero components of Ricci tensor (up to 1/c2):

R00 ≈
εκD
D − 1

[
d0 − 2 +

N∑
i=1

di(1 + ωi)

]
, (3.264)

Rαα ≈
εκD
D − 1

[
1−

N∑
i=1

diωi

]
, (3.265)

Rµiµi ≈
εκD
D − 1

×

ωi
 N∑
j=0

′dj − 1

+ 1−
N∑
j=1

′djωj

, (3.266)

where κD ∼ O(1/c4) is defined in section 3.7.1 and the prime in the summati-
on of Eq. (3.266) means that we must not take into account the i-th term.
Eqs. (3.264) and (3.265) shows that R00 and Rαα components are related as
follows:

Rαα =
1−

∑N
i=1 diωi

d0 − 2 +
∑N

i=1 di(1 + ωi)
R00. (3.267)
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On the other hand, in weak-field limit the components of Ricci tensor read

R00 ≈
1

2
4h00, Raa ≈

1

2
4haa, a = 1, ..., D, (3.268)

where as usual we can put h00 ≡ 2ϕ/c2 and 4 is D-dimensional Laplace
operator defined in Eqs. (3.241)—(3.243). Therefore, from equations (3.267)
and (3.268) we obtain

hαα =
1−

∑N
i=1 diωi

d0 − 2 +
∑N

i=1 di(1 + ωi)
h00, α = 1, ..., d0. (3.269)

As we have mentioned above, to be in agreement with experiment at the same
level of accuracy as General Relativity we should demand hαα = h00, what
leads to the restriction on the parameters ωi of the equations of state:

3− d0 −
N∑
i=1

di = 2
N∑
i=1

diωi. (3.270)

In the case of three-dimensional external space (d0 = 3), this constraint is
reduced to N∑

i=1

di

(
ωi +

1

2

)
= 0. (3.271)

If we parameterize
ωi =

γi − 1

2
, i = 1, ..., N, (3.272)

then we arrive at the latent soliton condition (3.258). Therefore, the demand
that multidimensional perfect fluid (with dust-like equation of state in the
external space P0 = 0) provides the same results for gravitational experiments
as General Relativity, leads to the latent soliton equations of state (3.259) in
the internal spaces. However, it is known (see section 3.2.3) that the internal
spaces can be stabilized if multidimensional perfect fluid (with P0 = 0) has
the same equations of state ωi = −1/2 in all internal spaces and the external
space is three-dimensional d0 = 3. In other words, it takes place if all γi = 0
in (3.272). Let us show that the additional requirement Rµiµi = 0 ensures the
fulfillment of these conditions. Indeed, from Eq. (3.266) we get

Rµiµi = 0 =⇒ ωi = −1

2
, i = 1, ..., N, (3.273)

where we used the constraint (3.270) 25. Now, substitution ωi = −1/2 in (3.270)
singles out d0 = 3. Therefore, the demand of the internal space stabilizati-

25 It can be also easily seen that Rµiµi = 0 =⇒ 4hµiµi = 0, what, together with
the boundary conditions (finiteness of hµiµi at r3 = 0 and hµiµi → 0 for r3 → +∞), gives
hµiµi = 0.
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on leads, for multidimensional perfect fluid (with P0 = 0), to the black stri-
ng/brane equations of state (3.260) in the internal spaces and, additionally, it
selects uniquely the number of the external spaces to be d0 = 3.

To conclude the consideration of this perfect fluid, we want to get the
metric coefficients up to O(1/c2) (see Eq. (3.263)). To do so, it is sufficient to
define the function ϕ. It can be easily seen from (3.264) and (3.268) that this
function satisfies the equation

4ϕ =
c2

2
4h00 ≈ c2R00 ≈ SDG̃Dρ, (3.274)

where we use the constraint (3.270) for arbitrary d0 and relation ε ≈ ρc2.
Therefore, to get the metric coefficients we need to solve this equation with
proper boundary conditions. We want to reduce this equation to ordinary
Poisson equation in three-dimensional external space d0 = 3. To do so, we
consider the case in which matter is uniformly smeared over the extra dimensi-
ons, then ρ = ρ(3)/VD′ (see section 3.7.1).

In this case the non-relativistic potential ϕ depends only on our external
coordinates and 4 is reduced to three-dimensional Laplace operator 43. The-
refore, Eq. (3.274) is reduced to

43ϕ ≈ (SDG̃D/VD′)ρ(3) = 4πGNρ(3), (3.275)

where we use the relation (3.261) between Newtonian and multidimensional
gravitational constants. This is usual Poisson equation. It is worth noting that
ρ(3) = 0 outside the compact astrophysical object and it is necessary to solve
(3.275) inside and outside of the object, followed by matching these solutions
at the boundary.

We can summarize the main conclusion of this section as follows. For
compact astrophysical objects with dust-like equation of state in the external
space (P0 = 0), the demand of the agreement with the gravitational
experiments requires the condition (3.257), namely: τ = −(2.1 ± 2.3)× 10−5.
However, to be at the same level of accuracy as General Relativity, we must
have τ = 0. In other words, we should consider the latent solitons with equati-
ons of state (3.259) in the internal spaces (in the case d0 = 3). Moreover,
the condition of stability of the internal spaces singles out black strings/bra-
nes from the latent solitons and leads uniquely to Pi = −(1/2)ε as the black
string/brane equations of state in the internal spaces, and to the number of
the external dimensions d0 = 3. The main problem with the black strings/bra-
nes is to find a physically reasonable mechanism which can explain how the
ordinary particles forming the astrophysical objects can acquire rather specific
equations of state (Pi = −ε/2) in the internal spaces.

As we have seen above, to be in agreement with the observations, it is
necessary to break the symmetry (in terms of equations of state) between the
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external/our and internal spaces. In our opinion, braneworld models are the
most promising alternative to the KK models because they naturally break the
symmetry between our three-dimensional Universe and the extra dimensions,
and the following chapter is devoted to the problems of dark energy and dark
matter in the braneworld models.

3.8. Summary

In this chapter, we have considered a possibility for our
space-time to have extra spatial dimensions, and what observational conse-
quences follow from this. In particular, can we explain dark matter and dark
energy due to the existence of the extra dimensions? We supposed that fields
from the Standard Model of particle physics are not localized on a three-
dimensional hypersurface but can propagate throughout the multidimensional
space-time. Such models are called Kaluza—Klein ones. The case of localization
will be considered in the following chapter 4.

We first investigated an important problem of stable compactification of
the internal space. The point is that in Kaluza—Klein models, to make the
extra dimensions unobservable at the present time, the internal spaces have to
be compact and reduced to very small scales (of the order of or less than the
Fermi length). Therefore, we proposed general mechanism of dimension reducti-
on of multidimensional models. We have shown that after such reduction the
considered models take the form of an effective four-dimensional Brans—Dicke
or Einstein (after conformal transformation) theories with scalar fields. These
scalar fields are defined by scale factors of the internal spaces. The form of a
potential energy of these fields depends on topology of the internal spaces and
matter content of considered models. Moreover, to avoid a problem of too large
variations of the fine structure constant, the compactification have to be stable
against fluctuations of these fields (i.e. small fluctuations of the scale factors of
the internal spaces). This means that the effective potential of the model obtai-
ned under dimensional reduction to a four-dimensional effective theory should
have minima with respect to these fluctuations. These minima play the role of
the cosmological constant in our observable Universe and can be dark energy
in the case of positive values. We have also shown that small excitations of a
system near a minimum of the effective potential can be observed as massive
scalar fields in the external (our) space-time. These scalar fields very weakly
interact with the Standard Model particles. Therefore, they belong to a class of
the dark matter particles. We called these particles gravitational excitons. They
may play an important role during the Universe evolution. Therefore, we have
investigated the dynamical behavior of gravexcitons depending on the value
of their mass. We have also considered effects of Lorentz invariance violation
due to interaction between gravexcitons and four-dimensional photons. It was
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shown that experimental limitations on such violation can restrict parameters
(e.g. masses of gravexcitons) of the models.

In conventional cosmology matter fields are taken into account in a phe-
nomenological way as a perfect fluid. Therefore, we have proven an important
theorem (the no-go theorem) which defines the classes of the perfect fluid
allowing the stable compactification of the internal spaces.

Non-linear gravitational f(R) models have attracted the great deal of
interest from the eighties of last century because these models can provi-
de a natural mechanism of the early inflation. Recently, it was realized that
these models can also explain the late-time acceleration of the Universe (dark
energy). This fact resulted in a new wave of papers devoted to this topic.
Therefore, we have generalized these theories to the case of multidimensional
space-time. We have shown that these models are reach enough to explain both
early inflation and accelerated expansion of the Universe at a late stage of its
evolution. However, there are still problems with fine-tuning of parameters of
the models as well as with sufficient number of e-foldings.

We have also considered multidimensional cosmological models which can
mimic dynamical dark energy. They are the so-called Sp-branes. In this case,
there are no minima of the effective potential for gravexcitons and acceleration
has different origin. For example, the negative curvature of the internal space
can lead to such acceleration. However, we have shown that, despite the sati-
sfactory description of the accelerated expansion of our Universe at the late
stages of its evolution, this model has two significant drawbacks. On the one
hand, the internal space is too big with respect to the standard Kaluza—Klein
restrictions and, on the other hand, this space is not sufficiently invariable to
satisfy the observable limits on the fine-structure constant variations. These are
typical problems for the Kaluza—Klein multidimensional cosmological models
with dynamical internal spaces.

It is well known that General Relativity in four-dimensional space-time
is in good agreement with gravitational experiments such as perihelion shift,
deflection of light, time delay of radar echoes and PPN parameters. Therefore,
it is important to verify Kaluza—Klein models as to their conformity with these
experiments. We first have considered models with toroidal compactification
of the extra dimensions. A matter source was taken in the form of a point-like
mass with a dust-like p = 0 equation of state in all (external and internal)
spatial dimensions. This approach works very well in General Relativity for
calculation in a weak field limit of the formulas for the gravitational experi-
ments. However, in the case of considered Kaluza—Klein models, we found
that PPN parameters demonstrate good agreement with the experimental data
only in the case of ordinary three-dimensional space. Therefore, the point-like
gravitational source with dust-like equations of state strongly contradicts the
observations. It is important to note that the result does not depend on the
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point-like approximation. Instead of the delta-shaped form, we can consider
a compact object in the form of a perfect fluid with the dust-like equation
of state in all spatial dimensions, and we obtain the same negative result. It
turned out that to satisfy the experimental data, the matter source should have
negative equations of state (tension) in the internal spaces. For example, latent
solitons (which are exact solutions (3.230) with condition (3.258)) have such
tension and they satisfy the gravitational tests at the same level of accuracy
as General Relativity. The uniform black strings and black branes are parti-
cular examples of the latent solitons. It is of interest to understand why some
models meet the classical gravitational tests, while others do not. In our recent
paper [483], we have shown that the variation of the total volume of the internal
spaces generates the fifth force in the case of toroidal models with the dust-
like equations of state in all spatial dimensions. This is the main reason of the
problem. However, in the case of the latent solitons, tension of the gravitating
source fixes the internal space volume, eliminating the fifth force contribution
and resulting in agreement with the observations. Therefore, tension plays a
crucial role here. In the case of spherical compactification of the internal space,
the fifth force is replaced by the Yukawa interaction for models with the stabi-
lized internal space [484—486]. For large Yukawa masses (gravexciton masses),
the effect of this interaction is negligibly small, and considered models satisfy
the gravitational tests at the same level of accuracy as General Relativity. It
happens for an arbitrary equation of state (including the dust-like p = 0) in
the internal space. However, we have shown [486,487] for this model that gravi-
tating masses acquire effective relativistic pressure in the external space. Such
pressure contradicts the observations of compact astrophysical objects (e.g., the
Sun). The tension (with the parameter of equation of state ω = −1/2) in the
internal space is the only possibility to preserve the dust-like equation of state
in the external space. Therefore, in spite of agreement with the gravitational
experiments for an arbitrary value of ω, tension (ω = −1/2) also plays a crucial
role for the models with spherical compactification. The problematic aspect of
all these models with tension consists in physically reasonable explanation of
the origin of tension for ordinary astrophysical objects.

205



CHA PTER

�

BRANEWORLD MODELS

4.1. Introduction

206

Cosmological braneworldmodels constitute the branch of phy-
sics with non-compact (“large”) extra-dimensions in which
our world is a four-dimensional hypersurface (the brane)
embedded in a higher-dimensional manifold. This represents
an alternative to the Kaluza—Klein compactification of
extra dimensions that was described in Sec. 3.1 of chapter 3.

One of the first models with localization of matter on
the brane was constructed in [488] (see also [489] and reviews
in [383,490]). In this model, the brane represented a domain
wall (kink) in a five-dimensional space-time, constructed of a
real scalar field ϕ with spontaneous breaking of the discrete
Z2 symmetry with respect to the transformation ϕ→ −ϕ. A
Dirac fermion field coupled to this scalar has a zero Kaluza—
Klein mode (i.e., with zero four-dimensional invariant mass)
which is localized in the neighborhood of the brane and
has left chirality. Such massless fermions can imitate matter
localized on the brane. At high interaction energies, such
zero modes can create excitations from the continuum of
the Kaluza—Klein spectrum, which then would correspond
to the process of particles leaving the brane and going into
higher dimension [492—493]. It is also possible (but more
difficult) to confine vector gauge fields on the brane in the
field-theoretical setup [494].

More recent motivation for alternative compactification
of extra dimensions is the discovery of p-branes — extended
dynamical submanifolds in the multidimensional space — in
string theory [337,338]. Some types of p-branes can confine
matter fields; for instance, gauge fields can live on the so-
called Dirichlet-branes, or D-branes (see a review in [495]).
Dp-branes are (p+ 1)-dimensional time-like hypersurfaces
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Fig. 4.1. An open string whose
ends are attached to a D-brane, and
a closed string that can propagate
freely in a higher-dimensional space

at which the ends of open strings can be
localized (see Fig. 4.1). Since the ends of
open strings carry gauge fields, these fields
on a fundamental level are (p + 1)-dimen-
sional objects residing entirely on the brane
and having no Kaluza—Klein counterparts.
On the other hand, closed strings, descri-
bing excitations of spin two (i.e., gravitons),
can freely propagate in the multidimensional
volume. This explains the basic structural
features of the new picture of extra dimen-
sions, in which matter fields and gravity play
different role.

The idea of a “braneworld” arises na-
turally in the context of the fundamental
M-theory (see [496] as a review). Although
the phenomenological models usually under
consideration in cosmology are quite simpli-
stic, one can hope that the analogs of at least some of their properties can
be found in a realistic fundamental theory. This relates, in particular, to the
properties of gravity and dark energy in the braneworld model, which is the
subject of the present chapter.

In the end of 1990ies, the braneworld theory gave a fresh view of the
problem of the Planck hierarchy, which served as one of the motivations for
its subsequent development. In the model proposed by Arkani-Hamed, Dimo-
poulos and Dvali (the ADD model) [497] (see also [498]), a multidimensional
gravitational action of Hilbert—Einstein type

S = MD−2

∫
R
√
−g dDx, (4.1)

was under consideration, where M is the Planck mass in a D-dimensional
space-time, and R is the curvature scalar of the corresponding metric gab.

In the presence of a three-brane, under compactification of the extra d =
= D − 4 dimensions and under the assumption of independence of the gravi-
ton wave function on the extra coordinates, action (4.1) reduces to a four-
dimensional effective action on the brane of the form

Sbrane = MP

∫
R
√
−h d4x, (4.2)

where R is the curvature scalar of the induced metric hab on the brane, and the
Planck massMP is expressed through the fundamental massM and characteri-
stic compactification radius of extra dimensions L as follows:

MP = M (ML)d/2. (4.3)
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By setting M ∼ 1 TeV, one can estimate the value of L:

L ∼M−1

(
MP

M

)2/d

∼ 1032/d−17 cm. (4.4)

Of interest is the case d = 2, for which we have L ∼ 1 mm. The analysis
of the processes of graviton production during supernovae explosions leads
to a somewhat stronger constraint on the quantity M , namely [383, 499],
M > 30 TeV, which gives L ∼ 1−10 µm for d = 2. Thus, compactificati-
on of extra dimensions on very large (from particle-physics viewpoint) spatial
scale, in principle, could solve the problem of the Planck hierarchy, at the
same time leading to modifications of the law of gravity at small distances.
This observation stimulated search of the deviation of the gravitational law
from Newtonian at submillimeter distances.

The ADD model did not address the problem of hierarchy connected with
a large spatial compactification scale L. Moreover, this model neglected the
curvature of the multidimensional space, in particular, caused by possible gravi-
tational effect of the brane in this space. Both shortcomings were removed
in the model due to Randall and Sundrum (the RS model) [500, 501]. Inspi-
red by the eleven-dimensional Hořava–Witten model [502,503] on the orbifold
R10×S1/Z2, this version of the theory had only one large extra spatial dimensi-
on. The arising effective five-dimensional space-time was curved, and the four-
dimensional character of the laws of gravity on the brane was achieved by locali-
zation of the massless gravitational mode in the neighborhood of the brane.
The flat character of the brane (i.e., the absence of a large effective cosmological
constant on the brane) was achieved by fine tuning the brane tension σ and the
gravitational and cosmological constants in the fife-dimensional space-time.

The next important step in the construction of braneworld models was
made in [504,505] (and, independently, in [506]), where it was pointed out that
the quantum character of the fields localized on the brane, in general, leads to
the appearance of the term with the curvature scalar of the induced metric on
the brane. (This mechanism of generating an effective action for gravity was,
in fact, first considered by Sakharov [507].) It is this version of the theory that
will be the focus of our discussion in this chapter.

4.2. General setup and notation

Throughout this chapter, our main object of investigation
will be a time-like hypersurface (called brane) in a five-dimensional manifold
B (the bulk). In this case it is convenient to use the conventions of [508]. Speci-
fically, the vectors and tensors tangent to the brane are regarded as vectors
also tangent to the five-dimensional manifold, and thus all tensors carry the
five-dimensional abstract indices a, b, c, ... By a tensor field tangent to the
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brane, we mean any tensor field T a···b··· defined at the position of the brane
and such that

naT
a···

b··· = nbT a···b··· = ... = 0 (4.5)

for any vector field na normal to the brane.
The metric in the bulk is denoted by gab, while the induced metric on the

brane is hab = gab − nanb, where na is the unit vector field normal to the
brane, which we always set to be the inner normal, pointed from the brane in
the direction of the bulk space. Everywhere we employ the space-time signature
(−,+,+,+,+).

The induced metric on the brane defines the unique covariant derivative on
the brane compatible with this metric, which we denote by Da, to distinguish
it from the covariant derivative in the five-dimensional bulk space ∇a. The
curvature tensor for gab in the bulk is denoted by Rabcd. The curvature tensor
of hab on the brane is denoted as Rabcd; regarded as a tensor in B, it is tangent
to the brane by construction. The tensor of extrinsic curvature of the brane in
B is defined as

Kab = hca∇cnb ≡ −
1

2
Lnhab, (4.6)

where Ln denotes the lie derivative along the vector field na (arbitrarily but
smoothly extended from the brane to the bulk space). It is also tangent to the
brane by definition, as can easily be verified.

We consider a braneworld model described by the following simple yet
generic action, which includes gravitational and cosmological constants in the
bulk (B) and on the brane:

S =
N∑
i=1

M3
i

∫
Bi

(Ri − 2Λi)− 2

∫
brane

Ki

+

+

∫
brane

(
m2R− 2σ

)
+

∫
brane

L(hab, φ). (4.7)

Here, Ri is the scalar curvature of the five-dimensional metric giab on Bi,
i = 1, ..., N , the N bulk spaces for which the brane is a boundary (see the
left panel in Fig. 4.2), and R is the scalar curvature of the induced metric hab
on the brane. The quantity Ki = Ki

abh
ab is the trace of the symmetric tensor

of extrinsic curvature Ki
ab of the brane in the space Bi. The symbol L(hab, φ)

denotes the Lagrangian density of the four-dimensional matter fields φ the
dynamics of which is restricted to the brane so that they interact only with
the induced metric hab. All integrations over Bi and over the brane are taken
with the corresponding natural volume elements. The symbolsMi, i = 1, ..., N,
and m denote the Planck masses of the corresponding spaces, Λi, i = 1, ..., N,
are the five-dimensional cosmological constants on each side of the brane, and
σ is the brane tension.
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Fig. 4.2. On the left: A brane as a boundary of several volume spaces. The field theory of
this configuration is studied in [509]. On the right: A special, physical, case of two volume
spaces

Action (4.7) can be regarded as the simplest local action for gravity in the
braneworld setup under consideration. Indeed, it is the lowest-order non-trivial
action in the number of derivatives acting on the metric. The braneworld model
described by (4.7) can be classified according to the number of the bulk spaces
N for which the brane is a boundary, and according to the values taken by the
fundamental constants Mi, Λi, m, and σ. We do it as follows:

• The case N = 1 is the simplest one and most frequently discussed in
the literature. It described a brane which is a boundary of a five-dimensional
bulk space. Alternatively, it can be obtained from the physically more natural
case N = 2 (see the right panel in Fig. 4.2) by making identification between
the two sides of the brane, or by imposing the so-called mirror symmetry of
reflection of the bulk space with respect to the brane. The cases with N ≥ 2
need not have this mirror symmetry.

In most of this chapter, we consider the simple case N = 1 (or brane with
mirror symmetry). The case of N = 2 (without the mirror symmetry) will be
considered in Sec. 4.11.

• A special case where m = 0 will be referred to as the Randall—Sundrum
(RS) type of model since it is this form of action that was employed in the
original papers [500,501].

• A more general case where m 6= 0 will be referred to as models with
induced gravity on the brane, and a special case of such models with vanishing
cosmological constants on the brane and in the bulk, i.e., σ = 0 and Λi = 0, will
be referred to as the Dvali—Gabadadze—Porrati (DGP) type of model owing
to its first appearance in [504].

Variation of action (4.7) with respect to the metric gab gives rise to the
Einstein equations in each of the i bulk spaces:

Gab + Λigab = 0 (4.8)
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and the junction conditions on the brane

m2Gab + σhab =
∑
i

M3
i

(
Ki
ab − habKi

)
+ Tab, (4.9)

where Gab and Gab are the Einstein tensors on the brane and in the bulk,
respectively, and Tab is the stress-energy tensor on the brane — the variation
of the matter action with respect to hab:

Tab =
1√
h

δ

δhab

∫
brane

L (hab, φ). (4.10)

The York—Gibbons—Hawking [371, 372] boundary terms −2
∫

braneKi are
required for consistency of this variational problem. Treatment of the vari-
ational problem in (4.7) with the presence of boundary can be found in
Appendix B.1.

4.3. Cosmological solutions

A brane with FRW metric

ds2 = −dt2 + a2(t)γij(x)dxidxj , (4.11)

where γij(x) is the Euclidean metric of the homogeneous and isotropic three-
space, is embedded into the Schwarzschild—(anti)-de Sitter solution of the bulk
equations (4.8):

ds2
bulk = −f(r)dτ2 +

dr2

f(r)
+ r2γij(x)dxidxj , (4.12)

where 1

f(r) = κ− C

r2
− Λb

6
r2, (4.13)

κ = 0,±1 in this chapter denotes the spatial curvature of the metric γij , and C
is an arbitrary constant of integration describing the presence of a black hole
in the bulk. The embedding is described by the trajectory

r = a(τ), (4.14)

which is the scale factor of the FRW metric (4.11). The cosmological time t on
the brane in (4.11) is then related to the time τ in the bulk by

dt

dτ
=

√
f (a(τ))− a′(τ)

f (a(τ))
. (4.15)

1 The variables (τ, r) denote the coordinates of the bulk space in this section. Where only
one bulk space is under consideration, we omit the index i and denote the bulk cosmological
constant by Λb.
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The coordinate r is related to the Gaussian normal coordinate y in the
bulk by

y =

r∫
dx√
f(x)

. (4.16)

The extrinsic curvature of the hypersurface (4.14) with unit normal na
pointing in the direction of increasing r is calculated straightforwardly, so that,
in the t, xi coordinates on the brane, we have

Kα
β − hαβK =

{
−

3
√
f(a)− ȧ2

a
, −δij

1

a2ȧ

d

dt

(
a2
√
f(a) + ȧ2

)}
, (4.17)

where the dot denotes the derivative with respect to t.
After embedding the brane in the bulk via (4.14), we can make it a

boundary by leaving only one of the two sides of the bulk solution, r > a(τ)
or r < a(τ). This gives rise to one of two possible branches in each of the bulk
spaces Bi, i = 1, ..., N . Using this fact and substituting (4.17) into the brane
equation (4.9), we obtain the following equation for the cosmological evolution
of the scale factor a(t):

H2 +
κ

a2
=
ρ+ σ

3m2
+

1

m2

N∑
i=1

ζiM
3
i

√
H2 +

κ

a2
− Λi

6
− Ci
a4
, (4.18)

where ρ is the total energy density of matter on the brane, and ζi = ±1
correspond to the two possible ways of bounding each of the bulk spaces Bi,
i = 1, ..., N , by the brane [505, 506, 510]. The branch with the bulk space
r > a(τ) corresponds to ζ = 1. All the richness of the braneworld homogeneous
and isotropic cosmology is encoded in equation (4.18).

The simplest case in braneworld cosmology is, of course, N = 1 in (4.7),
where the brane is a boundary of a single bulk space. It is equivalent to the
case of arbitrary N with identical bulk spaces (as was noted in Sec. 4.2, in the
case N = 2, this is called mirror symmetry of reflection of the bulk space with
respect to the brane).

For N = 1, omitting the index i, we have the cosmological equation on the
brane

H2 +
κ

a2
=
ρ+ σ

3m2
± M3

m2

√
H2 +

κ

a2
− Λb

6
− C

a4
, (4.19)

where the ± sign corresponds to the two branches arising from two possible
ways of bounding the bulk space by the brane, as described in the previous
section.
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4.3. Cosmological solutions

The cosmological solution based on the Randall—Sundrum model [500,
501], which has m = 0, is obtained as the lower branch of (4.19) in this limit
[511—514]:

H2 +
κ

a2
=

(
ρ+ σ

3M3

)2

+
Λb

6
+
C

a4
. (4.20)

Since the last term enters the modified Friedmann equation and has dependen-
ce on the scale factor exactly like radiation, it was called “dark radiation” in the
literature. The name extends to the term C/a4 under the square root of (4.19).

The cosmological solution based on the DGP model [504] is obtained by
setting σ = 0, C = 0 and Λb = 0 in (4.19) [515,516]:

H2 +
κ

a2
=

ρ

3m2
± M3

m2

√
H2 +

κ

a2
. (4.21)

A remarkable property of this model is that it can describe an accelerating
Universe even in the absence of cosmological constants either on the brane or
in the bulk. Indeed, the branch with the upper sign in (4.21) in the asymptotic
future tends to the de Sitter regime with the Hubble constant

HDGP =
M3

m2
. (4.22)

This is the reason why it received the name “self-accelerating branch” in the
literature. This simple alternative model of the cosmic acceleration at present
appears to be ruled out both observationally and theoretically, since it has a
ghost perturbation in its spectrum [517—521]. The branch with the lower sign
in (4.21) can self-accelerate only in the presence of cosmological constants; it
is called “normal branch” in the literature. The “normal branch” is free from
ghosts and is in agreement with all current observations.

The case of N = 1 can be treated in an alternative way. By contracting
the Gauss identity

Rabc
d = ha

fhb
ghc

khdjRfgkj +KacKb
d −KbcKa

d (4.23)

on the brane and using Eq. (4.8), one obtains the constraint equation

R− 2Λb +KabK
ab −K2 = 0, (4.24)

which, together with (4.9) taken in the case N = 1, implies the following closed
scalar equation on the brane:

M6 (R− 2Λb) +
(
m2Gab + σhab − Tab

) (
m2Gab + σhab − T ab

)
−

− 1

3

(
m2R− 4σ + T

)2
= 0, (4.25)

where T = habTab.
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One method for obtaining solutions of the theory consists in first solving
the scalar equation (4.25) on the brane together with the stress-energy
conservation equation, and then integrating the Einstein equations in the bulk
with the given data on the brane [522—524]. The gravitational equations in the
bulk can be integrated by using, for example, Gaussian normal coordinates.
Specifically, in the Gaussian normal coordinates (x, y), where x = {xα} are the
coordinates on the brane and y is the fifth coordinate in the bulk, the metric
in the bulk is written as

ds2
5 = dy2 + hαβ(x, y)dxαdxβ. (4.26)

Introducing also the tensor of extrinsic curvature Kab of every hypersurfa-
ce y = const in the bulk, one can obtain the following system of differential
equations for the components hαβ and Kα

β :

∂Kα
β

∂y
= Rαβ −KKα

β −
1

6
δαβ

(
R+ 2Λb +Kµ

νK
ν
µ −K2

)
=

= Rαβ −KKα
β −

2

3
δαβΛb, (4.27)

∂hαβ
∂y

= 2hαγK
γ
β, (4.28)

where Rαβ are the components of the Ricci tensor of the metric hαβ induced
on the hypersurface y = const, R = Rαα is its scalar curvature, and K = Kα

α

is the trace of the tensor of extrinsic curvature. The second equality in (4.27)
is true by virtue of the constraint equation (4.24). Equations (4.27) and (4.28)
together with the constraint equation (4.24) represent the 4+1 splitting of the
Einstein equations in the Gaussian normal coordinates. The initial conditions
for these equations are defined on the brane through Eq. (4.9). We emphasize
that, to obtain a complete braneworld theory in the general case (including a
stability analysis), one must also specify additional conditions in the bulk such
as the presence of other branes or certain regularity conditions. In this section,
we deal only with the homogeneous and isotropic cosmology on the brane, so
this issue does not arise. In this sense, we are studying here the cosmological
features common to the whole class of braneworld models described by action
(4.7) with arbitrary boundary conditions in the bulk.

4.4. Vacuum and static branes

In this section, we discuss the situation pertaining to a va-
cuum brane, i.e., when the matter stress-energy tensor Tab = 0. It is interesting
that the brane approaches this condition during the course of cosmological
evolution provided it expands forever and its matter density asymptotically
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4.4. Vacuum and static branes

declines to zero. In the simplifying case of N = 1 (brane as a boundary of a
single bulk space), Eq. (4.25) takes the form(

M6 +
2

3
σm2

)
R+m4

(
RabR

ab − 1

3
R2

)
− 4M6ΛRS = 0, (4.29)

where
ΛRS =

Λb

2
+

σ2

3M6
(4.30)

is the expression arising in the Randall—Sundrum model [500,501].
It is important to note that the second term in Eq. (4.29) has precisely

the form of one of the terms in the expression for the conformal anomaly,
which describes the vacuum polarization at the one-loop level in curved space-
time (see, e.g., [421]) 2. It therefore immediately follows that all symmetric
spaces are solutions of Eq. (4.29) with appropriate ΛRS, just as they are soluti-
ons of the Einstein equations with one-loop quantum-gravitational correcti-
ons [525]. Symmetric spaces satisfy the condition DaRbcde = 0, which implies
that geometrical invariants such as RabcdRabcd, RabRab, and R are constants
so that Eq. (4.29) becomes an algebraic equation. Prominent members of this
family include:

• the homogeneous and isotropic de Sitter space-time

ds2 = −dt2 +
1

H2
cosh2Ht

[
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2

)]
, (4.31)

where −∞ < t < ∞, 0 ≤ χ, θ ≤ π, 0 ≤ φ ≤ 2π. The four-dimensional metric
(4.31) has the property Rab = 3H2hab. It formed the basis for Starobinsky’s
first inflationary model sustained by the quantum conformal anomaly [397];

• the homogeneous and anisotropic Nariai metric [526–528]

ds2 = k2
(
−dt2 + cosh2 tdr2 + dθ2 + sin2 θdφ2

)
, (4.32)

where k = constant, −∞ < t < ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and for which
Rab = hab/k

2. In fact, it is easy to show that any metric for which R and
RabR

ab are constants will automatically be a solution to Eq. (4.29) with an
appropriate choice of ΛRS.

Both de Sitter space and the Nariai metric belong to the class of space-
times which satisfy the vacuum Einstein equations with a cosmological constant

Rab = Λeffhab. (4.33)

2 It is interesting that, while the conformal anomaly term RabR
ab − 1

3
R2 cannot be

obtained by the variation of a local four-dimensional Lagrangian, the very same term is
obtained via the variation of a local Lagrangian in the five-dimensional braneworld theory
under investigation.
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Such space-times also satisfy Eq. (4.29) if

Λeff =
1

m2

(3M6

2m2
+ σ

)
±

√(
3M6

2m2
+ σ

)2

− 3M6ΛRS

. (4.34)

Equation (4.34) expresses the resulting cosmological constant on the brane in
terms of the coupling constants of the theory. For the Randall—Sundrum model
(m = 0), one obtains Λeff = ΛRS. The two signs in (4.34) again correspond
to the two different ways in which the lower-dimensional brane can form the
boundary of the higher-dimensional bulk.

The condition ΛRS = 0 is the well-known fine-tuning condition of Randall
and Sundrum [500,501] and leads to the vanishing of the cosmological constant
on an empty brane if we set m = 0 in (4.7). Note that, under the Randall—
Sundrum condition, expression (4.34) with the sign opposite to the sign of the
quantity 3M6/2m2 + σ also gives a zero value for the resulting cosmological
constant on the brane, but the other sign usually leads to Λeff 6= 0.

We would like to draw the reader’s attention to the fact that Eq. (4.34)
is meaningful only when the expression under the square root is non-negative.
When it is negative, solutions describing the corresponding empty Universe si-
mply do not exist. This leads to the following important conclusion: a Universe
which contains matter and satisfies

3M6ΛRS

(3M6/2m2 + σ)2 > 1, (4.35)

cannot expand forever.
For the special case 3M6/2m2 +σ = 0, the expression for Λeff on the brane

is given by

Λeff = ±M
3

m2

√
−3ΛRS. (4.36)

In this case, both σ and ΛRS must be negative in order that the corresponding
empty Universe exist, but the resulting cosmological constant on the brane can
be of any sign.

Another interesting example is that of a static empty Universe. The radius
(scale factor) a of such a Universe is easily determined from (4.29) to be

a2 =
κ

ΛRS

(
3

2
+
σm2

M6

)
, (4.37)

where κ = ±1 is the sign of the spatial curvature. One can see that the radius
of the Universe can be arbitrarily large. In the general case, the development
of this solution to the five-dimensional bulk leads to a Schwarzschild–anti-
de Sitter metric. It was shown in [506] that, for κ = 1, this metric is purely
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anti-de Sitter (with zero Schwarzschild mass) if the constants of the theory
satisfy the condition

σ

m2
− Λb

2
+

3M6

4m4
= 0, (4.38)

which implies negative brane tension σ. It should be pointed out that the
static and empty braneworld solution described by (4.37) does not possess
a general-relativistic analog, since, in General Relativity, a static cosmological
model (the ‘static Einstein Universe’) cannot be empty (see, for instance, [236]).
Furthermore, from (4.37) we find that the static empty Universe can be spati-
ally open (κ = −1) — for example, in the case ΛRS < 0 and σ > −3M6/2m2, —
again a situation without an analog in General Relativity.

For static homogeneous and isotropic braneworlds filled with matter,
Eq. (4.25) gives the following relation:

a2
[
ρtot(ρtot + 3ptot)− 3ΛbM

6
]

= 3κ
[
m2(ρtot + 3ptot)− 3M6

]
, (4.39)

where the total energy density ρtot and pressure ptot include the contribution
from the brane tension, i.e.,

ρtot = ρ+ σ, ptot = p− σ, (4.40)

and κ = 0,±1 corresponds to the sign of the spatial curvature. This relation
reduces to (4.37) for ρ = p = 0.

Having obtained all these solutions on the brane, one can find the cor-
responding solutions in the bulk by integrating Eqs. (4.27) and (4.28) with
the initial conditions on the brane given by Eq. (4.9). In doing this, one can
consider various additional conditions in the bulk, for example, the existence
of other branes, or one can impose certain regularity conditions. It is worth
noting that one and the same cosmological solution on the given brane can
correspond to different global solutions in the bulk, for example, other branes
may be present or absent, be static or evolving, close or far away from our
brane, etc. In the most general case (for instance in the absence of special
symmetries on the brane) integration on the brane needs to be performed in
conjunction with dynamical integration in the bulk. All such situations must be
separately studied and issues such as their stability to linearized perturbations
must be examined on a case-by-case basis.

Consider any solution to (4.33) on the brane with effective cosmological
constant Λeff given by (4.34). It is obvious that the solution of system (4.27),
(4.28), describing the metric in the Gaussian normal coordinates y ≥ 0 with
the brane situated at y = 0, can be sought for in the form

hαβ(x, y) = f(y)hαβ(x, 0), Kα
β =

1

4
K(y)δαβ, (4.41)
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with f(0) = 1. For this metric, we have

Rαβ(x, y) =
Λeff

f(y)
δαβ, Gαβ(x, y) = − Λeff

f(y)
δαβ. (4.42)

The brane junction condition (4.9) for the case N = 1 under consideration
then gives the initial condition for K(y):

K(0) =
4

3M3

(
m2Λeff − σ

)
. (4.43)

Equations (4.27), (4.28) then lead to a system of differential equations for
K(y) and f(y):

K ′ =
4Λeff

f
−K2 − 8

3
Λb, (4.44)

f ′ =
1

2
Kf. (4.45)

In the simplifying case of a Ricci-flat brane with Λeff = ΛRS = 0, we have
K2(0) = −8Λb/3, and the solution is

K(y) ≡ K(0) = − 4σ

3M3
, (4.46)

f(y) = exp

(
− 2σ

3M3
y

)
= exp

(
±
√
−2

3
Λb y

)
, (4.47)

where the sign in the last exponent depends on the sign of the brane tension.
For the flat metric hαβ = ηαβ on the brane, this gives the famous Randall—
Sundrum solution [500,501].

4.5. Properties of braneworld gravity

In this section, we discuss some generic properties of brane-
world gravity. We will restrict ourselves to the simplest case N = 1 in (4.7).

Action (4.7) in the case N = 1 has two important scales, namely, the
length scale

` =
2m2

M3
, (4.48)

which describes the interplay between the bulk and brane gravity, and the
energy scale

kσ =
σ

3M3
, (4.49)

which determines the role of the brane tension in the dynamics of the brane.
In a model characterized by the Randall—Sundrum constraint [500,501]

ΛRS ≡
Λb

2
+

σ2

3M6
= 0, (4.50)
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the absolute value of kσ is equal to the inverse curvature `Λb
=
√
−6/Λb of

the bulk space. Note that kσ is negative in the case σ < 0. The quantity M
has to be taken positive since, in the opposite case, the massive Kaluza—Klein
gravitons become ghosts [529,530].

Following the procedure first employed in [522] for the Randall—Sundrum
(RS) model [500, 501] and subsequently applied in [531] to the more general
model under consideration, we make one contraction of indices in the Gauss
identity

Rabc
d = ha

fhb
ghc

khdjRfgkj +KacKb
d −KbcKa

d (4.51)

on the brane and, using Eq. (4.8), obtain the equation

Gab + Λeffhab = 8πGeffTab +
1

β + 1

(
1

M6
Qab − Cab

)
, (4.52)

where
β =

2σm2

3M6
= kσ` (4.53)

is a dimensionless parameter,

Λeff =
ΛRS

β + 1
(4.54)

is the effective cosmological constant,

8πGeff =
β

β + 1

1

m2
(4.55)

is the effective gravitational constant,

Qab =
1

3
EEab − EacEcb +

1

2

(
EcdE

cd − 1

3
E2

)
hab (4.56)

is a quadratic expression with respect to the “bare” Einstein equation Eab ≡
≡ m2Gab−Tab on the brane, and E = habEab. The symmetric traceless tensor
Cab ≡ ncndCacbd in (4.52) is a projection of the bulk Weyl tensor Cabcd. It is
related to the tensor Qab through the covariant conservation equation on the
brane

Da

(
Qab −M6Cab

)
= 0. (4.57)

It is important to note that all couplings in Eq. (4.52), including the effecti-
ve cosmological and gravitational constants, are inversely proportional to β+1,
which indicates that the theory becomes singular for the special case β = −1
(see [530,532]). We are not going to study this degenerate case here.

In the absence of the curvature term on the brane (m = 0), we obtain
Eq. (4.52) in which 8πGeff = 2σ/3M6 is the gravitational constant in the RS
model [500,501], and β = 0; in this form, Eq. (4.52) was first derived in [522].
The conditions σ = 0 and Λb = 0 are characteristic of the DGP model [504],
which also has β = 0. In this model, the effective gravitational constant (4.55)
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turns to zero, i.e., the term linear in the stress–energy tensor on the brane
vanishes in Eq. (4.52).

Equation (4.52) is not closed on the brane in the sense that it contains the
symmetric traceless tensor Cab whose dynamics on the brane is not determined
by the dynamics of matter alone. Some additional information from the bulk
is needed to solve the braneworld equations completely, e.g., some boundary
conditions in the bulk are to be specified. However, for the homogeneous and
isotropic cosmology, this ambiguity manifests itself only in the appearance of
the dark-radiation term C/a4 in (4.19), characterized by one constant.

Consider now some properties of braneworld gravity. The expression for
Qab in Eq. (4.56) is quadratic in the curvature as well as in the stress-energy
tensor. On the other hand, the tensor Cab is related to Qab through the
conservation equation (4.57). One might, therefore, expect that the term in
the parentheses on the right-hand side of Eq. (4.52), namely Qab/M6 − Cab,
will be insignificant on sufficiently large length scales, and that the braneworld
theory on those scales should reduce to Einstein gravity with the effective
constants given by (4.54) and (4.55). This expectation is borne out by a detai-
led analysis [530] carried out for a positive-tension brane (σ > 0) in the specific
case when the braneworld satisfies the RS constraint (4.50). In this case, the
gravitational potential of a unit mass on large scales (on the positive-tension
brane) has the Newtonian form with a small RS correction [530]:

V (r) = −Geff

r

[
1 +

2

3(β + 1)(kσr)2

]
, kσr � 1, (4.58)

where Geff is given by (4.55).
On smaller spatial scales, kσr � 1, β, the potential in linear theory again

has the Newtonian form with a small logarithmic correction:

V (r) = −G̃eff

r
−
(

15

8
+

2

β

)
kσ

3π2m2
log

[(
15

8
+

2

β

)
kσr

]
, kσr � 1, β, (4.59)

but with a different expression for the effective gravitational constant [530]

G̃eff =

[
1 +

1

3(1 + β)

]
1

8πm2
=

(
1 +

4

3β

)
Geff . (4.60)

For kσ → 0 (hence, also β → 0), this reproduces the result obtained for the
DGP model in [533–535] on scales r � `.

It is worth noting that gravity on these smaller scales kσr � 1, β, in
principle, involves the massless scalar radion, i.e., it is of scalar–tensor type. As
a consequence, for the spherically symmetric solution, it violates the property
h00(r) = − h−1

rr (r), or, in the linear approximation, γ00(r) = γrr(r), where
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4.5. Properties of braneworld gravity

γαβ(r) are the components of metric perturbation in the spherically symmetric
coordinate system. Specifically, in the model with the RS constraint ΛRS = 0,
one can obtain the relation:

∆γ

γ00
≡ γ00 − γrr

γ00
=

1

1 + 3β/4
. (4.61)

Since there are stringent experimental upper bounds [467,469] on the left-hand
side of (4.61) in the neighborhood of the solar system (it should not exceed 10−5

by order of magnitude), if solution (4.59) were applicable in this domain, it
would imply that only very large values of β are permissible in the braneworld
theory under consideration [namely, the braneworld model (4.7) with N = 1
and with the RS constraint (4.50)].

We should stress, however, that the applicability region of the linear
approximation (4.59) is bounded from below by a length scale which depends
upon the mass of the central source, as has been demonstrated for the DGP
model in [533—535]. Specifically, the dynamics of the radion develops strong
non-linear corrections on sufficiently small scales, leading to the breakdown of
linearized theory. (This also creates the so-called strong-coupling problem in
the DGP model [536, 537].) In this case, in order to study gravity at small
distances from the source, one should turn to the fully non-linear theory.

To determine the distances at which the linearized theory breaks down and
to establish the correct behavior of the potential on such scales, we turn to the
effective equation (4.52). Taking the trace of Eq. (4.52), we get the following
closed scalar equation on the brane:

−R+ 4Λeff − 8πGeffT =
Q

(β + 1)M6
, (4.62)

where the left-hand side contains terms which are linear in the curvature and
in the stress–energy tensor while the right-hand side contains the quadratic
term Q = habQab.

Suppose that we are interested in the behavior of gravity in the neigh-
borhood of a spherically symmetric source with density ρs, total mass Ms,
and radius rs. First of all, we assume that one can neglect the tensor Cab
and the effective cosmological constant in the neighborhood of the source. As
regards the effective cosmological constant, this assumption is natural since
the observed cosmological constant is small. Concerning the tensor Cab, its
smallness in the neighborhood of the source represents some additional condi-
tion on the spherically symmetric solution. A condition of this sort is likely to
arise in any consistent and viable braneworld theory as, without it, one has a
large number of spherically symmetric solutions on the brane, many of them
non-physical (see [538] for a comprehensive treatment in the framework of the
RS model).
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Within the source itself, we have two qualitatively different options: an
approximate solution can be sought either neglecting the quadratic part or
linear part of Eqs. (4.52) and (4.62). We should choose the option that gives
smaller error of approximation in Eq. (4.62). In the first case, neglecting the
quadratic part and the effective cosmological constant, we have

Gab − 8πGeffTab ≈ 0⇒ Q

(β + 1)M6
∼ ρ2

s

(β + 1)3M6
. (4.63)

In the second case, we neglect the linear part, so that

Qab ≈ 0⇒ Eab ≈ 0⇒ R+ 8πGeffT ∼
ρs

(β + 1)m2
. (4.64)

The final expression on the right-hand side of (4.64) is smaller than the
corresponding expression in (4.63) if

ρs > (β + 1)2M
6

m2
⇒ r3

s < r3
∗ ∼

Ms`
2

(β + 1)2m2
, (4.65)

where we have used the relation Ms ∼ ρsr
3
s . Thus, we can expect that, in

the neighborhood of the source, on distances smaller than r∗ given by (4.65),
the solution is determined mainly by the quadratic part Qab in Eq. (4.52),
which means that it respects the “bare” Einstein equation m2Gab = Tab to
a high precision. This effect is sometimes described as the “gravity filter” of
the DGP model [504], which screens the scalar graviton in the neighborhood
of the source making the gravity effectively Einsteinian. Some aspects of this
interesting phenomenon are discussed in [539,540].

Expression (4.65) generalizes the length scale [533—535] of the DGP model,
below which non-linear effects become important, to the case of non-zero brane
tension (non-zero β) and bulk cosmological constant satisfying the RS const-
raint (4.50). The observable gravitational constant on scales much smaller than
r∗ is then given by

8πGobs =
1

m2
. (4.66)

For the Sun, the scale r∗ is estimated as

r�∗ ∼
1016 km

(β + 1)2/3 Ω
1/3
`

, (4.67)

where Ω` = 1/`2H2
0 . For interesting values of β ∼ 1 and Ω` ∼ 1, this distance

will be very large. The corresponding radius for the Earth is smaller only by
two orders of magnitude.

This, however, is not the full story. As argued in [541, 542], the gravitational
potential of a spherically symmetric body on scales r∗ . r � ` is corrected by
the cosmological expansion. Moreover, the critical scale r∗ becomes dependent
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4.5. Properties of braneworld gravity

on the value of the Hubble parameter, and can be different from (4.65) for
values of ` of the order of the Hubble length. One also should note that gravity
on scales r � r∗ , although close to Einstein gravity, is not exactly Einsteinian,
and these deviations can be used to test braneworld theory on solar-system
scales [533—535, 541—543]. Specifically, in the case of the DGP model (m = 0,
σ = 0 and Λb = 0), the authors of [541, 542] obtain a small correction to the
locally static metric:

ds2 = − [1 + 2n(r)] dt2 + [1 + 2a(r)] dr2 + r2 [1 + 2b(r)] dΩ2. (4.68)
Here,

a(r) =
rg
2r

[1− δ(r)] +
1

2
H2r2, (4.69)

and n(r) satisfies the differential equation

rn′(r) =
rg
2r

[1 + δ(r)]−H2r2, (4.70)
where

δ(r) =
3r3

`2rg
(1± `H)

[√
1 +

2`2rg

9r3 (1± `H)2 − 1

]
, (4.71)

and rg =M/4πm2 is the gravitational radius of a central body. For

r � r∗ =
( rg
H2

)1/3
, (4.72)

one obtains
n(r) = − rg

2r
±
√

2rgr

`2
, a(r) =

rg
2r
∓
√
rgr

4`2
. (4.73)

The last terms in these expressions, in particular, lead to orbit precession
with constant rate

d

dt
∆φDGP = ∓ 3

4`
= ∓ 5

µas
year

(4.74)

for the value of ` ' 10Gpc, which is a best-fit value for the DGP cosmological
model by supernovae Ia.

Although the preceding reasoning is applicable to both the positive-tension
and the negative-tension brane, the current understanding of the braneworld
gravitational physics supports only the positive-tension case. From Eq. (4.52),
one might expect that a negative-tension brane will show reasonable physical
behavior in the case |β| > 1 (note that β < 0 for a negative-tension brane), in
which the gravitational constant (4.55) is positive. However, direct calculati-
on (along the lines of [530]) in the two-brane model with the RS constraint
(4.50) shows that, in this case, the gravitational interaction between material
bodies on large scales is dominated by the ghost-like radion, with the effective
gravitational coupling

Gradion = − 1

3
Geff , kσr � 1, (4.75)
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where Geff is given by the same expression (4.55). The radion-dominated gravi-
ty on these scales is formally attractive in the case Geff < 0, and is repulsive for
Geff > 0. However, on smaller spatial scales kσr∗ . kσr � 1, |β|, Newton’s law
similar to (4.59) is reproduced with the gravitational constant given by (4.60),
which is positive if |β| > 4/3. The gravity on these scales is of scalar–tensor
character. On still smaller distances from the central source, r < r∗, the theory
may approach Einstein gravity with the effective gravitational constant (4.66).

4.6. Phantom property of braneworld dark energy

We proceed in this section to a more detailed investigation of
the specific features of braneworld cosmology. The first such interesting feature
is the phantom-like behavior of the dark energy in a braneworld, which is a
generic property of one of the branches in (4.19). This equation can be solved
with respect to the Hubble parameter:

H2 +
κ

a2
=
ρ+ σ

3m2
+

2

`2

[
1±

√
1 + `2

(
ρ+ σ

3m2
− Λb

6
− C

a4

)]
, (4.76)

where ` is given by (4.48).
It is convenient to introduce the dimensionless cosmological parameters

Ωm =
ρ0

3m2H2
0

, Ωκ = − κ

a2
0H

2
0

, Ωσ =
σ

3m2H2
0

,

Ω` =
1

`2H2
0

, ΩΛb
= − Λb

6H2
0

, ΩC = − C

a4
0H

2
0

,

(4.77)

where the subscript “0” refers to the current values of cosmological quantities.
The cosmological equation (4.76) with the energy density ρ dominated by dust-
like matter can now be written in the form:

H2(z)

H2
0

= Ωm(1 + z)3 + Ωκ(1 + z)2 + Ωσ+

+ 2Ω` ± 2
√

Ω`

√
Ωm(1 + z)3 + Ωσ + Ω` + ΩΛb

+ ΩC(1 + z)4. (4.78)

The model satisfies the constraint equation

Ωm + Ωκ + Ωσ ± 2
√

Ω`

√
1− Ωκ + ΩΛb

+ ΩC = 1 (4.79)

reducing the number of independent Ω parameters. The sign choices in
Eqs. (4.78) and (4.79) always correspond to each other if 1−Ωκ+ ΩΛb

+ ΩC >
> Ω` . This condition is necessary for the model to have physical meaning and
we assume it to be valid in what follows. The signs in (4.79) correspond to the
two possible ways of bounding the Schwarzschild—(anti)-de Sitter bulk space
by the brane [505,506,510], as discussed in Sec. 4.3.
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In what follows, we consider a spatially flat Universe (κ = 0) without dark
radiation (C = 0). In the physical case 1 + ΩΛb

> Ω` , substituting Ωσ from
(4.79) into (4.78), we get

H2(z)

H2
0

= Ωm(1 + z)3 + 1− Ωm + 2Ω` ∓ 2
√

Ω`

√
1 + ΩΛb

±

± 2
√

Ω`

√
Ωm(1 + z)3 − Ωm +

(√
1 + ΩΛb

∓
√

Ω
)̀2
. (4.80)

The cosmological models with the lower and upper sign were called
BRANE1 and BRANE2 models in [308], respectively. In the physical regi-
on of parameters, they are equivalent to the previously introduced “normal”
and “self-accelerating” branches, respectively. As we noted already in Sec. 4.3,
the latter name is obtained due to the property of the branch with the upper
sign that, even in the absence of cosmological constants on the brane (σ = 0)
and in the bulk space (Λb = 0), one passes to the de Sitter space in the future
with the asymptotic Hubble parameter that follows from (4.78):

H2
DGP = 4H2

0 Ω`. (4.81)

Typical values of the Ω parameters (4.77) that we consider in this section
are of order Ω ∼ 1. For such values, the fundamental constants of the theory
have the following orders of magnitude:

m2 'M2
P ∼ 1019 GeV, M ∼ 100MeV, Λb ∼

σ

m2
∼ H2

0 ∼ 10−56 cm−2. (4.82)

The smallness of the bare cosmological constants in the bulk and on the
brane represents a fine-tuning similar to what is the case for the cosmological
constant in the standard LCDM (or ΛCDM) model. However, even with such
small values of the bare cosmological constants in action (4.7), the braneworld
model of dark energy exhibits qualitatively new properties when compared to
the case where these constants are set to zero.

Observations of high-redshift type Ia supernovae indicate that these ob-
jects are fainter than they would be in a standard cold dark matter cosmology
(SCDM) with Ωm = 1 [3]. This observation is taken as support for a Uni-
verse which is accelerating, fueled by a form of energy with negative pressure
(dark energy). In standard FRW cosmology the acceleration of the Universe is
described by the equation

ä

a
= −4πG

3

∑
i

(ρi + 3pi), (4.83)

where the summation is over all matter fields contributing to the dynamics of
the Universe. It is easy to show that a necessary (but not sufficient) condition
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for acceleration (ä > 0) is that the strong energy condition is violated for at
least one of the matter fields in (4.83), so that ρ + 3p < 0. In the case of
the popular LCDM model, this requirement is clearly satisfied since pm = 0
in pressureless (cold) matter, while pΛ = −ρΛ ≡ −Λ/8πG in the cosmolo-
gical constant.

The situation with respect to braneworld models is different since the
braneworld evolution is distinct from FRW evolution at late times. However it
is easy to show that braneworld models can accelerate. We demonstrate this
by noting that a completely general expression for the deceleration parameter
q = −ä/aH2 is provided by

q(z) =
H ′(z)

H(z)
(1 + z)− 1, (4.84)

where the derivative is with respect to z. In our case, H(z) is given by (4.78) or
(4.80), and the current value of the deceleration parameter is easily calculated
to be

q0 =
3

2
Ωm

(
1−

√
Ω`√

Ω` ∓
√

1 + ΩΛb

)
− 1, (4.85)

where the lower and upper signs correspond to BRANE1 and BRANE2 models,
respectively. The present Universe will accelerate for brane parameter values
which satisfy q0 < 0.

Observationally, a pivotal role in the case for an accelerating Universe
is played by the luminosity distance dL(z), since the flux of light received
from a distant source varies inversely to the square of the luminosity distance,
F ∝ d−2

L . This effect is quantitatively described by the magnitude—luminosity
relation: mB = M0 + 25 + 5 log10 dL, where mB is the corrected apparent peak
B magnitude and M0 is the absolute peak luminosity of the supernova. A
supernova will therefore appear fainter in a Universe which possesses a larger
value of the luminosity distance to a given redshift.

In a FRW Universe, the luminosity distance (1.23) is determined by the
Hubble parameter and three-dimensional spatial curvature as [236]

dL(z) =
1 + z

H0

√
|Ωtotal − 1|

S (η0 − η) , (4.86)
where

η0 − η = H0

√
|Ωtotal − 1|

z∫
0

dz′

H(z′)
, (4.87)

and S(x) is defined as follows: S(x) = sinx if κ = 1 (Ωtotal > 1), S(x) = sinhx
if κ = −1 (Ωtotal < 1), and S(x) = x if κ = 0 (Ωtotal = 1). For a spatially flat
Universe under consideration in this section, Eq. (1.23) or (4.86) simplifies to

dL(z) = (1 + z)

z∫
0

dz′

H(z′)
. (4.88)
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Fig. 4.3. The luminosity distance is shown
as a function of redshift for the two bra-
neworld models BRANE1 & BRANE2,
LCDM, SCDM, and ‘phantom energy’.
All models, with the exception of SCDM,
have Ωm = 0.3. SCDM has Ωm = 1. The
BRANE1 & BRANE2 models have Ω` =
= 0.3 and vanishing cosmological constant
in the bulk. LCDM and the phantom
model have the same dark energy densi-
ty ΩΛ = ΩX = 0.7. The equation of state
for dark energy is wΛ = −1 for LCDM
and w = pX/ρX = −1.5 for phantom.
The luminosity distance is greatest for
BRANE1 & phantom, and least for SCDM.
BRANE1 & BRANE2 lie on either side of
LCDM

In Fig. 4.3 we show the luminosity distances for the BRANE1 & BRANE2
models. Also shown for comparison is the value of dL(z) in a spatially-flat
two-component FRW Universe with the Hubble parameter

H(z) = H0

[
Ωm(1 + z)3 + ΩX(1 + z)3(1+w)

]1/2
, (4.89)

where ΩX describes dark energy with equation of state w = pX/ρX . Three
cosmological models will be of interest to us in connection with (4.89):

(i) SCDM: The standard cold dark matter Universe with Ωm = 1 and
ΩX = 0.

(ii) LCDM: Cold dark matter + a cosmological constant with w = −1.
(iii) Phantom models: Cold dark matter + ‘phantom energy’ satisfying

w < −1 [51].
We find from Fig. 3 that the luminosity distance in both braneworld models

exceeds that in SCDM. In fact, BRANE1 models have the unusual feature that
their luminosity distance can even exceed that in LCDM (for a fixed value of
Ωm). In fact it can easily be shown that

d dS
L (z) ≥ d BRANE1

L (z) ≥ d LCDM
L (z), (4.90)

where d dS
L (z) refers to the luminosity distance in the spatially flat coordinati-

zation of de Sitter space (equivalently, the steady state Universe). The second
inequality presumes a fixed value of Ωm. BRANE2 models show complementary
behavior

d LCDM
L (z) ≥ d BRANE2

L (z) ≥ d SCDM
L (z), (4.91)
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where the first inequality is valid for a fixed value of Ωm. In the case Ω` = 0,
the equations of the braneworld theory formally reduce to those of General
Relativity, and we have d BRANE1

L (z) = d BRANE2
L (z) = d LCDM

L (z).
One might add that the behavior of BRANE1 is mimicked by FRW models

with w ≤ −1, whereas BRANE2 resembles dark energy with −1 ≤ w ≤ 0 [236].
In fact, from Fig. 4.3 we see that the luminosity distance in the BRANE1 model
is quite close to what one gets from ‘phantom energy’ described by (4.89)
with w = −1.5. (The parameters for this BRANE1 model are Ωm = Ω` =
= 0.3, ΩΛb

= 0, and Ωσ = 1 − Ωm + 2
√

Ω` ≈ 1.8.) It should be pointed out
that phantom energy models were introduced by Caldwell [51], who made the
observation that dark energy with w < −1 appeared to give a better fit to the
current supernova observations than LCDM (which has w = −1). However, the
models with phantom energy have several bizarre properties, some of which are
summarized below (see also [51, 544]):

(i) A negative equation of state suggests that the effective velocity of sound
in the medium v =

√
|dp/dρ| can become larger than the velocity of light.

(ii) The expansion factor of a Universe dominated by phantom energy
grows as

a(t) ' a (teq)

[
(1 + w)

t

teq
− w

]2
/

3(1+w)

, w < −1 , (4.92)

where teq marks the epoch when the densities in matter and phantom energy
are equal: ρm(teq) ' ρX(teq). It immediately follows that the scale factor di-
verges in a finite amount of cosmic time

a(t)→∞ as t→ t∗ =

(
w

1 + w

)
teq. (4.93)

Substitution of z → −1 and w < −1 in (4.89) shows that the Hubble
parameter also diverges as t→ t∗, implying that an infinitely rapid expansion
rate for the Universe has been reached in the finite future.

As the Universe expands, the density of phantom energy (w < −1) grows
instead of decreasing (w > −1) or remaining constant (w = −1),

ρ(t) ∝
[
(1 + w)

t

teq
− w

]−2

, (4.94)

reaching a singular value in a finite interval of time ρ(t) → ∞, t → t∗. This
behavior should be contrasted with the density of ordinary matter which drops
to zero: ρm → 0 as t → t∗. A Universe dominated by phantom energy is thus
doomed to expand towards a physical singularity which is reached in a finite
amount of proper time. (An exact expression for the time of occurrence of the
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Fig. 4.4. The distance modulus (m − M) of Type Ia supernovae (the primary fit of the
Supernova cosmology project) is shown relative to an empty Ωm → 0 Milne Universe (dashed
line). The solid line refers to the distance modulus in BRANE1 with Ω` = Ωm = 0.3, and
vanishing cosmological constant in the bulk. The dotted line (below the solid) is LCDM
with (ΩΛ,Ωm) = (0.7, 0.3). The uppermost and lowermost (dot-dashed) lines correspond to
de Sitter space (ΩΛ,Ωm) = (1, 0) and SCDM (ΩΛ,Ωm) = (0, 1), respectively. Figure taken
from [308]

Fig. 4.5. The age of the Universe (in units of the inverse Hubble parameter) is plotted as
a function of the cosmological redshift for the models discussed in Fig. 4.3. (The phantom
model is not shown.) BRANE1 models have the oldest age while SCDM is youngest. Figure
taken from [308]

phantom singularity can be found in [545], which also contains an interesting
discussion of related issues.)

At this stage one must emphasize that, although the BRANE1 model has
several features in common with phantom energy (which is the reason why it
also provides a good fit to supernova data; see Fig. 4.4 as an illustration), it is
not necessarily afflicted with phantom’s pathologies. Indeed, in a broad range
of parameters, both BRANE1 and BRANE2 are physically well motivated
and remain well behaved during all times. The model safely passes both the
geometrical tests using supernovae type Ia and baryon acoustic oscillations
[546,547] and the tests connected with the integrated Sachs—Wolfe effect [548].
The development of braneworld cosmology, therefore, added an important new
dimension to the debate about the acceleration of the Universe by showing that
cosmological models with dL(z) > d LCDM

L (z) are possible to construct within
the framework of the braneworld scenario and should be taken seriously.

The angular diameter distance dA is related to the luminosity distance dL
through the equation (see Sec. 1.4)

dA(z) =
dL(z)

(1 + z)2
. (4.95)
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Fig. 4.6. The deceleration parameter q(z) is shown for BRANE1, BRANE2 and LCDM.
The model parameters are as in Fig. 4.3. For reference it should be noted that q = 0.5 for
SCDM while de Sitter space has q = −1. Figure taken from [308]

Fig. 4.7. The dimensionless matter density Ωm(z) is shown for the two braneworld models
and LCDM. (Ωm = 1 in SCDM.) Parameter values are the same as in previous figures.
BRANE1 has the interesting feature that Ωm(z) exceeds unity for z & 1. Figure taken
from [308]

Therefore, much of the above analysis carries over when one discusses properti-
es of the angular diameter distance within the framework of braneworld models.
Some cosmological features of braneworld models are shown in Figs. 4.5—4.7.
In Fig. 4.5, the age of the Universe at a given cosmological redshift

t(z) =

∞∫
z

dz′

(1 + z′)H(z′)
(4.96)

is shown for the two braneworld models and for LCDM & SCDM. We find
that the age of the Universe in BRANE1 (BRANE2) is larger (smaller) than
in LCDM for identical values of the cosmological density parameter Ωm. This
is a direct consequence of the fact that the Hubble parameter in BRANE1
(BRANE2) is smaller (larger) than in LCDM. Both braneworld models are
significantly older than SCDM.

Considerable insight into the dynamics of the Universe is provided by
the cosmological deceleration parameter (4.84). The results obtained in [308],
shown in Fig. 4.6, indicate that at late times the BRANE1 (BRANE2) Universe
accelerates at a faster (slower) rate than LCDM (with identical Ωm). Curi-
ously, the BRANE1 Universe shows an earlier transition from deceleration to
acceleration than any of the other models. (For the given choice of parameters
this transition takes place at z ' 1 for BRANE1 and at z ' 0.7 for LCDM. The
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BRANE2 model begins accelerating near the present epoch at z ' 0.) A related
point of interest is that at z & 2 the deceleration parameter in BRANE1 margi-
nally exceeds that in SCDM indicating that the BRANE1 model is decelerating
at a faster rate than SCDM (q = 0.5). In conventional models of dark matter
this behavior can occur only if the equation of state of the dark component is
stiffer than dust, implying w > 0 in (4.89), or if the Universe is spatially closed.
On the other hand, the current acceleration rate of BRANE1 in our example
(q0 ' −0.7) significantly exceeds that of LCDM (q0 ' −0.55) with an identical
value of Ωm = 0.3 in both models. Within the framework of four-dimensional
Einstein gravity, this situation can only arise if the equation of state of dark
energy is strongly negative: w < −1 in (4.89).

The unusual high-z behavior of the deceleration parameter in BRANE1
can be better understood if we consider the cosmological density parameter

Ωm(z) =

[
H0

H(z)

]2

Ωm(0)(1 + z)3. (4.97)

Here H(z) again should be given by (4.80) for braneworld models. From
Fig. 4.7 we notice that, for z & 1, the value of Ωm(z) in BRANE1 exceeds its
value in SCDM (Ωm = 1). This is precisely the redshift range during which
q(z)BRANE1 > q(z)SCDM. Thus, the rapid deceleration of BRANE1 at high
redshifts can be partly attributed to the larger value of the matter density
Ωm(z) at those redshifts, relative to SCDM.

Having established partial similarity of BRANE1 with phantom models at
low redshifts, we can investigate the analogy further and calculate the effective
equation of state of dark energy

w(z) =
2q(z)− 1

3 [1− Ωm(z)]
, (4.98)

where Ωm(z) is given by (4.97). One notes that w(z) has a pole-like singulari-
ty at z ' 1 for BRANE1, which arises because Ωm(z) crosses the value of
unity at z ' 1 (see Fig. 4.7). This demonstrates that the notion of ‘effective
equation of state’ is of limited utility for this model. Equations (4.80), (4.84),
and (4.98) also illustrate the important fact that dark energy in braneworld
models, though similar to phantom energy in some respects, differ from it in
others. For instance, in both braneworld models, w(z) → −0.5 at z � 1 and
w(z)→ −1 as z → −1, whereas phantom energy has w(z) < −1 at all times.

A useful quantity is the current value of the effective equation of state of
dark energy in braneworld theories:

w0 =
2q0 − 1

3 (1− Ωm)
= −1−

(
Ωm

1− Ωm

) √
Ω`√

Ω` ∓
√

1 + ΩΛb

, (4.99)
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where the lower and upper signs, as usual, correspond to BRANE1 and
BRANE2 models, respectively. We easily see that w0 < −1 for BRANE1,
whereas w0 > −1 for BRANE2.

The reason for the effect of phantom-like behavior of the BRANE1 model
can be seen directly from equation (4.78) or (4.80), which can be written in
the form

H2(z)

H2
0

= Ωm(1 + z)3 + ΩΛeff
(z), (4.100)

where
ΩΛeff

(z) = Ωσ + 2Ω` ± 2
√

Ω`

√
Ωm(1 + z)3 + Ωσ + Ω` + ΩΛb

=

= 1− Ωm + 2Ω` ∓ 2
√

Ω`

√
1 + ΩΛb

±

± 2
√

Ω`

√
Ωm(1 + z)3 − Ωm +

(√
1 + ΩΛb

∓
√

Ω`

)2
(4.101)

is the omega parameter for the effective time-dependent cosmological constant.
One can see that, for the branch with the lower sign (BRANE1), ΩΛeff

(z)
increases with time, while, for the branch with the upper sign (BRANE2), it
decreases. This explains the properties (4.90) and (4.91).

4.7. Disappearing dark energy

The braneworld models admit an intriguing possibility that
the current acceleration of the Universe may not be a lasting feature. It may be
recalled that most models of dark energy, including the cosmological constant,
have the property that, once the Universe begins to accelerate, it accelerates
forever. Although this is not a problem from the viewpoint of cosmology;
nevertheless, as shown in a number of papers, an eternally accelerating Universe
is endowed with a cosmological event horizon which prevents the constructi-
on of a conventional S-matrix describing particle interactions within the
framework of string or M-theory [549—551]. In this section we show that, provi-
ded the Randall—Sundrum constraint relation (4.50) is satisfied, the accelera-
tion of the Universe can be a transient phenomenon in braneworld models.
An anisotropic solution of Bianchi V class with the same feature was descri-
bed in [552].

From Eq. (4.80) we obtain the following asymptotic expressions for the
Hubble parameterH∞ as z → −1, assuming that the Universe expands forever:(

H∞
H0

)2

= Ωσ + 2Ω` ± 2
√

Ω`

√
Ωσ + Ω` + ΩΛb

, (4.102)

where the lower and upper signs correspond to BRANE1 and BRANE2 models,
respectively. In applying the Randall—Sundrum constraint (4.50), we first
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consider the case where Ωσ > 0. Then

Ωσ = 2
√

Ω`ΩΛb
(4.103)

and (
H∞
H0

)2

= 2
√

Ω`

[√
Ω` +

√
ΩΛb
±
(√

Ω` +
√

ΩΛb

)]
. (4.104)

One can see that this expression vanishes for the lower sign. Thus, for positive
Ωσ, it is the BRANE1 model that leads to vanishing effective cosmological
constant in the future. However, in this case, the constraint equation (4.79)
becomes

Ωm − 2
√

Ω`

(√
1 + ΩΛb

−
√

ΩΛb

)
= 1 (4.105)

and implies Ωm > 1, which is hardly compatible with the observations.
In the case of Ωσ < 0, we have

Ωσ = −2
√

Ω` ΩΛb
(4.106)

and (
H∞
H0

)2

= 2
√

Ω`

(√
Ω` −

√
ΩΛb
±
∣∣∣√Ω` −

√
ΩΛb

∣∣∣). (4.107)

If Ω` > ΩΛb
, then this expression vanishes for the lower sign, which

brings us back to the non-physical BRANE1 models with Ωm > 1. In the case
Ω` ≤ ΩΛb

, expression (4.107) vanishes for the upper sign, which corresponds
to BRANE2 models. The constraint equation (4.79) now reads

Ωm + 2
√

Ω`

(√
1 + ΩΛb

−
√

ΩΛb

)
= 1 (4.108)

and implies Ωm < 1.
Therefore, BRANE2 with Ωσ < 0 and Ω` ≤ ΩΛb

, provides us with an
interesting example of a physically meaningful cosmological model in which the
current acceleration of the Universe is a transient phenomenon. An example
of this behavior as probed by the deceleration parameter is shown in Fig. 4.8,
which demonstrates that the current period of cosmic acceleration takes place
between two matter-dominated epochs. We emphasize that these models requi-
re negative brane tension σ. Since an observer in this model resides on a
negative-tension brane, one must ponder over the issue of whether such a
braneworld will be perturbatively stable and hence physically viable. We consi-
der this to be an open question for future investigations. Remarks made at
the end of Sec. 4.4 are relevant, however, since one and the same cosmolo-
gical solution on the ‘visible’ (negative tension) brane can correspond to
many different global conditions in the bulk, for instance, other (‘hidden’)
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Fig. 4.8. The deceleration parameter is plotted as a function of redshift for the BRANE2
model with the Randall—Sundrum constraint (4.50), ΩΛb = 2, and (Ωm,Ω`) = (0.3, 1.2),
(0.2, 1.6), (0.1, 1.98) (top to bottom). The vertical (dot-dashed) line at z = 0 marks the
present epoch, while the horizontal (dashed) line at q = 0 corresponds to a Milne Uni-
verse [a(t) ∝ t] which neither accelerates nor decelerates. Note that the Universe ceases to
accelerate and becomes matter dominated in the future. Figure taken from [308]

Fig. 4.9. The effective equation of state for dark energy in the BRANE2 model is shown as
a function of redshift. Model parameters are as in the previous figure. Note that the past
and future asymptotes of w(z) are quite different: w(z) → −1/2 for z � 0, while w(z) → 0
for z → −1. Braneworld dark energy therefore effectively disappears in the future, giving
rise to a matter-dominated Universe. Figure taken from [308]

branes may be present or absent, static or evolving, close to or far away from
our brane, etc.

Useful insight into the BRANE2 model is also provided by the effective
equation of state of dark energy (4.98). Our results [308], shown in Fig. 4.9,
indicate that the past and future behavior of dark energy in the braneworld
Universe can be very different. The past behavior w(z)→ −0.5 for z � 1 arises
because, in a spatially flat braneworld, the second most important contribution
to braneworld expansion at high redshifts is caused by the (1 + z)3/2 term in
(4.80); see also [515, 516]. The future behavior w(z) → 0 as z → −1, on the
other hand, reflects the decreasing importance of dark energy as the Universe
expands. The acceleration of the Universe is therefore a transient phenomenon
which ends once the Universe settles back into the matter-dominated regime.

Finally, we should mention that a transiently accelerating regime also arises
in a class of BRANE2 models which do not satisfy the Randall—Sundrum
constraint (4.50). In these models the current epoch of acceleration is succeeded
by an epoch during which the deceleration parameter grows without bound.
This unusual ‘future singularity’ is reached in a finite interval of expansion
time and is characterized by the fact that both the matter density and the
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Hubble parameter remain finite, while ä → ∞ (a feature that distinguishes
it from the phantom singularities discussed in Sec. 4.6). A detailed discussion
of the ‘new’ singularities which occur in braneworld models will be made in
Sec. 4.10.

4.8. Cosmic mimicry

It was noted [531] that the cosmological evolution in
braneworld theory, from the viewpoint of the Friedmannian Universe, proceeds
with a time-dependent gravitational constant. Indeed, the cosmological equati-
on on the brane (4.76) can be written in the form of one of the Friedmann
equations

H2 +
κ

a2
=

8πGeff(ρ)

3
ρ, (4.109)

where Geff(ρ) is the effective time-dependent gravitational constant that can
be read-off from (4.76).

In this section, we describe another interesting feature of braneworld cos-
mology, which we call “cosmic mimicry” [553]. It turns out that, for a broad
range of parameter values, the braneworld model behaves exactly as a LCDM
(Λ + Cold Dark Matter) Universe with different values of the effective cosmo-
logical density parameter Ωm at different epochs. Moreover, the cosmological
density parameter inferred from the observations of the large-sale structure
and CMB and that determined from neoclassical cosmological tests such as
observations of supernovae (SN) can potentially have different values.

An important feature of this model is that, although it is very similar
to LCDM at the present epoch, its departure from “concordance cosmology”
can be significant at intermediate redshifts, leading to new possibilities for the
Universe at the end of the “dark ages” which may be worth exploring.

We relate the “mimicry” properties of the braneworld cosmology with the
properties of gravity in braneworld theories. In particular, we show that the
change in the cosmological density parameter Ωm as the Universe evolves can be
related to the spatial scale dependence of the effective gravitational constant
in braneworld theory [533—535]. This can have important consequences for
cosmological models based on the braneworld theory and calls for more extensi-
ve analysis of their cosmological history.

The basic equation describing the cosmological evolution is (4.80). For
sufficiently high redshifts, the first term on the right-hand side of this equation
dominates, and the model reproduces the matter-dominated Friedmann Uni-
verse with the density parameter Ωm. Now we note that, for the values of z
and parameters ΩΛb

and Ω` which satisfy

Ωm(1 + z)3 �
(√

1 + ΩΛb
∓
√

Ω`

)2
, (4.110)
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Eq. (4.80) can be well approximated as

H2(z)

H2
0

' Ωm(1+z)3+1−Ωm−
√

Ω`√
Ω` ∓

√
1 + ΩΛb

[
Ωm(1 + z)3 − Ωm

]
. (4.111)

We introduce the positive parameter α by the equation

α =

√
1 + ΩΛb√

Ω`
. (4.112)

Then, defining a new density parameter by the relation

ΩLCDM
m =

α

α∓ 1
Ωm, (4.113)

we get
H2(z)

H2
0

' ΩLCDM
m (1 + z)3 + 1− ΩLCDM

m , (4.114)

which is precisely the Hubble parameter describing a LCDM Universe. [Note
that the braneworld parameters Ω` and ΩΛb

have been effectively absorbed into
a “renormalization” of the matter density Ωm → ΩLCDM

m , defined by (4.113).]
Thus, our braneworld displays the following remarkable behavior which we

refer to as “cosmic mimicry”:
• A BRANE1 model, which at high redshifts expands with density para-

meter Ωm, at lower redshifts masquerades as a LCDM Universe with a smaller
value of the density parameter. In other words, at low redshifts, the BRANE1
Universe expands as the LCDM model (4.114) with ΩLCDM

m < Ωm [where
ΩLCDM

m is determined by (4.113) with the lower (“+”) sign].
• A BRANE2 model at low redshifts also masquerades as LCDM but with

a larger value of the density parameter. In this case, ΩLCDM
m > Ωm with ΩLCDM

m

being determined by (4.113) with the upper (“−”) sign 3.
The range of redshifts over which this cosmic mimicry occurs is given by

0 ≤ z � zm, with zm determined by (4.110). Specifically,

zm =

(√
1 + ΩΛb

∓
√

Ω`

)2/3
Ω

1/3
m

− 1, (4.115)

which can also be written as

(1 + zm)3 =
Ωm (1 + ΩΛb

)

(ΩLCDM
m )2 (4.116)

for both braneworld models.
3 For α < 1, the BRANE2 model behaves like that with negative matter density and

demonstrates unwanted bouncing at low redshifts.
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Fig. 4.10. An illustration of cosmic mimicry for the BRANE1 (left) and BRANE2 (right)
models. The Hubble parameter in three high-density BRANE1 models with Ωm = 1 and
low-density BRANE2 models with Ωm = 0.04 is shown. Also shown is the Hubble parameter
in the LCDM model (dotted line) which closely mimics this braneworld but has a lower
mass density ΩLCDM

m = 0.3 (ΩΛ = 0.7) for BRANE1 and a higher mass density ΩLCDM
m =

= 0.2 (ΩΛ = 0.8) for BRANE2. The brane matter density (Ωm) and the matter density in
LCDM are related through Ωm = ΩLCDM

m

[
1±

√
Ω`/ (1 + ΩΛb)

]
, so that Ωm & ΩLCDM

m for

BRANE1 (lower sign) and Ωm . ΩLCDM
m for BRANE2 (upper sign). The braneworld model

masquerades as LCDM for z � zm, where zm = 9, 46, 216 for BRANE1 and zm = 8, 32, 130
for BRANE2 (left to right) for three different choices of parameters. Figure taken from [553]

Examples of cosmic mimicry are shown in Fig. 4.10 for the BRANE1 model
(left) and BRANE2 model (right). One striking consequence of the BRANE2
model in Fig. 4.10 is that a low-density (Ωm = 0.04) Universe consisting entirely
of baryons mimics a higher-density LCDM model (ΩLCDM

m = 0.3) and can
therefore be in excellent agreement with the SN data.

In view of relation (4.116), it is interesting to note that we can use the
equations derived in this section to relate the three free parameters in the
braneworld model: {Ω`,ΩΛb

,Ωm} to
{

Ωm, zm,Ω
LCDM
m

}
. These relations (which

turn out to be the same for BRANE1 and BRANE2 models) are:

1 + ΩΛb

ΩLCDM
m

=
ΩLCDM

m

Ωm
(1 + zm)3, (4.117)

Ω`

ΩLCDM
m

=

√ΩLCDM
m

Ωm
−

√
Ωm

ΩLCDM
m

2

(1 + zm)3. (4.118)

Furthermore, if we assume that the value of ΩLCDM
m is known (say, from

the analysis of SN data), then the two braneworld parameters Ω` and ΩΛb

can be related to the two parameters Ωm and zm using (4.117), so it might
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be more convenient to analyze the model in terms of Ωm and zm (instead of
Ω` and ΩΛb

).
We also note that, under condition (4.110), the brane tension σ, determined

by (4.79), is positive for BRANE1 model, and negative for BRANE2 model.
Since the Hubble parameter in braneworld models departs from that in

LCDM at intermediate redshifts (z > zm), this could leave behind an important
cosmological signature especially since several key cosmological observables
depend upon the Hubble parameter either differentially or integrally.
Examples include:

• the luminosity distance dL(z), given by (4.88),
• the angular diameter distance (4.95),
• the product dA(z)H(z), which plays a key role in the Alcock—Paczynski

anisotropy test [554,555],
• the product d2

A(z)H−1(z), which is used in the volume-redshift test [556],
• the deceleration parameter (4.84),
• the effective equation of state of dark energy (4.98),
• the age of the Universe (4.96),
• the “statefinder pair” [322,557]:

r =

...
a

aH3
≡ 1 +

[
H ′′

H
+

(
H ′

H

)2
]

(1 + z)2 − 2
H ′

H
(1 + z),

s =
r − 1

3(q − 1/2)
,

(4.119)

• the electron-scattering optical depth to a redshift zreion [558,559]

τ(zreion) = c

zreion∫
0

ne(z)σT dz

(1 + z)H(z)
, (4.120)

where ne is the electron density and σT is the Thomson cross-section describing
scattering between electrons and CMB photons.

A degree of caution should be exercised when comparing the late-time
LCDM behavior (4.114) of the model under consideration with different sets of
observations, since the parameter ΩLCDM

m , residing in (4.114), which is effecti-
vely used in determinations of the luminosity distance (4.88) and angular di-
ameter distance (4.95), may very well be different from the value of Ωm inferred
from observations of gravitational clustering. These issues should be kept in
mind when performing a maximum-likelihood analysis using data belonging to
different observational streams.

Cosmological tests based on the luminosity distance and angular diameter
distance typically probe lower redshifts z . 2. Therefore, if the mimicry redshift
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is zm ≥ 2, the braneworld model will, for all practical purposes, be indistingui-
shable from the LCDM cosmology on the basis of these tests alone. However,
tests which probe higher redshifts should be able to distinguish between these
models. For instance, since H(z) < HLCDM(z) in BRANE2 at redshifts larger
than the mimicry redshift, it follows that the age of the Universe will be greater
in this model than in the LCDM cosmology. This is illustrated in Fig. 4.11 for
three distinct values of the cosmological density parameter: Ωm = 0.2, 0.1,
0.04, all of which are lower than ΩLCDM

m = 0.3. Since the late-time evolution
of the Universe is

t(z) ' 2

3H0

√
Ωm

(1 + z)−3/2, (4.121)

one finds, for z � 1,
tbrane

tLCDM
(z) '

√
ΩLCDM

m

Ωm
. (4.122)

Since Ωm < ΩLCDM
m in the BRANE2 model, we find that the age of a BRANE2

Universe is greater than that of a LCDM Universe. (The reverse is true for the
BRANE1 model, for which Ωm > ΩLCDM

m .)
The altered rate of expansion in the braneworld model at late times (z >

> zm) also affects other cosmological quantities including the redshift of rei-
onization which, for the BRANE2 model, becomes smaller than that in the
LCDM cosmology. This is because the lower value of H(z) in the BRANE2
model (relative to the LCDM model), when substituted to (4.120), gives a
correspondingly lower value for zreion for an identical value of the optical depth
τ in both models. (In fact, it is easy to see that, for the BRANE2 model, the
value of zreion decreases with decreasing zm and Ωm.)

Both an increased age of the Universe and a lower redshift of reionization
are attractive properties of the braneworld model which, as we have seen, mi-
mics the LCDM cosmology at lower redshifts z < zm

4. It is important to note
that the presence of high-redshift quasi-stellar objects (QSO’s) and galaxies at
redshifts z & 6 indicates that the process of structure formation was already
in full swing at that early epoch when the LCDM Universe was less than a
billion years old. Most models of QSO’s rely on a central supermassive black
hole (MBH & 109M�) to power the quasar luminosity via accretion. Since
structure forms hierarchically in the cold dark matter scenario, the presence
of such supermassive black holes at high redshift suggest that they formed
through an assembly mechanism involving either accretion or mergers or both.
It is not clear whether either of these processes is efficient enough to assemble
a large number of high-redshift QSO’s in a LCDM cosmology [561, 562]. We

4 Note that the decreased redshift of reionization and the increased age of the Universe
are properties that the BRANE2 model shares with the loitering Universe [560] discussed in
Sec. 4.9.
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Fig. 4.11. The age of the Universe in the BRANE2 model is shown with respect to the
LCDM value. The mimicry redshift (4.116) is zm = 4 so thatHbrane(z) ' HLCDM(z) at z � 4.
The braneworld models have Ωm = 0.2, 0.1, 0.04 (bottom to top) whereas ΩLCDM

m = 0.3.
Note that the braneworld models are older than LCDM. Figure taken from [553]

Fig. 4.12. The effective equation of state (solid line) and the deceleration parameter (dashed
line) of the BRANE2 model are shown. (The dotted line shows w = −1 which describes the
LCDM model.) The mimicry redshift (4.116) is zm = 4 so that Hbrane(z) ' HLCDM(z) at
z . 4. The braneworld has Ωm = 0.2 whereas ΩLCDM

m = 0.3. Figure taken from [553]

would like to note in this section that braneworld cosmology may successfully
alleviate some of the tension currently existing between theory and observati-
ons at moderate redshifts, while allowing the Universe to be “LCDM-like” at
the present epoch.

The effective equation of state and the deceleration parameter of the
BRANE2 model are shown in Fig. 4.12. The braneworld has Ωm = 0.2 and,
at z . 4, masquerades as a higher-density LCDM model with ΩLCDM

m = 0.3.
Note that the effective equation of state (4.98) is a model-dependent quantity,
involving the model-dependent cosmological parameter Ωm in its definition. In
our case, we use the braneworld theory as our model with Ωm defined in (4.77),
and the effective equation of state (4.98) is then redshift-dependent even du-
ring the mimicry period when Hbrane

(
Ωm, z

)
' HLCDM

(
ΩLCDM

m , z
)
. A theorist

who is unaware of the possibility of cosmic mimicry, when reconstructing the
cosmic equation of state from (4.98) with ΩLCDM

m = 0.3 in the place of Ωm, will
arrive at a different conclusion that w = −1. This example demonstrates some
of the pitfalls associated with the cosmological reconstruction of the equation
of state, which depends on the underlying theoretical model and for which an
accurate knowledge of Ωm is essential; see [322, 557, 563—566] for a discussion
of related issues.
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The “cosmic mimicry” exhibited by braneworld cosmology can be related
to the gravitational properties of braneworld theory described in Sec. 4.5. In
this context, it is remarkable that the parameter β introduced in (4.53) is
very close (in absolute terms) to the parameter α introduced in (4.112) in our
discussion of mimicry models. Specifically,

β =
1− Ωm

2Ω`
∓ α, (4.123)

so that |β| ≈ α (4.124)

when |1 − Ωm| � Ω` . This last inequality follows naturally from conditi-
on (4.110) for values of α of order unity, which are of interest to us. As a
consequence, the term which appears in the “renormalization” of the cosmologi-
cal mass density Ωm in (4.113) is almost identical to the term which redefi-
nes the gravitational constant in (4.55). This coincidence can be explained by
inspecting the brane equation (4.52). First, we recall that cosmological soluti-
ons without dark radiation are embeddable in the anti-de Sitter bulk space-time
(see Sec. 4.2), so that Cab = 0 for these solutions. For high cosmological matter
densities, the quadratic expression (4.56) dominates in Eq. (4.52), and the Uni-
verse is described by the “bare” Einstein equation m2Gab − Tab = 0, with the
effective gravitational coupling being equal to 1/m2. As the matter density
decreases, the role of this quadratic term becomes less and less important, and
the effective gravitational coupling eventually is determined by the linear part
of Eq. (4.52), i.e., by the gravitational constant (4.55).

Thus, comparing (4.55) and (4.113), one has the following natural relation,
valid to a high precision in view of (4.124):

ΩLCDM
m =

8πGeffρ0

3H2
0

. (4.125)

Since, in our case, interesting values of the parameters Ω` and ΩΛb
are

considerably greater than unity, the RS constraint (4.50), which can also be
written in the form

Ωσ ± 2
√

Ω`ΩΛb
= 0, (4.126)

is satisfied to a good precision in view of Eq. (4.79). Note that ΩLCDM
m ≈ 1 in

the case of the RS constraint. A slight violation of the RS constraint causes
the appearance of a small effective cosmological constant (4.54) on the brane,
which can be thought to be inessential for the discussion of the Newtonian part
of the gravitational physics performed in Sec. 4.5.

The cosmological model under consideration appears to safely pass the exi-
sting constraints on the variation of the gravitational constant from primordi-
al abundances of light elements synthesized in the big-bang nucleosynthesis
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(BBN) and from CMB anisotropy [567]. The value of the gravitational constant
at the BBN epoch in our model coincides with the value measured on small
scales (4.66), and the effective gravitational constant (4.60) or (4.55) that
might affect the large-scale dynamics of the Universe responsible for the CMB
fluctuations is within the uncertainties estimated in [567].

Cosmic mimicry in braneworld models is most efficient in the case of
parameter α ∼ 1, which, according to (4.112), implies that the two spatial
scales, namely, the brane length scale given by (4.48) and the curvature scale
of the bulk are of the same order: ` ∼ `warp =

√
−6/Λb . This coincidence of

the orders of magnitude of completely independent scales can be regarded as
some tuning of parameters, although it is obviously a mild one.

4.9. Loitering
4.9.1. Loitering Universe

In the models of dark energy, the deceleration parameter at
some point changes sign while the Hubble parameter is usually assumed to be a
monotonically decreasing function of the cosmic time 5. In the present section,
we show that this need not necessarily be the case in braneworld models,
and that compelling dark-energy models can be constructed in which H(z)
dips in value at high redshifts. In these models, dH(z)/dz ' 0 at zloit � 1,
which is called the “loitering redshift”. (A Universe which loiters has also been
called a “hesitating” Universe, since, if H(zloit) ' 0, the Universe hesitates
at the redshift zloit for a lengthy period of time — before either collapsing or
re-expanding.) Loitering increases the age of the Universe at high z and also
provides a boost to the growth of density inhomogeneities, thereby endowing
a dark-energy model with compelling new properties.

Before discussing loitering in braneworld models [560], we briefly review
the status of loitering in standard General Relativity in this subsection. Within
a FRW setting, loitering can only arise in a Universe which is spatially closed
and which is filled with matter and a cosmological constant (or some other
form of dark energy — see [569]). The evolution of such a Universe is described
by the equation

H2 =
8πG

3

ρ0a
3
0

a3
+

Λ

3
− κ

a2
, κ = 1, (4.127)

where ρ0 is the present matter density. Loitering in (4.127) arises if the cur-
vature term (1/a2) is large enough to substantially offset the dark-matter +
+ dark-energy terms but not so large that the Universe collapses. The redshift
at which the Universe loitered can be determined by rewriting (4.127) in the

5 Phantom models may provide an exception to this rule; see [568] and references therein.
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form

h2(z) ≡ H2(z)

H2
0

= Ωm(1 + z)3 + ΩΛ + Ωκ(1 + z)2, (4.128)

where Ωκ = −κ/a2
0H

2
0 , Ωm = 8πGρ0/3H

2
0 , ΩΛ = Λ/3H2

0 , the subscript “0”
refers to present epoch, and the constraint equation requires Ωκ = 1−Ωm−ΩΛ.

The loitering condition dh/dz = 0 gives

1 + zloit =
2|Ωκ|
3Ωm

, (4.129)

and it is easy to show that zloit ≤ 2 for Ωm ≥ 0.1 [569]. (Note that a large
value of |Ωκ| can cause the Universe to recollapse.) The value of the Hubble
parameter at loitering can be determined by substituting zloit into (4.128). Note
that, since ä/a = Ḣ +H2, it follows that (ä/a)

∣∣
z=zloit

= H2(zloit) at loitering.
(The special case ȧ = 0, ä = 0 corresponds to the static Einstein Universe [236].
For a detailed discussion of loitering in FRWmodels with dark energy see [569].
Loitering in more general contexts has been discussed in [570,571].)

Interest in loitering FRW models has waxed and waned ever since the
original discovery of a loitering cosmology by Lemâıtre over seventy years ago
[48]. Among the reasons why the interest in loitering appears to have declined
in more recent times are the following: (i) even though loitering models can
accommodate an accelerating Universe, the loitering redshift is usually small:
zloit ≤ 2 in LCDM; (ii) loitering models require a large spatial curvature,
which is at variance with inflationary predictions and CMB observations both
of which support a flat Universe. As we shall show, in marked contrast with the
above scenario, loitering in braneworld models can take place in a spatially flat
Universe and at high redshifts (z & 6). At late times, the loitering braneworld
model has properties similar to those of LCDM.

4.9.2. Loitering in braneworld models

Loitering can be realized in a braneworld model described
by action (4.7) with N = 1 and cosmological equation (4.80), which, for a
spatially flat Universe (κ = 0) can be written in the form

H2(a) =
A

a3
+B +

2

`2

[
1±

√
1 + `2

(
A

a3
+B − Λb

6
− C

a4

)]
, (4.130)

where

A =
ρ0a

3
0

3m2
, B =

σ

3m2
, ` =

2m2

M3
. (4.131)

Of crucial importance to the present analysis is the dark-radiation term
C/a4 in (4.130) whose presence is a generic feature in braneworld models

243



CHAPTER 4. Braneworld models

and which describes the projection of the bulk degrees of freedom onto the
brane. [As was noted in the remark following Eq. (4.13), it corresponds to the
presence of the bulk black hole.] An interesting situation arises when C < 0
and `2|C|/a4 � 1. In this case, if `2|C|/a4 is larger than the remaining terms
under the square root in (4.130), then that equation reduces to 6

H2(a) ≈ A

a3
+B ± 2

√
−C
`a2

. (4.132)

Equation (4.132) bears a close formal resemblance to (4.127), which gave
rise to loitering solutions in standard FRW geometry for κ = 1. Indeed, the
role of the spatial curvature in (4.132) is played by the dark-radiation term;
consequently, a spatially open Universe is mimicked by the BRANE2 model
[the upper sign in (4.130)] while a closed Universe is mimicked by BRANE1 [the
lower sign in (4.130)]. In analogy with standard cosmology, one might expect
the braneworld model (4.130) to show loitering behavior in the BRANE1 case.
This is indeed the case, and stronly loitering solutions to (4.130) and (4.132)
can be found by requiring H ′(a) = 0.

Although this is the general procedure which we follow, for practical pur-
poses it is more suitable to rewrite (4.130) in the form (4.78). When the dark-
radiation term is strongly dominating, Eq. (4.130) or, for that matter (4.78)
with κ = 0, then reduces to

H2(z)

H2
0

' Ωm(1 + z)3 + Ωσ − 2
√

Ω`ΩC(1 + z)2 , (4.133)

which is the braneworld analog of (4.128). The loitering redshift in this case
can be defined by the condition H ′(zloit) = 0; as a result, one gets

1 + zloit '
4

3

√
ΩCΩ`

Ωm
. (4.134)

From this expression we find that the Universe will loiter at a large redshift
zloit � 1 provided ΩCΩ` � Ω2

m. Since Ω2
m � 1, this is not difficult to achieve in

practice. Successful loitering of this type requires the following two conditions
to be satisfied:

ΩC(1 + zloit)
4 � Ωm(1 + zloit)

3 + Ωσ + Ω` + ΩΛb
,

Ωσ ∼
√

Ω`ΩC(1 + zloit)
2.

(4.135)

6 The negative value of the dark-radiation term implies the presence of black hole with
negative mass — hence, naked singularity — in the complete extension of the bulk geometry.
In principle, this singularity could be “closed from our view” by another (invisible) brane.

244



4.9. Loitering

The first inequality ensures that the dark-radiation term dominates over
the remaining terms under the square root of (4.80) during loitering, while the
second makes sure that this term is never so large as to cause the Universe to
recollapse.

Substituting the value for 1 + zloit from (4.134) into (4.135), we obtain

Ωσ ∼
(ΩCΩ`)

3/2

Ω2
m

� Ω`, (4.136)

which is a necessary condition for loitering in our braneworld model.
Finally, the Hubble parameter at loitering is given by the approximate

expression
H2(zloit)

H2
0

' Ωσ −
32

27

(ΩCΩ`)
3/2

Ω2
m

. (4.137)

Note that conventional loitering is usually associated with a vanishingly
small value for the Hubble parameter at the loitering redshift [569]. The Hubble
parameter at loitering can be set as close to zero as possible; however, we do
not require it to be very close to zero. A small “dip” in the value of H(z), which
is sufficient for our purposes, arises for a far larger class of parameter values
than the more demanding condition H(zloit) ' 0.

Moreover, in a wide range of parameters, the Universe evolution may not
exhibit a minimum of the Hubble parameterH(z). In this case, the definition of
the loitering redshift by the condition H ′(zloit) = 0 is not appropriate and can
be generalized in several different ways, one of which is described in Sec. 4.9.3.

An example of a loitering model is shown in Fig. 4.13, where the Hubble
parameter of a Universe which loitered at z ' 18 is plotted against the redshift,
keeping Ωm, Ω`, and ΩC fixed and varying the value of ΩΛb

. The right-hand
panel of Fig. 4.13 illustrates the fact that the loitering Universe can show a
variety of interesting behavior: (i) top curve, H(z) is monotonically increa-
sing and H ′(z) ' constant in the loitering interval; (ii) middle curve, H(z)
appears to have an inflexion point (H ′ ' 0, H ′′ ' 0) during loitering; (iii) lower
curve, H(z) has both a maximum and a minimum, the latter occurring in the
loitering regime.

At this point, we would like to stress an important difference existing
between the Randall—Sundrum braneworld (4.20) and our Universe (4.130)
due to which the latter can accommodate a large value of dark radiation wi-
thout violating nucleosynthesis constraints whereas the former cannot. In the
Randall—Sundrum braneworld (4.20), the dark-radiation term (C/a4) affects
cosmological expansion in exactly the same way as the usual radiation density
ρr, so that this model comes into serious conflict with the predictions of the
big-bang nucleosynthesis if |C| is very large [572]. In the loitering braneworld,
on the other hand, the dark-radiation term resides under the square root in
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Fig. 4.13. The Hubble parameter for a Universe that loiters at zloit ' 18. Parameter values
are Ωm = 0.3, ΩC = 8.0, Ω` = 3.0, and ΩΛb/105 = 6, 4.5, 3.4 (solid lines, from top to
bottom). The left panel shows the Hubble parameter with respect to the LCDM value while,
in the right panel, the LCDM (dashed) and loitering (solid) Hubble parameters are shown
separately. Figure taken from [560]

(4.130); due to this circumstance its effect on the cosmological expansion is
less severe and, more importantly, transient . Indeed, even if the dark-radiation
term is very large (|C|/a4 > ρm, ρr), its influence on expansion can only be
∝1/a2, which does not pose a serious threat to the standard predictions of the
big-bang nucleosynthesis.

A loitering Universe could have several important cosmological con-
sequences:

(i) The age of the Universe during loitering increases, as shown in Fig. 4.14.
The reason for this can be seen immediately from expression (4.96). Clearly,
a lower value of H(z) close to loitering will boost the age of the Universe at
that epoch. In Fig. 4.14, the age of the Universe is plotted with reference to a
LCDM Universe, which has been chosen as our fiducial model. It is interesting
to note that, while the age at loitering can be significantly larger in the loi-
tering model than in LCDM [tloit(zloit) ∼ few × tLCDM(zloit)], the present age
of the Universe in both models is comparable [tloit(0) . 1.2× tLCDM(0)] 7. An
important consequence of having a larger age of the Universe at z ∼ 20 (or so)
is that astrophysical processes at these redshifts have more time in which to
develop. This is especially important for gravitational instability which forms
gravitationally bound systems from the extremely tiny fluctuations existing at

7 The age of a LCDM Universe at z � 1 is t(z) ' (2/3H0

√
Ωm)(1 + z)−3/2 = 5.38×

× 108(1 + z/10)−3/2 years for Ωm = 0.3 and h = 0.7.
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Fig. 4.14. In the left panel, the age of three loitering models is shown relative to the age in
LCDM (model parameters are the same as in Fig. 4.13). Note that the age of the Universe
near loitering (zloit ∼ 18) is significantly greater than that in LCDM although, at the present
epoch, the difference in ages between the two models is relatively small. In the right panel,
the luminosity distance in a Universe that loiters at zloit ' 18 is shown in comparison with
other models. Note that the luminosity distance in the loitering model is only slightly larger
than that in LCDM and smaller than that in a phantom model with w = −1.5. Figure taken
from [560]

the epoch of last scattering. Thus, an early loitering epoch may be conducive
to the formation of Population III stars and low-mass black holes at z ∼ 17
and also of ∼ 109M� black holes at lower redshifts (z ∼ 6).

(ii) In Fig. 4.14, the luminosity distance (4.88) for the loitering model is
shown, again with LCDM as the base model. One finds from Fig. 4.14 that
the luminosity distance in the loitering model, although somewhat larger than
in LCDM, is smaller than in a phantom model with w = −1.5. Since both
phantom and LCDM models provide excellent fits to type Ia supernova data
[3,279,564,565], we expect our family of “high redshift loitering models” to also
be in good agreement with observations. (A detailed comparison of loitering
models with observations lies outside of the scope of the present book.)

The reason why both the luminosity distance and the current age of the
Universe have values which are close to those in the LCDM model is clear from
Fig. 4.13, where we see that the difference between the Hubble parameters for
the loitering models and LCDM model is small at low redshifts. Since both
dL(z) and t(z) probe H−1(z), and since the value of the Hubble parameter at
low z is much smaller than its value at high z (unless parameter values are
chosen to give H(zloit) ' 0 with a high precision), it follows that |dloit

L (z)−
− dLCDM

L (z)| � dLCDM
L (z) and |tloit(z)− tLCDM(z)| � tLCDM(z) for z � 1.
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(iii) The growth of density perturbations depends sensitively upon the
behavior of the Hubble parameter, as can be seen from the following equation
describing the growth of linearized density perturbations δ = (ρ − ρ̄)/ρ̄ in a
FRW Universe (ignoring the effects of pressure):

δ̈ + 2Hδ̇ − 4πGρ̄ δ = 0. (4.138)

In Eq. (4.138), the second term 2Hδ̇ damps the growth of perturbations;
consequently, a lower value of H(z) during loitering will boost the growth
rate in density perturbations, as originally demonstrated in [569].

Here we should note that Eq. (4.138) for perturbations is perfectly valid
only in General Relativity and, in principle, may be corrected or modified in
the braneworld theory under consideration. Thus, for the DGP braneworld
model [504] (which corresponds to setting σ = 0, Λb = 0 and C = 0 in
Eq. (4.130)), the linearized equation

δ̈ + 2Hδ̇ − 4πGρ̄

(
1 +

1

3βDGP

)
δ = 0 (4.139)

was derived in [541,542], where

βDGP = −1 + Ω2
m(t)

1− Ω2
m(t)

, Ωm(t) ≡ 8πGρ̄(t)

3H2(t)
. (4.140)

It is important to note the similarities as well as differences between (4.138)
and (4.139). Thus, cosmological expansion works in the same way for both
models and introduces the damping term 2Hδ̇ in (4.138) as well as in (4.139).
However, in contrast to (4.138), the braneworld perturbation Eq. (4.139) has
a time-dependent (decreasing) effective gravitational constant

Geff = G

(
1 +

1

3βDGP

)
, (4.141)

which is expected to affect the growth rate of linearized density perturbations
in this model. For the generic braneworld models which we study in this book
[which has non-zero brane and bulk cosmological constants and especially non-
zero dark radiation: C 6= 0 in Eq. (4.130)], the corresponding equation for
cosmological perturbations remains to be derived. We expect the form of this
equation to be dependent on the additional boundary conditions in the bulk
or on the brane. However, we anticipate that such an equation will contain the
damping term 2Hδ̇ which serves to enhance the growth of perturbations in the
case of loitering. At the same time, braneworld-specific effects may act in the
opposite direction leading to the suppression of the growth of perturbations
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relative to the FRW model, as is the case, for instance, with the last term in
(4.139) for the DGP model [541,542].

(iv) The deceleration parameter q and the effective equation of state w in
our loitering model are given by the expressions (4.84) and (4.98), respectively,
in which H(z) is to be determined from (4.80) and (4.79). The current values
of these quantities are

q0 =
3

2
Ωm

[
1−

√
Ω`√

Ω` +
√

1 + ΩΛb
+ ΩC

(
1 +

4

3

ΩC

Ωm

)]
− 1, (4.142)

w0 = −1− Ωm

(1− Ωm)
·

√
Ω`√

Ω` +
√

1 + ΩΛb
+ ΩC

(
1 +

4

3

ΩC

Ωm

)
. (4.143)

From Eq. (4.143) we find that w0 < −1 if ΩC ≥ 0; in other words, our loitering
Universe has a phantom-like effective equation of state. (In particular, for the
loitering models shown in Fig. 4.13, we have w0 = −1.035, −1.04, −1.047 (top
to bottom), all of which are in excellent agreement with observations [573].)
However, in contrast to phantom models, the Hubble parameter in a loitering
Universe (4.80) does not encounter a future singularity since ΩC , Ωσ > 0 is
always satisfied in models which loitered in the past. (Future singularities can
arise in braneworld models if ΩC , Ωσ < 0 — see [574] for a comprehensive
discussion of this issue and [575,576] for related ideas.)

An interesting consequence of the loitering braneworld is that the time-
dependent density parameter Ωm(z) = 8πGρm(z)/3H2(z) exceeds unity at
some time in the past. This follows immediately from the fact that, since the
value of H(z) in the loitering braneworld model is smaller than its counterpart
in LCDM, the value of Ωm(z) is larger than its counterpart in LCDM. One
important consequence of this behavior is that, as expected from (4.143), the
effective equation of state blows up precisely when Ωm(z) = 1. In Fig. 4.15,
we show that, in contrast to the singular behavior of the equation of state,
the deceleration parameter remains finite and well behaved even as w → ∞.
Note that the finite behavior of q(z) reflects the fact that the equation of state
for the braneworld is an effective quantity and not a real physical property
of the theory — see [322, 557] for a related discussion of this issue and [577]
for an example of a different dark-energy model displaying similar behavior.
(The deceleration parameter experiences near-singular behavior at the higher,
loitering redshift, as H → 0 so that q →∞.)

(v) Finally, we draw attention to the fact that a loitering epoch at zloit can
significantly alter the reionization properties of the Universe at lower redshifts.
The electron scattering optical depth to a redshift zreion is given by Eq. (4.120).
Clearly, were H(z) to drop below its value in LCDM it would imply a lower
value for zreion. Since this is precisely what happens in a loitering cosmology,
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Fig. 4.15. The effective equation of state
of dark energy (solid) and the decelerati-
on parameter (dashed) are shown for a
Universe which loitered at z ' 18. Note
that the effective equation of state of dark
energy becomes infinite at low redshifts
when Ωm(z) = 1. However, this behavior is
not reflected in the deceleration parameter,
which becomes large only near the loitering
redshift. Figure taken from [560]

one expects zreion|loitering < zreion|LCDM if zloit . 20. As an example, consider
the loitering models shown for illustrative purposes in Fig. 4.13. Not surprisi-
ngly, the redshift of reionization drops to zreion ≤ 12 (from the value zreion ' 17)
for the loitering models shown in Fig. 4.13. By decreasing the redshift of rei-
onization as well as increasing the age of the Universe, the loitering braneworld
may help in alleviating the possible tension between the high-redshift Universe
and dark-energy cosmology.

4.9.3. The parameter space
in loitering models

As pointed out earlier, while not all loitering models pass
through a minimum of the Hubble parameter, a minimum value of the ratio
H(z)/HLCDM(z) is generic and is exhibited by all models. It is therefore useful
to supplement the definition of loitering given in (4.134) by defining the loite-
ring redshift zloit as the epoch associated with the minimum ofH(z)/HLCDM(z)
(both models are assumed to have the same value of Ωm). In order to quantify
the degree of loitering, it is useful to introduce the function

f(z) ≡ 1− H2(z)

H2
LCDM(z)

, (4.144)

where 0 ≤ f < 1. Small values 0 ≤ f ≤ 1/2 imply weak loitering, whereas
larger values 1/2 < f < 1 correspond to strong loitering. It is straightforward
to derive expressions for the loitering redshift zloit and the degree of loitering
f(zloit):

(1 + zloit)
4 ≈

3
(√

1 + ΩΛb
+ ΩC +

√
Ω`

)2
ΩC

, (4.145)
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Fig. 4.16. The parameter space {Ω`,ΩC}
is shown for models which exhibit (i) weak
loitering: f(zloit) ≤ 1/2 in (4.144) (lower
left corner); (ii) strong loitering: 1/2 <
< f(zloit) < 1 in (4.144) (shaded regi-
on). The prohibited region correspondi-
ng to braneworld models which recollapse
before reaching the present epoch is shown
on the far right. The dashed lines show
contours of {Ω`,ΩC} with current values
of the effective equation of state: w0 =
= −1.01, −1.015, −1.02, −1.025, −1.03,
−1.035 (from left to right). All models loi-
ter at zloit = 20 and have Ωm = 0.3. Figure
taken from [560]

f(zloit) ≈
2
√

Ω`

(√
1 + ΩΛb

+ ΩC +
√

Ω`

)
Ωm(1 + zloit)3

, (4.146)

which are valid under the single assumption Ωm(1 + zloit)
3 � ΩC(1 + zloit)

4, or

Ωm � Ω
3/4
C

(√
1 + ΩΛb

+ ΩC +
√

Ω`

)1/2
. (4.147)

From (4.145) and (4.146) one has the useful approximate conditions

2
√

Ω`

(√
1 + ΩΛb

+ ΩC +
√

Ω`

)
≈ Ωmf(zloit)(1 + zloit)

3, (4.148)

ΩCΩ` ≈
3

4

[
Ωmf(zloit)(1 + zloit)

]2
. (4.149)

In practice, it is often convenient to take the values of Ωm, (1 + zloit),
and f(zloit) as control parameters and to determine the approximate ranges
of Ω`, ΩC , and ΩΛb

from equations (4.145)—(4.149). In Fig. 4.16, we show, as
an example, the range of allowed values for the parameter pair {Ω`,ΩC} for a
model which loiters at zloit = 20 and has Ωm = 0.3.

It is necessary to draw the reader’s attention to the fact that not every
set of parameter values gives rise to a “realistic” cosmology. For some of
them, the Universe recollapses before reaching the present epoch. (The loi-
tering braneworld shares this property with a closed FRW Universe, and the
reader is referred to [578] for an extensive discussion of this issue.) It is obvious
that the model approaches a recollapsing Universe as the loitering parameter
f(zloit)→ 1. Thus, setting f(zloit) = 1 in estimate (4.149), we obtain the
approximate boundary of the region of recollapsing universes in the parameter
space {Ω`,ΩC}:

ΩCΩ` &
3

4
Ω2

m(1 + zloit)
2, (4.150)
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which corresponds to the “prohibited” region in Fig. 4.16 for the particular
choice of zloit = 20 and Ωm = 0.3.

4.9.4. Inflation in braneworld models with loitering

The loitering braneworld models considered in the previous
section place certain constraint on the duration of the inflationary stage, as
we are going to show. First, we note that, during the inflationary stage, the
Hubble parameter as a function of the scale factor can be approximated with
a great precision as follows [cf. with (4.132)]:

H2(a) =
ρi(a)

3m2
− 2

√
−C
`a2

, (4.151)

where ρi(a) is the energy density during inflation, which typically changes very
slowly with the scale factor a. Since, on the contrary, the last term in (4.151)
changes rapidly during inflation, one can easily see that inflation should have
a beginning in this model at the scale factor roughly given by the estimate

a2
i '

6m2
√
−C

`ρi
, or

(
ai

a0

)2

' 2ρ0

ρi

√
Ω`ΩC . (4.152)

Using (4.149), one can write the following estimate for the redshift zi at the
beginning of inflation:

(1 + zi)
2 ' ρi

ρ0

[√
3Ωmf(zloit) (1 + zloit)

]−1
, (4.153)

where the loitering redshift zloit and the quantity f(zloit), which quantifies the
degree of loitering and takes values in the range between zero and unity, are
defined in Sec. 4.9.3.

To estimate the total number of the inflationary e-foldings, we consider a

simple model of inflation based on the inflaton φ with potential V (φ) =
1

2
m2
φφ

2.
In this case, as can be shown, inflation proceeds at the values of the scalar field
φi ' MP ≡

√
8πm and ends approximately at φf ' M2

P/
√

12π. This leads to
the following relation between the typical energy density during inflation and
at its end:

ρi

ρf
' 12π. (4.154)

Then using (4.153) and the estimate for the redshift at the end of inflation

1 + zf =
a0

af
' Trh

T0
'
(
ρf

Ωrρ0

)1/4

(4.155)
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which assumes that preheating takes place instantaneously with effective tem-
perature Trh, we can estimate the redshift ratio

zi

zf
'
[

4ρ2
i

27ρ0ρf

Ωr

Ω2
mf

2(zloit)(1 + zloit)2

]1/4

'

'
[

16πρi

9ρ0

Ωr

Ω2
mf

2(zloit)(1 + zloit)2

]1/4

.

(4.156)

Here, Ωr ' 10−5 is the current value of the radiation density parameter.
For our typical loitering redshift zloit ≈ 18, for the degree of loitering

f(zloit) ∼ 1, and for the estimate of the inflationary energy density in agreement
with the CMB fluctuations spectrum as [579] ρi/ρ0 ∼ 10112, this will restrict
the total number of inflationary e-foldings N by

eN ≡ zi

zf
. 1026 ' e60. (4.157)

It is interesting that the total number of inflationary e-foldings in the loite-
ring braneworld is close to the expected number of e-foldings associated with
horizon crossing in inflationary models [579]. The exact upper bound on the
number of inflationary e-foldings depends on a concrete model of braneworld
inflation in the presence of loitering, and we propose to study this issue in
greater detail in a future work.

Returning to (4.151), we would like to draw the reader’s attention to the
fact that, depending upon the form of the inflaton potential, the evolution
of the Hubble parameter at very early times could have proceeded in two
fundamentally different and complementary ways:

(i) If the shape of the inflaton potential V (φ) is sufficiently flat, then, for a
field rolling slowly, ρi = ρφ behaves like a slowly varying Λ term. As a result, the
1/a2 term is expected to dominate at early times giving rise to a cosmological
“bounce” (H ' 0) when the two terms in (4.151) become comparable.

(ii) Alternatively, it might well be that the potential V (φ) is not uniformly
flat, but changes its form and becomes steep for large values of φ (within the
context of chaotic inflation). In this case, the bounce will be avoided if, for
small values of a, ρi(a) increases faster than the 1/a2 term in (4.151). Such a
rapid change in ρi(a) at early times will be accompanied by the fast rolling
of the inflaton field until the latter evolves to values where the potential is
sufficiently flat for inflation to commence.

Interestingly, both (i) and (ii) lead to departures from scale invariance
of the primordial fluctuation spectrum on very large scales, and have been
discussed in [580] and [581], respectively, as providing a means of suppres-
sing power on very large angular scales in the CMB fluctuation spectrum. In
analogy with the discussion in these papers, we expect that the present loitering
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scenario too may give rise to a smaller amplitude for scalar perturbations on the
largest scales, thereby providing better agreement with the CMB anisotropy
results obtained by COBE [14,582] and WMAP [94].

4.10. Quiescent singularities
4.10.1. Homogeneous case

In this section, we describe another interesting property of
the braneworld theory, namely, that it admits cosmological singularities of very
unusual form and nature [574]. Let us first consider the case with N = 1 in
action (4.7). The corresponding cosmological equation of the theory is (4.76),
where the integration constant C corresponds to the presence of a black hole
in the five-dimensional bulk solution, and the term C/a4 (occasionally referred
to as ‘dark radiation’) arises due to the projection of the bulk gravitational
degrees of freedom onto the brane.

The new singularities that we are going to discuss in this section are
connected with the fact that the expression under the square root of (4.76)
turns to zero at some point during evolution, so that solutions of the cosmologi-
cal equations cannot be continued beyond this point. There are essentially two
types of ‘quiescent’ singularities displaying this behavior:

A type 1 singularity (S1) is essentially induced by the presence of the
‘dark radiation’ term under the square root of (4.76) and arises in either of the
following two cases:

• C > 0 and the density of matter increases slower than a−4 as a → 0.
Such singularities occur if the Universe is filled with matter having equation
of state p/ρ < 1/3, an example is provided by pressureless matter (dust) for
which ρ ∝ a−3. A special case is an empty Universe (ρ = 0).

• The energy density of the Universe is radiation-dominated so that ρ =
= ρ0/a

4 and C > ρ0.
The singularities discussed above can take place either in the past of an

expanding Universe or in the future of a collapsing one.
A type 2 singularity (S2) arises if

`2
(
σ

3m2
− Λb

6

)
< −1. (4.158)

In this case, it is important to note that the combination ρ/3m2 − C/a4

decreases monotonically as the Universe expands. The expression under the
square root of (4.76) can therefore become zero at suitably late times, in which
case the cosmological solution cannot be extended beyond this time. Singularity
S2 is even more interesting than S1 since: (i) it can occur during the late time
expansion of the Universe; (ii) it can occur even if dark radiation is entirely
absent (C = 0).
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4.10. Quiescent singularities

Fig. 4.17. Conformal diagram showing the trajectory of a spatially spherical braneworld
embedded in the five-dimensional Schwarzschild space-time. The trajectory is not smoothly
extendable beyond the point Q

Fig. 4.18. The involute I of a planar curve C is not smoothly extendable beyond the starting
point Q

For both S1 and S2, the scale factor a(t) and its first time derivative
remain finite, while all the higher time derivatives of a(t) tend to infinity as
the singularity is approached. As an example consider a type 2 singularity with
C = 0, for which

dna

dtn
= O

(
[ρ(t)− α]3/2−n

)
, n ≥ 2, (4.159)

as ρ(t) → α = Λbm
2/2 − σ − 3m2/`2. We therefore find that the scalar

curvature R → ∞ near the singularity, while the energy density and pressure
remain finite. Although this situation is quite unusual from the viewpoint of
the intrinsic dynamics on the brane, it becomes comprehensible when one
considers the embedding of the brane in the bulk. As we already know, the
cosmological braneworld under consideration can be isometrically embedded
in the five-dimensional solution of the vacuum Einstein equations described by
metric (4.12), (4.13). The embedding of the brane is defined by the function
(4.14), and one can then proceed to define evolution in terms of the proper
cosmological time t of the induced metric on the brane, given by (4.15). The
cosmological singularity under consideration is connected with the fact that the
brane embedding is not extendable beyond some moment of time T because
the function a(T ) that defines the embedding cannot be smoothly continued
beyond this point (see Fig. 4.17).

This specific feature of the brane embedding can be compared to the
behavior of the involute of a planar curve. The involute I of a convex planar
curve C is a line which intersects the tangent lines of C orthogonally [583]. I
can be visualized as the trajectory described by the end of a strained thread
winding up from C (see Fig. 4.18). The involute of a typical curve is sharp
at the starting point Q so that it is not smoothly extendable beyond the
point Q.
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This analogy can be traced further. Note that the evolution of the brane
in theory (4.7) is described by equation (4.9) which, for the case N = 1, reads

m2Gab + σhab = M3 (Kab − habK) + Tab. (4.160)

One can see that it is the influence of the extrinsic curvature on the right-
hand side that leads to the singularities under investigation, so that the si-
ngularity of the Einstein tensor Gab is accompanied by the singularity of the
extrinsic curvature Kab, while the induced metric hab and the stress-energy
tensor Tab on the brane remain finite. Quite similarly, the involute of a curve
is defined through the extrinsic curvature of its embedding in the plane, as
is clear from Fig. 4.18, and its singularity at the point Q is connected with
the fact that the extrinsic curvature diverges at this point. Specifically, the
parametric equation for the involute x∗(s), s ≥ 0, in Cartesian coordinates on
the plane can be written as [583]

x∗(s) = x(q − s) + s · x′(q − s), (4.161)

where x(s) is the curve C parametrized by the natural parameter s, and x(q) =
= x∗(0) is the coordinate of the starting point Q of the involute. The extrinsic
curvature of the involute is

k(s) =
1

s
, (4.162)

which diverges at the starting point Q corresponding to s = 0.
One should also highlight an important difference between the 1D and 4D

embeddings: the involute being one-dimensional, a singularity in its extrinsic
curvature does not lead to a singularity in its intrinsic geometry. As we have
seen, this is not the case with the brane for which the extrinsic and intrinsic
curvatures are related through (4.9), so that a singularity in Kab is reflected
in a singularity in Gab.

Interestingly, an S2 singularity can arise in the distant future of a Universe
resembling our own. To illustrate this we can consider Eq. (4.78) with ΩC = 0.
For simplicity, we shall only discuss the solution corresponding to the upper
sign in (4.80) (called BRANE2 in Sec. 4.6 and in [308]). Our model satisfies
the constraint equation (4.79) with ΩC = 0. Inequality (4.158) now becomes

Ωσ + Ω` + ΩΛb
< 0, (4.163)

and the limiting redshift, zs = a0/a(zs)− 1, at which the braneworld becomes
singular is given by

zs =

(
−Ωσ + Ω` + ΩΛb

Ωm

)1/3

− 1. (4.164)
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4.10. Quiescent singularities

Fig. 4.19. The deceleration parameter
(solid line) is shown for a braneworld mo-
del with Ωm = 0.2, Ω` = 0.4, ΩΛb = Ωκ =
= 0, and Ωσ determined from (4.79). We
find that q (z) → 0.5 for z � 1 while
q (z) → ∞ as z → −0.312779... Currently
q0 < 0, which indicates that the Universe
is accelerating. Also shown is the dimen-
sionless Hubble parameter h(z) = 0.1×
×H(z)/H0 (dashed line) for this model.
The vertical line at z = 0 shows the present
epoch. Figure taken from [574]

The time of occurrence of the singularity (measured from the present moment)
can easily be determined from

∆ts = t(z = zs)− t(z = 0) =

0∫
zs

dz

(1 + z)H(z)
, (4.165)

where H(z) is given by (4.80) (see also [545]). In Fig. 4.19 we show a specific
braneworld model having Ωm = 0.2, Ω` = 0.4, ΩΛb

= Ωκ = 0. In keeping
with observations of high-redshift supernovae, our model Universe is currently
accelerating [3], but will become singular at zs ' −0.3⇒ a(zs) ' 1.4× a0, i.e.
after ∆ts ' 4.5h−1 Gyr (h = H0/100 km/sec/Mpc). Figure 4.19 demonstrates
that the deceleration parameter (4.84) becomes singular as zs is approached:
lim
z→zs

q(z)→∞, while the Hubble parameter remains finite:

H2(zs)

H2
0

= Ω` − ΩΛb
. (4.166)

It should be noted that, for a subset of parameter values, inequality (4.163)
can be satisfied simultaneously with ΩΛb

> Ω`. In these models, the Universe
will recollapse (under the influence of the negative brane tension) before the
S2 singularity is reached. (The marginal case ΩΛb

= Ω` corresponds to the
Hubble parameter vanishing at the singularity.)
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4.10.2. Inhomogeneous case

The preceding discussion focused on a homogeneous and
isotropic Universe whose expansion was governed by the brane equations
of motion. Since the real Universe is quite inhomogeneous on spatial scales
.100 Mpc, it is worthwhile to ask whether any of our previous results may be
generalized to this case.

Although we are not yet able to provide a self-consistent treatment of the
brane equations for this important case, still, some aspects of the problem
can be discussed at the phenomenological level. Consider, for instance, the
expansion law (4.76) with C = 0. A necessary condition for the existence of
a quiescent singularity is that the matter density ρ drops to a value which is
small enough for the square root on the right-hand side of (4.76) to vanish.
When this happens, the Universe encounters the quiescent singularity at which
ρ and H remain finite, but ä and higher derivatives of the scale factor di-
verge. Note, however, that, according to (4.76), the Universe encounters the
quiescent singularity homogeneously , i.e., every part of the (spatially infini-
te) Universe encounters the singularity at one and the same instant of time.
This follows from the fact that the density in (4.76) depends only upon the
cosmic time and nothing else. In practice, however, the Universe is anything
but homogeneous: its density varies from place to place. For instance, it is
well known that the density of matter in galaxies is &106 times the average
value while, in voids, it drops to only a small fraction of the average value. This
immediately suggests that the brane should encounter the quiescent singularity
in a very inhomogeneous fashion. Underdense regions (voids) will be the first
to encounter the singularity. Even in this case, since the density in individual
voids is inhomogeneously distributed, more underdense regions lying closer
to the void center will be the first to experience the singularity. It therefore
follows that the quiescent singularity will first form near the centers of very
underdense regions. As the void expands, its density at larger radii will drop
below ρs, where

√
1 + `2

(
ρs + σ

3m2
− Λb

6

)
= 0; (4.167)

consequently, the singularity will propagate outward from the void center in
the form of a quasi-spherical singular front. (For simplicity, we have assumed
that all voids have a spherical density profile; this assumption may need to be
modified for more realistic cases; see [584–588] and references therein.)

The above approach provides us with a very different perspective of the
quiescent singularity than that adopted in the previous subsection (and in
[574]). For one thing, the singularity may be present in certain regions of the
Universe right now , so it concerns us directly (as astrophysicists) and not as
some abstract point to which we may (or may not) evolve in the distant future.
The second issue is related to the first, since the singularity could already exist
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4.10. Quiescent singularities

within several voids (there are as many as a million voids in the visible Universe
in at least some of which the condition ρ ' ρs could be satisfied), a practical
observational strategy needs to be adopted to search for singularities in voids.
(Similar strategies combined with strenuous observational efforts have led to
the discovery of dozens of black holes in the centers of galaxies [589].)

A number of important issues therefore need to be addressed:
1. Since RiklmRiklm →∞ within a finite region at the very center of a void,

it follows that, unless this region is contained within an event horizon, we will
find ourselves staring at a naked singularity. (As shown in [590], quantum
effects do soften the singularity so that RiklmRiklm may remain finite if these
effects are included.)

2. The moment we drop the homogeneity assumption, the issue of particle
production immediately crops up, and we must take it into account if our
treatment is to be at all complete [591,592]. (In a related context, the quantum
creation of gravitons takes place even in a homogeneous and isotropic Universe,
since these fields couple minimally, and not conformally, to gravity [593,594].)

Let us discuss the possible effect of particle production in more detail.
First, we consider the model of homogeneous Universe taking it as an approxi-
mation to the situation inside an underdensity region (void). Gravitational
quantum particle production occurs as the singularity is approached. Since the
local value of the Hubble parameter remains finite at the singularity, producti-
on of the conformally coupled particles (like photons) is expected to be negli-
gible. However, particles that are non-conformally coupled to gravity (which
could be, for example, Higgs bosons in the Standard Model) will be copiously
produced as the acceleration of the Universe ä rapidly increases. The rate of
particle production depends not only on their coupling to gravity but also on
their coupling between themselves. Gravitationally created primary particles
will decay into conformally coupled secondaries (electrons, photons, neutrino,
etc.), which will influence the rate of production of the primaries by causing
decoherence in their quantum state. The whole process is thus not easy to
calculate in detail. However, from very general arguments it can be seen that
creation of matter due to quantum particle production is important for the
dynamics of the Universe during its later stages 8.

For the sake of physical simplicity, we restrict ourselves to the case of
vanishing bulk cosmological constant Λb and write Eq. (4.76) in the form

H =
1

`
+

√
∆ρ

3m2
, (4.168)

8 Effects of particle production are negligible in the neighborhood of the usual cosmologi-
cal singularity of the Friedmann Universe because the energy density of ordinary matter and
radiation strongly diverges and thus dominates at this singularity [421,591,592]. In our case,
the energy density of ordinary matter remains finite during the classical approach to the
quiescent singularity, hence, particle production effects are of crucial significance.
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where
∆ρ = ρ− ρs, ρs = −σ − 3m2

`2
, (4.169)

and where we have chosen the physically interesting “+” sign in Eq. (4.76).
Thus, we have two free parameters in our theory, namely, ` and ρs. The value
of m is assumed to be of the order of the Planck mass. In this case the early-
time behavior of the Universe follows the standard Friedmann model, as can
be seen from (4.76) or (4.168).

Let the average particle energy density production rate be ρ̇prod. Then,
differentiating Eq. (4.168), we obtain

Ḣ =
ρ̇prod − γHρ
2 (3m2∆ρ)1/2

, (4.170)

where γ > 0 corresponds to the effective equation of state of matter in the
Universe: if p = wρ, then γ = 3(1 + w). The second term in the numerator
of (4.170) follows from the conservation law and describes the effect of the
Universe expansion on the matter density. (Note that ρ includes contributions
from quantum and classical matter.)

In order to qualitatively assess the effects of particle production, let us
examine two fundamentally distinct possibilities.

1. Suppose that, in the course of evolution, ∆ρ→ 0 is reached in a finite
interval of time. Since the Hubble parameter is a unique function of the energy
density, given by (4.168), and since the singularity value ρs of the energy density
is approached from above, it follows that Ḣ ≤ 0 in the neighborhood of the
singular point. In the purely classical case we find, after setting ρ̇prod to zero
in (4.170), that Ḣ → −∞ as the quiescent singularity is approached. It is well
known, however, that particle production effects are sensitive to the change in
the rate of expansion [421], and it is expected that ρ̇prod will go to infinity as
Ḣ → −∞. Since ρ̇prod � γHρ, this will result in Ḣ becoming positive, which
contradicts the assumption that Ḣ ≤ 0.

Therefore, under the assumption that the critical density ρs is reached in a
finite time, the only possibility for Ḣ is to remain bounded. In other words, the
rate of particle production should exactly balance the decrease in the matter
density due to expansion, turning the numerator in (4.170) to zero:

ρ̇prod − γHρ→ 0 ⇒ ρ̇prod →
γρs
`

as ρ→ ρs. (4.171)

In this case, the Universe reaches its singular state with the energy density
due to particle production exactly balancing the density decrease caused by
expansion, as given by (4.171).

2. It is not clear whether the above regime will be realized or whether, if
realized, it will be stable, since it requires the exact balancing of rates (4.171)
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at the singularity. A second distinct possibility is that, due to the presence
of particle production, the value of ∆ρ = ρ − ρs always remains bounded
from below by a non-zero density. In this scenario, Ḣ initially decreases (|Ḣ|
increases) under the influence of the increasing factor 1/

√
∆ρ in (4.170).

However, a large value of |Ḣ| induces active particle production from the
vacuum which leads to an increase in the value of ρ̇prod in (4.170). As the value
of ∆ρ reaches its (non-zero) minimum, we have Ḣ = 0 at this point, accor-
ding to (4.168), after which the rate Ḣ becomes positive due to self-sustained
particle production that continues because of the large value of the second
time derivative Ḧ. After a period of extensive particle production, the Uni-
verse reaches another turning point Ḣ = 0 after which is continues to expand
according to (4.168) with decreasing energy density. Thus, we arrive at a model
of cyclic evolution with periods of extensive particle production alternating
with periods of classical expansion during which quantum particle production
is negligible. This scenario bears a formal resemblance to quasi-steady-state
cosmology proposed in a very different context by Hoyle, Burbidge, and Narli-
kar [595—597]. The particle production rate in our case is estimated by the
quantity ρ̇prod given in (4.171), which is approximately the value it takes at
the turning points where Ḣ = 0. The Hubble parameter in this scenario perio-
dically varies being of the order of H ∼ `−1, and the energy density is of the
order ρs, so that particle production rate is

ρ̇prod ∼
γρs
`
. (4.172)

Our discussion thus far was limited to quantum processes within a single
underdense region (void) which was assumed for simplicity to be perfectly
homogeneous. Let us now (qualitatively) discuss whether this scenario can
be generalized to the real (inhomogeneous) Universe. Clearly, the particle
production rate ρ̇prod in this case should be regarded as being averaged over
the entire Universe, to which several significantly underdense voids are contri-
buting. Equation (4.170) should therefore be treated as an ensemble average,
where the mean particle production rate depends upon the distribution as well
as dynamics of local underdensity regions. As a result, equation (4.170) is not
expected to explicitly depend upon the behavior of the Hubble parameter and,
in principle, particle production can proceed even in a De Sitter-like Universe,
in which the Hubble parameterH remains constant in time. The rate of particle
production in this case is given by equality (4.170) with zero left-hand side:

ρ̇prod = γHρ. (4.173)

The value of the Hubble parameter in such a steady-state Universe can be
related to the Ω-parameter in matter

Ωm =
ρ

ρs
=

ρ

3m2H2
, (4.174)
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where we have used the basic Eq. (4.168). For the average energy density, we
obviously have ρ− ρs ≈ ρ. Hence,

H =
1

`
+

√
∆ρ

3m2
≈ 1

`
+

√
ρ

3m2
=

1

`
+H

√
Ωm, (4.175)

or, finally 9,
H ≈ 1

`
(
1−

√
Ωm

) . (4.176)

In principle, one might use these preliminary results to construct a brane-
world version of steady-state cosmology, in which matter is being created at
a steady rate in voids rather than in overdense regions (as hypothesized in
the original version [595, 596]). This would then add one more model to the
steadily growing list of dark-energy cosmologies [236, 568]. These conclusions
must, however, be substantiated by a more detailed treatment which takes into
account the joint effect of vacuum polarization and particle production near
the quiescent singularity.

4.11. Asymmetric branes

In this section, we consider the properties of a more generic
braneworld model with N = 2, i.e., the physical case where the brane is a
boundary of two bulk spaces (has two sides). Two possibilities of principle
exist in this case: either the bulk space is constrained to be symmetric with
respect to the Z2 group of reflections relative to the brane, or such a symmetry
is not imposed. The case where the bulk is symmetric is equivalent to the
geometrical setting with N = 1, which we were considering up to now. An
embedded brane without the Z2 symmetry is, however, a more general case
with rich possibilities for cosmology [505, 598—614]).

We consider a braneworld model described by action (4.7) with N = 2.
We shall focus on the asymmetric case with Λ1 6= Λ2 and M1 6= M2, which
appears to be preferable from a string-theory perspective. For instance, the
dilaton stabilized in different vacuum states on adjacent sides of the brane
would lead to an effective five-dimensional theory with M1 6= M2. The string
landscape is likely to favor Λ1 6= Λ2, which also occurs in domain wall scenarios.

In the absence of Z2 symmetry, cosmological evolution of the brane is
described by the general equation (4.18), in which we set N = 2. In that
equation, ρ is the total energy density of matter on the brane, and ζi = ±1, i =
= 1, 2, correspond to the two possible ways of bounding each of the bulk spaces
Bi, i = 1, 2, by the brane. We classify the resulting four branches according

9 For comparison, the late-time value of the Hubble parameter in LCDM is [236] H =
= H0

√
1− Ωm.
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to the signs of ζ1 and ζ2 as (++), (+−), (−+), or (−−) 10. In the limit of Z2

symmetry, the branches (−−) and (++) become the normal branch (BRANE1)
and self-accelerating branch (BRANE2), respectively (see Sec. 4.6). The other
two so-called mixed branches are characterized by ζ1ζ2 = −1.

In this section, we study the implications of (4.18) for a spatially flat
Universe (κ = 0) without dark radiation (Ci = 0, i = 1, 2). Equation (4.18)
then simplifies to

H2 =
ρ+ σ

3m2
+

1

m2

∑
i=1,2

ζiM
3
i

√
H2 − Λi

6
=
ρ+ σ

3m2
+
∑
i=1,2

ζi
`i

√
H2 + λ−2

i ,

(4.177)
where we have introduced the fundamental lengths

`i =
m2

M3
i

, λi =

√
− 6

Λi
, i = 1, 2, (4.178)

assuming negative values of the bulk cosmological constants.
Note that (4.177) can be rewritten in terms of an effective cosmological

constant, Λeff , as
H2 =

ρ

3m2
+

Λeff

3
, (4.179)

where
Λeff

3
=

σ

3m2
+
∑
i=1,2

ζi
`i

√
H2 + λ−2

i , (4.180)

which is useful for the study of the cosmological properties of this braneworld.
A pictorial representation of the branches described by (4.177) is given in
Appendix 5.5.

We consider the late-time evolution of the Universe, in which the energy
density ρ is dominated by matter with the equation of state p = 0. Then,
introducing the cosmological parameters as in (4.77),

Ωm =
ρ0

3m2H2
0

, Ωσ =
σ

3m2H2
0

, Ω`i = `−2
i H−2

0 , Ωλi = λ−2
i H−2

0 , (4.181)

where ρ0 and H0 are the current values of the matter density and Hubble
parameter, respectively, we rewrite (4.177) in terms of the cosmological
redshift z:

h2(z) ≡ H2(z)

H2
0

= Ωm(1 + z)3 + Ωσ +
∑
i=1,2

ζi
√

Ω`i

√
h2(z) + Ωλi . (4.182)

10 Note that, in the case of Z2 symmetry, there are only two ways of bounding the bulk
by the brane, and these were called BRANE1 and BRANE2 in [308] and in Sec. 4.6. Of
these, BRANE2 contains the self-accelerating DGP brane as a subclass, while BRANE1 can
lead to phantom acceleration.
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This equation implicitly determines the function h(z), and explicitly the inverse
function z(h). Note that the dimensionless cosmological parameters are related
through the constraint equation

Ωm + Ωσ +
∑
i=1,2

ζi
√

Ω`i

√
1 + Ωλi = 1. (4.183)

We now proceed to describe the specific features of braneworld cosmology
without Z2 symmetry, some of which reproduce those discussed in the prece-
ding sections for the Z2-symmetric case.

4.11.1. Induced cosmological constant on the brane

One way of accounting for cosmic acceleration within the
framework of braneworld theory with mirror symmetry was suggested in [515,
516] and described by Eq. (4.21). An extension of this model to the case when
mirror symmetry is absent is obtained by setting to zero the cosmological
constants on the brane and in the bulk, so that σ = 0, Λi = 0, i = 1, 2. The
expansion law (4.177) then simplifies to

H2 −H
∑
i=1,2

ζi
`i

=
ρ

3m2
, (4.184)

which evolves to a De Sitter limit at late times

lim
z→−1

H(z) = HDS =
∑
i=1,2

ζi
`i
, (4.185)

provided
∑
i=1,2

ζi/`i is positive, which is true for branches (++) and (+−),

provided M1 > M2 in the latter case. If m is of the order of the Planck mass
MP ' 1019 GeV, then the values of Mi ∼ 100 MeV can explain the observed
cosmic acceleration. [The self-accelerating solution (4.21) corresponds to the
(++) branch with `1 = `2.]

The absence of mirror symmetry provides a new avenue for this mechanism.
Specifically, the observed cosmic acceleration can be produced on one of the
mixed branches with arbitrarily high values of the bulk Planck masses M1 and
M2, provided these values are sufficiently close to each other. If 0 < ∆M ≡
≡M1 −M2 �M1, then we have

HDS =
M3

1 −M3
2

m2
≈ 3M2

1

m2
∆M (4.186)

on the (+−) branch, and, by adjusting the value of ∆M , one can always achieve
an observationally suitable value of HDS. For example, if M1,M2 ∼ m, then
one needs ∆M ∼ H0.

The previous model gave one example of late-time acceleration in the
absence of the (brane) cosmological constant. We now derive another model
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with the same property but with a more flexible assumption Λi 6= 0. Setting
σ = 0 and Λi 6= 0 in (4.177) leads to

H2 −
∑
i=1,2

ζi
`i

√
H2 − Λi

6
=

ρ

3m2
, (4.187)

which evolves to a different De Sitter limit, expressed by the equation

lim
z→−1

H2(z) = H2
DS =

∑
i=1,2

ζi
`i

√
H2

DS + λ−2
i , (4.188)

where the length scales `i and λi are defined in (4.178).
It is interesting that a tiny asymmetry between the two bulk spaces can

lead to a small cosmological constant being induced on the brane [614]. Provi-
ded the bulk parameters M1 and M2 as well as Λ1 and Λ2 are close to each
other, a neat cancellation on the right-hand side of (4.188), which occurs for
ζ1ζ2 = −1, leads to a small value of HDS. Remarkably, this can happen even for
very large values of the bulk constants. In particular, assuming that λi � H−1

DS ,
we have

H2
DS ≈

∣∣∣∣ 1

`1λ1
− 1

`2λ2

∣∣∣∣ (4.189)

for one of the mixed branches. Thus, for bulk parameters of the order of a
TeV, Mi ∼ 1TeV, λi ∼ 1TeV−1, we recover the current value of the Hubble
parameter (HDS ∼ H0) provided

|`1λ1 − `2λ2|1/2 ∼ 10−13 TeV−1 ∼ 10−30 cm. (4.190)

Equations such as (4.186) or (4.189), (4.190) certainly represent fine tu-
ning, with a tiny difference between bulk parameters only slightly breaking the
smoothness of the metric across the brane 11. In the limit of exact equality of
the bulk constants on the two sides of the brane, the branches with ζ1ζ2 = −1
describe a smooth bulk space, and the brane approaches the limit of a stealth
brane [611], evolving according to the usual Einstein equations without affec-
ting the bulk space.

4.11.2. Cosmic mimicry

For large values of the bulk parameters, we encounter the
phenomenon of cosmic mimicry which, in the context of Z2 symmetry, was
described in Sec. 4.8 and in [553]. Note that, during the radiation and matter-
dominated epochs, the expansion of the Universe follows the general-relativistic
prescription

H2 ≈ ρ+ σ

3m2
, (4.191)

11 Perhaps, the small asymmetry in the fundamental constants characterizing the bulk
can be explained by the presence of the brane itself. For instance, the presence of the brane
could lead to a small difference in the quantum contribution to the effective action of the
bulk on its two sides, inducing slightly different bulk constants.
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where σ/m2 plays the role of the cosmological constant on the brane. However,
at very late times, cosmic expansion gets modified due to extra-dimensional
effects. Indeed, if λi � H−1

0 , then the square root in the last term of (4.177) can
be expanded in the small parameter λ2

iH
2 at late times, and the braneworld

expands according to LCDM, namely

H2 =
8πGρ

3
+

Λ

3
(4.192)

with

8πG = m−2

1−∑
i=1,2

ζiλi
2`i

−1

, (4.193)

Λ =

 σ

m2
+
∑
i=1,2

3ζi
`iλi

1−∑
i=1,2

ζiλi
2`i

−1

. (4.194)

Note that both G and Λ are independent of time. Equations (4.192)—
(4.194) have important ramifications. They inform us that the ‘bare’ value of
the cosmological constant on the brane, σ, is ‘screened’ at late times by extra-
dimensional effects resulting in its effective value Λ. Thus, the early-time and
late-time values of the cosmological constant are likely to be different, and this
makes our model open to verification.

Also note that one can have Λ 6= 0 even if σ = 0. Then, a small Λ-term can
be induced during late-time evolution on the brane solely by extra-dimensional
effects, as pointed out in the previous section. The mechanism by which the
induced Λ-term becomes relatively small consists in a compensation of two
potentially large terms with opposite signs in equation (4.194). Specifically, for
small values of λi (which correspond to large values of Λi) such that λi/`i � 1,
in the case σ = 0, we have, approximately,

Λ ≈
∑
i=1,2

3ζi
`iλi

, (4.195)

which is another form of the result (4.189) for one of the mixed branches. What
is remarkable here is that a positive cosmological constant on the brane can be
sourced by bulk cosmological constants which are negative.

From (4.192), (4.193) we also find that the effective gravitational constants
during the early and late epochs are related by a multiplicative factor

1−
∑
i=1,2

ζiλi
2`i

, (4.196)

which can be larger as well as smaller than unity, depending on the braneworld
branch. This factor will be closer to unity for the mixed branches (ζ1ζ2 =
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= −1) than it is for the usual branches (ζ1ζ2 = 1) which survive in the case of
Z2 symmetry.

Focusing on the important case where σ = 0 and the effective four-dimen-
sional cosmological constant is induced entirely by five-dimensional effects, we
find that, at redshifts significantly below the mimicry redshift

zm '
(

Ωλi

Ωm

)1/3

− 1, Ωλ1 ' Ωλ2 , (4.197)

the brane expansion mimics LCDM

h2(z) = Ω̃m(1 + z)3 + ΩΛ, z � zm, (4.198)

with ‘screened’ values of the cosmological parameters:

Ω̃m = Ωm

1−∑
i=1,2

ζi
2

√
Ω`i

Ωλi

−1

, (4.199)

ΩΛ =
∑
i=1,2

ζi
√

Ω`i

√
Ωλi

1−∑
i=1,2

ζi
2

√
Ω`i

Ωλi

−1

. (4.200)

On the other hand, from (4.192) it follows that, at high redshifts, the
Universe expands as SCDM

h2(z) = Ωm(1 + z)3, z � zm. (4.201)

An important distinguishing feature of this model is that the (screened) matter
density, Ω̃m, inferred via geometrical tests based on standard candles and
rulers, may not match its (bare) dynamical value Ωm. This allows cosmic mimi-
cry to be distinguished from other cosmological scenarios by means of the Om
diagnostic suggested in [615]. The fact that brane expansion also follows di-
fferent laws at low and high redshift provides another important observational
test of this model.

4.11.3. Phantom branes

In the presence of Z2 symmetry, the BRANE1 branch of the
generic model (4.18) exhibits phantom-like behavior [308] (see Sec. 4.6) which
is in excellent agreement with observations [546–548] (see also [309]). Let us
see whether this behavior persists when mirror symmetry is absent. Note first
that the condition for phantom acceleration, w(z) < −1, where w(z) is given
by (4.98), has two equivalent formulations:

Ωm(z) >
2

3

d logH(z)

d log(1 + z)
and Λ̇eff > 0, (4.202)

267



CHAPTER 4. Braneworld models

where Λeff is the effective cosmological constant in (4.180), and differentiation
is carried out with respect to the physical time variable. In the case of the
(−−) brane (ζ1 = ζ2 = −1), one has

Λeff =
σ

3m2
−
∑
i=1,2

√
H2 + λ−2

i

`i
, (4.203)

and we find immediately that Λeff increases with time when the expansion
rate, H, decreases. It is also quite clear that one (and only one) of the mixed
branches will necessarily have a negative value of the sum term in (4.180),
again exhibiting phantom behavior.

It is straightforward to verify that Λ̇eff > 0 and Ḣ < 0 on the two branches
exhibiting phantom behavior. Differentiating (4.177) and (4.180), we find

Ḣ = − ρ

m2

2−
∑
i=1,2

ζi

`i

√
H2 + λ−2

i

−1

< 0, (4.204)

Λ̇eff = 3HḢ
∑
i=1,2

ζi

`i

√
H2 + λ−2

i

> 0 (4.205)

for ∑
i=1,2

ζi

`i

√
H2 + λ−2

i

< 0.

Note that phantom models [51] with constant equation of state, w < −1, are
marked by Λ̇eff > 0 and super-acceleration: Ḣ > 0 at late times 12. This is
related to the fact that the dark-energy (phantom) density in such models
increases, as the Universe expands, according to

ρphantom ∝ a3|1+w|, w < −1, (4.207)

which causes the Hubble parameter to grow at late times, eventually leading to
a Big-Rip singularity at which H diverges. By contrast, although the behavior
of our braneworld is phantom-like (weff < −1), the Universe never super-
accelerates since Ḣ < 0 always holds. Furthermore, since H decreases during
expansion, a Big-Rip-type future singularity which plagues phantom cosmology
is absent in the braneworld. From the definition of q and property Ḣ < 0, we
find q > −1. In fact, the deceleration parameter in our model always remains
larger than the de Sitter value of q = −1, approaching it only in the limit
of t→∞.

12 It is easy to show that, in phantom models, the turning point Ḣ = 0 occurs at

1 + z∗ ≡
a0

a(t∗)
=

(
1− Ωm

Ωm
|1 + w|

)1/3|w|

, w < −1. (4.206)
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4.11.4. Disappearing dark energy

An important property of this class of braneworld models is
that the current acceleration of the Universe need not be eternal. In other
words, for a specific relationship between the fundamental parameters in
(4.177), the acceleration of the Universe is a transient phenomenon, and the
Universe reverts back to matter-dominated expansion in the future. Within the
context of mirror symmetry, this scenario was called disappearing dark energy
and discussed in [308] and in Sec. 4.7. In the absence of mirror symmetry, it
was studied in [612] under the name stealth-acceleration (which should not be
confused with the ‘stealth brane’ of [611]).

Transient acceleration implies the property H → 0 in the asymptotic
future, which requires the following condition to be satisfied:

σ

3m2
+
∑
i=1,2

ζi
`iλi

= 0⇒ Ωσ +
∑
i=1,2

ζi
√

Ω`iΩλi = 0. (4.208)

On the (−−) and (++) branches, this condition is realized with the follo-
wing respective values of the brane tension:

σ

3m2
= ±

(
1

`1λ1
+

1

`2λ2

)
⇒ Ωσ = ±

(√
Ω`1Ωλ1 +

√
Ω`2Ωλ2

)
. (4.209)

On the new mixed branches (+−) and (−+), the required brane tension
is smaller by absolute value:

σ

3m2
= ±

∣∣∣∣ 1

`1λ1
− 1

`2λ2

∣∣∣∣⇒ Ωσ = ±
∣∣∣√Ω`1Ωλ1 −

√
Ω`2Ωλ2

∣∣∣. (4.210)

Under constraint (4.208), the cosmological evolution equation (4.182)
becomes

h2(z) = Ωm(1 + z)3 +
∑
i=1,2

ζi
√

Ω`i

(√
h2(z) + Ωλi −

√
Ωλi

)
. (4.211)

Condition (4.208) is necessary but not sufficient to speak about transient
acceleration on a particular branch. A distinguishing property of a transiently
accelerating brane is that q(z) → 0.5 in the remote past (105 � z � 1) as
well as in the remote future (z → −1), reflecting the fact that the Universe
is matter dominated in the past and in the future, while, during the current
phase, the deceleration parameter is negative, q0 < 0. This last condition is
realized only if the cosmological expansion law H2(ρ) is convex upwards to a
sufficiently high degree. Specifically, in view of (4.84), the condition q0 < 0 can
be presented in the form

dH2(ρ0)

dρ
<

2H2
0

3ρ0
. (4.212)
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Fig. 4.20. The deceleration parameter versus redshift is plotted for the (++) branch in
the case of Z2 symmetry. The model has the parameters Ωλ1 = Ωλ2 = 2. We present
plots for two different values of the matter density parameter: Ωm = 0.3 and Ωm = 0.2.
The sets of other parameters are calculated to be Ω`1 = Ω`2 = 1.21, Ωσ = −3.11 and
Ω`1 = Ω`2 = 1.58, Ωσ = −3.56, respectively. In this case, an accelerated regime is not
realized, although deceleration is significantly slowed down at the present cosmological epoch.
Figure taken from [614]

Fig. 4.21. The deceleration parameter versus redshift is plotted for the (+−) branch in the
case of absence of Z2 symmetry. The model has the parameters Ωλ1 = 2 and Ωλ2 = 2.1. We
present plots for two different sets of values of the remaining two independent parameters:
(Ωm,Ω`1) = (0.3, 10000), which results in (Ω`2 ,Ωσ) = (9954.68, 3.16), and (Ωm,Ω`1) =
= (0.2, 5000), which results in (Ω`2 ,Ωσ) = (4840.15, 0.82). Both plots show acceleration at
the present cosmological epoch, which generically becomes more prominent for lower values
of Ωm. Figure taken from [614]

Looking at figures B.1 and B.2 in Appendix B.2, one can see that this
property can be realized only on two of the four branches: on the (++) branch
and on one of the mixed branches.

The expression for the current value of the deceleration parameter can be
calculated by using the formula

q0 =
3Ωm

2−
∑

i ζi

√
Ω`i

1 + Ωλi

− 1. (4.213)

One should note that only four out of five Ω parameters are independent in
this expression because of the normalization condition h2(0) = 1 applied to
the evolution equation (4.211). In the Z2-symmetric case, there remain only
two independent Ω parameters. It is clear then that transient acceleration
can be realized more easily in the Z2-asymmetric case. This is illustrated in
Figs. 4.20 and 4.21, which show the corresponding behavior of the deceleration
parameter q(z).

In a transiently accelerating Universe, cosmic acceleration is sandwiched
between two matter-dominated regimes. A transiently accelerating braneworld

270



4.11. Asymmetric branes

clearly does not possess the Big Rip of phantom cosmology, nor even the event
horizon of de Sitter space. An in-depth study of this class of models [612]
has revealed the existence of regions in parameter space which are stable
(ghost-free).

We have demonstrated that it is possible to construct braneworld models
with transient acceleration. What is less clear is whether such transiently acce-
lerating branches will pass key cosmological tests based on observations of high-
redshift type Ia supernovae, baryon acoustic oscillations, etc. This important
issue is open for further study.

4.11.5. Quiescent singularities

As discussed in Sec. 4.10, a new feature of brane cosmology
is a possible presence of quiescent singularities at which the density, pressure
and expansion rate remain finite, while the deceleration parameter and the
Kretchman invariant, RiklmRiklm, diverge [574,590]. The Universe encounters
such a singularity in the future if a point is reached during expansion where
the derivative of H2 with respect to ρ goes to infinity or, equivalently, where
the derivative of ρ with respect to H2 vanishes. Using (4.177), we can express
this condition as the existence of a positive root H2

s of the equation∑
i=1,2

ζi

`i

√
H2
s + λ−2

i

= 2, (4.214)

and a quiescent singularity is approached asH → Hs. At this moment, expansi-
on formally ceases, and one cannot extend the classical evolution of the brane
beyond this point. Such a singular point obviously exists on the (++) branch
if and only if

λ1

`1
+
λ2

`2
> 2 ⇒

√
Ω`1

Ωλ1

+

√
Ω`2

Ωλ2

> 2, (4.215)

and it is reachable on this branch if the brane tension σ is sufficiently negative:

σ

3m2
< H2

s −
∑
i=1,2

1

`i

√
H2
s + λ−2

i < 0, (4.216)

or, equivalently,

Ωσ <
H2
s

H2
0

−
∑
i=1,2

√
Ω`i

√
H2
s

H2
0

+ Ωλi < 0. (4.217)

Condition (4.214) may or may not be realized on the mixed branches. For
example, in the simplifying case `1 = `2 = `, condition (4.214) is realized on
the mixed branch (+−) provided λ1 > λ2. One can show that the values of the
parameters `i, λi, i = 1, 2, in principle can be chosen so that equation (4.214)
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has positive roots for three branches (++), (+−) and (−+). To achieve this,
one only needs to satisfy the conditions `1 > `2 and λ1`2 > λ2`1 and choose
sufficiently small values of `1, `2.

For a graphical presentation of the reasons for the existence of quiescent
singularities, the reader can look into Appendix B2. As in the case of mirror
symmetry, quantum effects may play an important role in the vicinity of a
quiescent singularity [590]; see also [616—618].

We also note that, in the case of mirror symmetry, realization of quiescent
singularity requires either negative brane tension or positive bulk cosmological
constant (both conditions are suspicious from the viewpoint of possible instabi-
lities). However the quiescent singularity can easily be realized without these
assumptions in the asymmetric case on a mixed branch.

The presence of a quiescent singularity in the future of the cosmological
evolution does not threaten the past cosmological scenario. Therefore, this
issue, just like the issue of Big Rip of phantom cosmology, is mainly of academic
interest. Here, we only wish to point out that the possibility of quiescent sin-
gularity can be realized rather easily in braneworld theory in certain domain
of its parameters without any additional ingredients (such as phantom fields,
which lead to Big Rip singularities).

4.11.6. Stability issues

The stability issues of the class of braneworld models without
Z2 mirror symmetry were studied in [612, 613]. It is notable that ghost-free
settings of the model with transient acceleration (and phantom acceleration)
appear to exist [612]. On the other hand, the analysis in paper [613] reveals
the presence of ghosts on a background with a De Sitter vacuum brane on the
three branches (++), (+−), (−+) (i.e., which have at least one ‘+’, so that
the bulk at least on one side of the brane has ‘infinite volume’ in terminology
of [613]). Whether this situation is critical for the cosmology under investigati-
on remains to be seen. In this connection, it should be noted that the (++)
branch, surviving in the Z2 symmetric case, contains a ghost and is, therefore,
linearly unstable [517—521]. On the other hand, the (−−) branch, responsible
for ‘phantom acceleration’ (w0 < −1), is ghost-free in the Z2 symmetric case
and, apparently, also in the general case without Z2 symmetry.

4.12. Gravitational
instability on the brane

In this section, we proceed to the study of cosmological
perturbations in a braneworld theory. This subject is not so well developed
as the homogeneous cosmology because of evident difficulties connected with
the necessity of solving the perturbations equations in the five-dimensional
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space and imposing certain boundary conditions. We will concentrate here on
the most general features of scalar perturbations, which are of most relevance
to the structure formation.

4.12.1. Scalar cosmological perturbations on the brane

The unperturbed metric on the brane is described by the Ro-
bertson—Walker line element and brane expansion is described by Eq. (4.76).
The two signs in (4.76) describe two different branches corresponding to the
two different ways in which a brane can be embedded in the Schwarzschild—
anti-de Sitter bulk. In Sec. 4.6, we classified models with lower (upper) sign
as BRANE1 (BRANE2). Models with the upper sign can also be called self-
accelerating because they lead to late-time cosmic acceleration even in the case
of zero brane tension and bulk cosmological constant [515, 516]. Throughout
this section, we consider the spatially flat case (κ = 0) for simplicity.

Scalar metric perturbations of this cosmological solution are most conveni-
ently described by the relativistic potentials Φ and Ψ in the so-called longi-
tudinal gauge:

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)γijdx
idxj , (4.218)

where γij(x) is the spatial part of the metric, which is used to raise and lower
the spatial indices. The components of the linearly perturbed stress-energy
tensor of matter in the coordinate basis are defined by

Tαβ =

−(ρ+ δρ), −∇iv

∇iv
a2

, (p+ δp)δij +
ζij
a2

, (4.219)

where δρ, δp, v, and ζij =

(
∇i∇j −

1

3
γij∇2

)
ζ are small quantities. The symbol

∇i in this section denotes the spatial covariant derivative compatible with the
spatial metric γij present in (4.218), ∇2 ≡ ∇i∇i is the scalar Laplacian, and
the spatial indices are raised and lowered using γij . Similarly, we introduce
the scalar perturbations δρC , vC , and δπC of the tensor Cab in the coordinate
basis:

m2Cαβ =


3m2C

a4
− δρC , −∇ivC

∇ivC
a2

,

(
δρC
3
− m2C

a4

)
δij +

δπij
a2

, (4.220)

where δπij = ∇i∇jδπC−
1

3
δij∇2δπC . We call v and vC the momentum potentials

for matter and dark radiation, respectively.
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Equation (4.52) together with the stress-energy conservation equation for
matter and conservation equation (4.57) for dark radiation result in the follo-
wing complete system of equations describing the evolution of scalar perturba-
tions on the brane:

Ψ̈ + 3(1 + γ)HΨ̇ +HΦ̇ +
[
2Ḣ + 3H2(1 + γ)

]
Φ− γ

a2
∇2Ψ− κ(1 + 3γ)

a2
Ψ +

+
1

3a2
∇2(Φ−Ψ) =

[
c2
s − γ +

2

λ

(
c2
s −

1

3

)]
δρ

2m2
+

(
1 +

2

λ

)
τδS

2m2
, (4.221)

δρ̇+ 3H(δρ+ δp) =
1

a2
∇2v + 3(ρ+ p)Ψ̇, (4.222)

v̇ + 3Hv = δp+ (ρ+ p)Φ +
2

3a2

(
∇2 + 3κ

)
ζ, (4.223)

δρ̇C + 4HδρC =
1

a2
∇2vC −

12m2C

a4
Ψ̇, (4.224)

v̇C + 3HvC =
1

3
δρC −

4m2C

a4
Φ +

1

6
λ(1− 3γ)∆m −

2 + λ

3a2

(
∇2 + 3κ

)
ζ −

− m2λ

3a2

(
∇2 + 3κ

)
[Φ− 3γΨ], (4.225)

1

a2

(
∇2 + 3κ

)
∇2Ψ =

(
1 +

2

λ

)
∆m

2m2
+

∆C
m2λ

, (4.226)

m2λ
(

Ψ̇ +HΦ
)

=

(
1 +

λ

2

)
v + vC , (4.227)

δπC = −m
2

4
λ(3γ + 1)

(
Φ−Ψ +

ζ

m2

)
− ζ. (4.228)

Here, we use the following notation: S is the entropy density of the matter
content of the Universe, τ = (∂p/∂S)ρ , c

2
s = (∂p/∂ρ)S is the adiabatic sound

velocity, the time-dependent dimensionless functions λ and γ are given by

λ ≡ `2
(
H2 − ρ+ σ

3m2

)
− 2 = ±2

√
1 + `2

(
ρ+ σ

3m2
− Λb

6
− C

a4

)
, (4.229)

γ ≡ 1

3

(
1 +

λ̇

Hλ

)
=

1

3

1−

ρ+ p

m2
− 4C

a4

2

(
ρ+ σ

3m2
+

1

`2
− Λb

6
− C

a4

)
, (4.230)

and the perturbations ∆m and ∆C are defined as

∆m = δρ+ 3Hv, ∆C = δρC + 3HvC . (4.231)

The overdot, as usual, denotes the partial derivative with respect to the time t.
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The system of equations (4.221)—(4.228) generalizes the result obtained
in [510] (for the DGP brane) to the case of a generic braneworld scenario
described by (4.7), which allows non-zero values for the brane tension and
bulk cosmological constant. It describes two dynamically coupled fluids: matter
and dark radiation. It is important to emphasize that the evolution equations
(4.224), (4.225) for the dark-radiation component are not quite the same as
those for ordinary radiation. Of special importance are the source terms on the
right-hand side of (4.225) which lead to non-conservation of the dark-radiation
density. Thus, the behavior of this component is rather non-trivial, as will be
demonstrated in next sections.

It is also interesting to note that the perturbations in dark radiation for-
mally decouple from those in ordinary matter in the important limiting case
M → 0 (equivalently, `→∞), for which the system (4.221)—(4.228) repro-
duces the corresponding equations of General Relativity (after setting γ = c2

s).
From equations (4.222)—(4.227), one can derive the following useful system

for perturbations in pressureless matter and dark radiation in the important
case C = 0:

∆̈ + 2H∆̇ =

(
1 +

6γ

λ

)
ρ∆

2m2
+ (1 + 3γ)

δρC
m2λ

, (4.232)

v̇C + 4HvC = γ∆C +

(
γ − 1

3

)
∆m +

4

3(1 + 3γ)a2

(
∇2 + 3κ

)
δπC , (4.233)

δρ̇C + 4HδρC =
1

a2
∇2vC , (4.234)

where
∆ ≡ ∆m

ρ
(4.235)

is the conventional dimensionless variable describing matter perturbations.

4.12.2. Simplified boundary conditions
for scalar perturbations

The system of equations (4.221)—(4.228), or (4.232)—
(4.234), describing scalar cosmological perturbations, is not closed on the brane
since the quantity δπC in (4.228) or (4.233) (hence, the difference Φ − Ψ) is
undetermined and, in principle, can be set arbitrarily from the brane view-
point. For this reason, one should also consider equations for perturbations in
the bulk and impose certain boundary conditions. This will be under conside-
ration further in Sec. 4.13.

From a broad perspective of solving equations in the brane-bulk system,
boundary conditions can be regarded as any conditions which restrict the space
of solutions. In view of the difficult problems of solving the perturbation equati-
ons in the bulk, what some researches usually do in practice is to specify such
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conditions directly on the brane by making various reasonable assumptions
(see, e.g., [619, 620] for the issue of cosmological perturbations; and [562] for
the case of spherically symmetric solutions on the brane). The behavior of the
metric in the bulk is of no further concern in this approach, since this metric is,
for all practical purposes, unobservable directly. The described approach to the
problem of boundary conditions effectively “freezes” certain degrees of freedom
in the bulk; but its merit is that it apparently leads to a well-defined closed,
local, causal, and, in principle, verifiable theory of gravity in four dimensions.
On the other hand, it corresponds to a certain class of approximations to the
perturbation equations on the brane [621—623].

As first noted in [522], the intrinsic non-locality and non-closure of the bra-
neworld equations is connected with the dynamical properties of the bulk Weyl
tensor projected on to the brane. It, therefore, seems logical to impose certain
restrictions on this tensor in order to obtain a closed system of equations on
the brane. A general family of boundary conditions on the brane is obtained
by relating the quantities πC and ρC . As a simplest class of such relation which
does not involve dimensional parameters, one can set

1

a2
∇2δπC = AδρC . (4.236)

In most of this section, A shall be assumed to be a (dimensionless) constant.
We also consider the simplifying case where the spatial curvature is equal to
zero (κ = 0) and the matter anisotropic stresses are absent (ζ = 0). Then, by
virtue of (4.228), this relates the difference Φ − Ψ between the gravitational
potentials to the perturbation of the dark-radiation density δρC :

1

a2
∇2(Φ−Ψ) = − 4A

m2λ(1 + 3γ)
δρC . (4.237)

For the boundary condition (4.236), one can derive a second-order diffe-
rential equation for δρC by substituting for vC from (4.234) into (4.233):

δρ̈C + (10− γ)Hδρ̇C + 4
[
Ḣ + 3(2− γ)H2

]
δρC =

=
1

a2
∇2

[
γδρC +

4A

3(1 + 3γ)
δρC +

(
γ − 1

3

)
∆m

]
. (4.238)

Equations (4.232) and (4.238) then form a closed system of two coupled second-
order differential equations for ∆ and δρC . From the form of the right-hand
side of (4.238) one expects this system to have regions of stability as well
as instability. Specifically, a necessary condition for stability on small spatial
scales is that the sign of the coefficient of ∇2δρC on the right-hand side of
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(4.238) be positive. This leads to the condition 13

A ≥ −3

4
γ(1 + 3γ). (4.239)

From (4.230), we find that γ ≈ −1/6 in a matter-dominated Universe, and
condition (4.239) simplifies to

A ≥ 1

16
. (4.240)

We consider two important subclasses of (4.236) which we call the mi-
nimal boundary condition and the Koyama—Maartens boundary condition,
respectively.

Minimal boundary condition. Our simplest condition corresponds to
setting A = 0. In this case, from (4.228) we obtain the relation Φ = Ψ, the
same as in General Relativity. Under this condition, equations (4.221)—(4.223)
constitute a complete system of equations for scalar cosmological perturbations
on the brane in which initial conditions for the relativistic potential Φ, Φ̇ and
matter perturbations δρ, δp, v can be specified quite independently. Once a
solution of this system is given, one can calculate all components of dark-
radiation perturbations using (4.226) and (4.227). Thus, with this boundary
condition, equations (4.224)—(4.227) can be regarded as auxiliary and can be
used to felicitate and elucidate the dynamics described by the main system
(4.221)—(4.223). We should stress that only the quantities pertaining to the
induced metric on the brane (Φ, Ψ) and those pertaining to matter (δρ, δp, v)
can be regarded as directly observable, while those describing dark radiation
(δρC , vC) are not directly observable.

Koyama—Maartens boundary condition. In an important paper
[621], Koyama and Maartens arrived at condition (4.236) with A = −1/2:

1

a2
∇2δπC = −1

2
δρC . (4.241)

This boundary condition was derived in [621, 622] as an approximate relation
in the DGP model valid only on small (subhorizon) spatial scales under the
assumption of quasi-static behavior. It was later re-derived in [623] under a
similar approximation. We call it, therefore, the Koyama—Maartens boundary
condition, although one should be aware of the different status of this relation
in the present section, where it is regarded as an exact additional relation, and
in [621—623], where it is derived as an approximation.

13 In the absence of matter on the brane, ∆m = 0, equation (4.238) becomes a closed
wave-like equation for the scalar mode of gravity, and condition (4.239) becomes the
boundary of its stability domain. The existence of such a scalar gravitational mode is due to
the presence of an extra dimension.
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In discussing the small-scale approximation in quasi-static regime, it was
argued in [621,622] that equation (4.234) permits one to neglect the perturbati-
on vC in (4.233), which, together with (4.236), will then transform (4.232) into
a closed equation for matter perturbations 14:

∆̈ + 2H∆̇ = ΘKM
ρ∆

2m2
, ΘKM = 1 +

12Aγ + 3γ + 1

λ
[
2A+ 3

2γ(1 + 3γ)
] . (4.242)

Some cosmological consequences of this approach are discussed in [624]. As in
General Relativity, this equation does not contain spatial derivatives; hence,
the evolution of ∆ is independent of the spatial scale. We would obtain equation
of the type (4.242) for perturbations had we followed the route of [621—623]
in finding approximate solutions of perturbation equations in the bulk and
using the quasi-static approximation. However, in the approach adopted in this
section, as will be shown in the following two sections, numerical integration of
the exact linearized system (4.232)—(4.234) does not support approximation
(4.242). No matter what initial conditions for dark radiation are set initially,
one observes a strong dependence of the evolution of matter perturbations on
the wave number. In particular, it is incorrect to neglect the quantity vC on
small spatial scales, since it is precisely this quantity which is responsible for
the dramatic growth of perturbations both in ∆m and in δρC on such scales.

From equations (4.239) and (4.240), we can see that the minimal and
Koyama—Maartens boundary conditions generally lead to unstable evolution.
This will be confirmed by numerical simulations in the next section.

Scale-free boundary conditions. Evolution of perturbations in the sta-
bility region (4.239) & (4.240) shows little dependence on spatial scale. It is
interesting that there also exists an important class of boundary conditions
leading to exact scale-independence. We call these, for simplicity, scale-free
boundary conditions. To remove the dependence on wave number altogether
and thereby obtain a theory in which perturbations in matter qualitatively
evolve as in standard (post-recombination) cosmology, it suffices to set the
right-hand side of (4.233) identically zero:

1

a2
∇2δπC =

1 + 3γ

4

[
(1− 3γ)∆m − 3γ∆C

]
, (4.243)

which, in view of equation (4.226), can also be expressed in a form containing
only the geometrical quantities δπC , ∆C , and Ψ. In this case, the perturbations
δvC and δρC in dark radiation decay very rapidly, according to equations (4.233)

14 Equation (4.242) was derived in [621, 622] only for the DGP model and for the case
A = −1/2; however, the argument can be extended to a general braneworld model and a
general value of A in (4.236).
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and (4.234), and (4.232) reduces to the simple equation

∆̈ + 2H∆̇ = Θ
ρ∆

2m2
, Θ =

(
1 +

6γ

λ

)
, (4.244)

valid on all spatial scales. Equations (4.226) and (4.228) then lead to simple
relations between the gravitational potentials Φ and Ψ and matter pertur-
bations:

1

a2
∇2Φ = Θ

∆m

2m2
,

1

a2
∇2Ψ =

(
1 +

2

λ

)
∆m

2m2
. (4.245)

The difference Φ−Ψ can be conveniently determined from

1

a2
∇2(Φ−Ψ) =

3γ − 1

m2λ
∆m. (4.246)

As can easily be seen from (4.228) or (4.246), the general-relativistic relati-
on Φ = Ψ is not usually valid in braneworld models. An important exception
to this rule is provided by the mimicry models discussed in Sec. 4.12.4.

One can propose other conditions of type (4.243) that lead to scale-in-
dependent behavior. For instance, one can equate to zero the right-hand side
of (4.238). It remains unclear how these conditions involving perturbations
may be generalized to the fully non-linear case. Nevertheless, in view of the
interesting properties of scale-independence and the fact that perturbations in
the stability region (4.239) and (4.240) behave in this manner, the consequences
of (4.244) need to be further explored, and we shall return to this important
issue later on in this section.

Having described the system of linearized equations governing the evoluti-
on of scalar perturbations in pressureless matter and dark radiation, we now
proceed to apply them to two important braneworld models: the popular DGP
model [504,515,516] and the ‘mimicry’ model suggested in [553] and described
in Sec. 4.8. It should be noted that these two models are complementary in the
sense that the mimicry model arises for large values of the bulk cosmological
constant Λb and brane tension σ, whereas the DGP cosmology corresponds to
the opposite situation Λb = 0 and σ = 0.

4.12.3. Scalar perturbations
in the DGP model

Amongst alternatives to LCDM, the Dvali—Gabadadze—
Porrati (DGP) model [504] stands out because of its stark simplicity. Li-
ke the cosmological constant which features in LCDM, the DGP model too
has an extra parameter ` = 2m2/M3, the length scale beyond which gravity
effectively becomes five-dimensional. However, unlike the cosmological constant
whose value must be extremely small in order to satisfy observations, the
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value ` ∼ cH−1
0 , required to explain cosmic acceleration, can be obtained by a

‘reasonable’ value of the five-dimensional Planck mass M ∼ 10 MeV. As poin-
ted out earlier, DGP cosmology belongs to the class of induced gravity models
which we examine and is obtained from (4.7) after setting to zero the brane
tension and the cosmological constant in the bulk (i.e., σ = 0 and Λb = 0).
Under the additional assumption of spatial flatness (κ = 0), the modified Fried-
mann equation (4.21) for the upper sign becomes [515,516]

H2 − 2H

`
=

ρ

3m2
. (4.247)

In a spatially flat Universe, given the current value of the matter density and
Hubble constant, ` ceases to be a free parameter and becomes related to the
matter density by the following relation

Ω` ≡
1

`2H2
0

=

(
1− Ωm

2

)2

, (4.248)

which may be contrasted with ΩΛb
= 1− Ωm in LCDM.

Linear perturbation equations for this model were discussed in [510,
541, 542, 621, 622, 626, 627]. An approximate boundary condition for scalar
perturbations was obtained by Koyama and Maartens [621,622] on subhorizon
scales; it is described by (4.241). For convenience, we present system (4.232)—
(4.234) for this case:

∆̈ + 2H∆̇ =

(
1 +

6γ

λ

)
ρ∆

2m2
+ (1 + 3γ)

δρC
m2λ

, (4.249)

v̇C + 4HvC = γ∆C +

(
γ − 1

3

)
∆m −

2

3(1 + 3γ)
δρC , (4.250)

δρ̇C + 4HδρC =
1

a2
∇2vC . (4.251)

In the DGP model, the general expressions (4.229) and (4.230) for λ and
γ in the case of pressureless matter reduce to

λ = 2 (`H − 1), γ =
1

2(`H − 1)2
− 1

6
. (4.252)

The results of a typical integration of the exact system of equations
(4.249)—(4.251) for different values of the wave number k are shown in
Fig. 4.22. We observe a dramatic escalation in the growth of perturbations
at moderate redshifts and a strong k-dependence for perturbations in matter
as well as in dark-radiation (the y-axis is plotted in logarithmic units). These
results do not support the approximation made in [621, 622], which assumes
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Fig. 4.22. The DGP brane with the Koyama—Maartens boundary condition A = −1/2.
Growth of perturbations in matter (left) and dark radiation (right) on the DGP brane are
shown for different values of the comoving wave number k/a0H0 (indicated by numbers above
the corresponding curves). The current matter density is chosen to be Ωm = 0.22, and the
initial value of vC is set to zero. (Our results remain qualitatively the same for other values
of the density parameter.) Note the dramatic k-dependence in the growth of perturbations
both in matter and in dark radiation. For comparison, ∆/a = 1 at these redshifts in the
standard CDM model with Ωm = 1. Figure taken from [625]

the left-hand side of equation (4.250) to be much smaller than individual
terms on its right-hand side for sufficiently large values of k, and which leads,
subsequently, to the scale-independent equation (4.242).

We would like to stress that our conclusions themselves are not based on
the small-scale or quasi-static approximation. Indeed, we integrate the exact
system of equations (4.232)—(4.234) on the brane, and the only ansatz that
we set in this system is the boundary condition (4.241).

The strong k-dependence of the evolution of perturbations can be explai-
ned by the presence of the term ∇2vC on the right-hand side of (4.251), which
leads to the generation of large perturbations of dark radiation δρC . The quanti-
ty vC is being generated by the right-hand side of equation (4.250). The instabi-
lity in the growth of perturbations for the Koyama—Maartens boundary condi-
tion is in agreement with the fact that the value of A = −1/2 lies well beyond
the stability domain (4.240).

As demonstrated earlier, depending upon the value of A, perturbations on
the brane can be either unstable or quasi-stable. By unstable is meant ∆/a� 1
while quasi-stability implies ∆/a ∼ O(1). The quasi-stable region (4.239) is
illustrated in Fig. 4.23, in which we show the results of a numerical integrati-
on of equations (4.232)—(4.234) for A = 1/2. It is instructive to compare
this figure with the left panel of Fig. 4.22. One clearly sees the much weaker
growth of perturbations as well as their scale-independence in this case. We
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Fig. 4.23. The DGP brane with the boundary condition A = 1/2. The parameters of the
model are the same as in figure 4.22 but the y-axis is no longer plotted in logarithmic units.
The two solid curves show the evolution of scalar perturbations corresponding to the como-
ving wave numbers k/a0H0 = 0 (thin curve) and 40 (thick curve). Note that these two curves
are almost indistinguishable which illustrates that the growth of perturbations is virtually
scale-independent in this case. The dashed line shows the behavior of scalar perturbations
in the LCDM model. (In all cases Ωm = 0.22 is assumed.) Figure taken from [625]

Fig. 4.24. Growth of scalar perturbations in matter on the DGP brane is shown for different
boundary conditions in the brane-bulk system. (The comoving wave number k/a0H0 = 20
in all cases.) Boundary conditions are specified by (4.236) and differ in the expression for
A; namely: (a) the Koyama—Maartens condition A = −1/2, (b) A = −(1 + 3γ)/4, (c) the
minimal condition A = 0, and (d) A = 1/2. Condition (b) with time-dependent value of
A was chosen because it simplifies equation (4.225), and condition (d) because it lies well
inside the stability domain (4.239). For comparison, note that ∆/a = 1 for all values of k in
the standard CDM model with Ωm = 1. Figure taken from [625]

therefore conclude that boundary conditions can strongly influence the evoluti-
on of perturbations on the brane. Our results are summarized in Fig. 4.24, whi-
ch shows the evolution ∆/a obtained by integrating the system (4.232)—(4.234)
for different boundary conditions. (Results for the wave number k/a0H0 = 20
are shown.) We see that the growth of perturbations becomes weaker as the
value of A approaches the stability domain (4.239), and quasi-stability is
observed for A = 1/2.

The behavior of scalar perturbations on the DGP brane in the case of scale-
free boundary conditions (4.243) is very similar to that shown in Fig. 4.23. As
in [541,542,621,622], we also find that perturbation growth on the DGP brane
is slower than that in LCDM.
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4.12.4. Scalar perturbations in the mimicry model

Scale-dependent boundary conditions. As expected,
perturbations in the mimicry model crucially depend upon the type of boun-
dary condition which has been imposed. Generally speaking, brane perturba-
tions grow moderately for BC’s which lie in the stability domain (4.239) or
(4.240) and more rapidly in the instability region. This remains true for mi-
micry models. In this section, we explore the behavior of perturbations in this
model for the boundary condition A = 0, which belongs to the instability class.
In the next section, we shall explore BC’s which give rise to more moderate
and scale-independent behavior.

The growth of perturbations if A = 0 is substituted in (4.236) is illustrated
in Fig. 4.25. The k-dependence, clearly seen in this figure, can be understood by
inspecting the system of equations (4.232)—(4.234). Even if we start with zero
initial conditions for the dark-radiation components δρC and vC , the non-trivial
right-hand side of Eq. (4.233) leads to the generation of vC ; then, via the k-
dependent right-hand side of (4.234), the density δρC is generated, which later
influences the growth of perturbations of matter in (4.232). The instability in
the growth of perturbations is explained by the fact that the value of A = 0
lies outside the stability domain (4.239) or (4.240). However, the growth of
perturbations is not as dramatic in this case as in the DGP model with the
Koyama—Maartens BC’s, mainly because the value A = 0 lies much closer to
the boundary (4.240) than the Koyama—Maartens value A = −1/2.

Fig. 4.25. Growth of matter perturbations in the Mimicry 1 and Mimicry 2 models are
shown for different values of the comoving wave number k/a0H0 (indicated by numbers
above the corresponding curves) and for the minimal boundary condition A = 0 in (4.236).
Both models have the same effective parameter ΩLCDM

m = 0.22, hence, quite different matter
content, indicated by the parameter Ωm. The value of vC is set to zero initially. The position
of the mimicry redshift zm is indicated by the vertical dotted lines. Figure taken from [625]
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Qualitatively, the evolution of matter perturbations in mimicry models can
be understood as follows: during the early stages of matter-domination the last
term on the right-hand side of equation (4.232) is not very important, which
transforms (4.232) into a closed equation for the matter perturbation. Indeed,
in the pre-mimicry regime, for z � zm, we have |λ| � 1 for the quantity in the
denominator of the last term on the right-hand side of (4.232), which makes
this term relatively small for moderate values of δρC . Thus, perturbations in
matter evolve according to (4.244) on all spatial scales, for redshifts greater
than the mimicry redshift zm. For z ≤ zm, the quantity |λ| is of order unity.
By this time, the perturbations δρC have grown large, and their amplitude
strongly depends on the wave number. Through the last term in equation
(4.232), they begin to influence the growth of matter perturbations for z ∼ zm,
resulting in the k-dependent growth of the latter. The reason for the opposite
k-dependence of matter perturbations in Mimicry 1 and Mimicry 2 shown in
Fig. 4.25 is connected with the difference in the sign of λ — defined in (4.230) —
for the two models. Thus, the last term in (4.232) comes with opposite signs in
Mimicry 1 and Mimicry 2, and therefore works in opposite directions in these
two models.

Well inside the mimicry regime, for z � zm, we have γ ≈ 1/3, so that
the second term on the right-hand side of (4.233) can be ignored if matter
perturbations are not too large. Then equations (4.233), (4.234), and (4.236)
lead to a closed system of equations for the evolution of dark-radiation pertur-
bations. Substituting γ = 1/3 into this system, we obtain:

vC = a−7/2ξ, δρC =
3

(1 + 2A)a3

∂

∂t

(
a3vC

)
, (4.253)

where we assumed A 6≈ −1/2 to be constant. The function ξ obeys an oscillator-
type equation

ξ̈ −
(

1

2
Ḣ +

1

4
H2 +

1 + 2A

3a2
∇2

)
ξ = 0. (4.254)

This means that both δρC and vC rapidly decay during the mimicry regime
(oscillating approximately in opposite phase) and the last term on the right-
hand side of (4.232) again becomes unimportant. In particular, this will descri-
be the behavior of the mimicry model with the minimal boundary condition
A = 0. The transient oscillatory character of δρC induces transient oscillations
with small amplitude in ∆ through the last term in (4.234). These small oscil-
lations can be noticed in Fig. 4.25 for log (1 + z) & 1, particularly for values
40 and 30 of the comoving wave number 15.

15 For the Koyama—Maartens boundary condition A = −1/2, the approximation descri-
bed above is not valid during the mimicry stage. Instead, during mimicry, the value of vC
decays without oscillating approximately as vC ∝ 1/a3, as can be seen from equations (4.233),
(4.236), and the value of δρC also decays, which follows from (4.234).
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Two important features of mimicry models deserve to be highlighted:
1. As demonstrated in Fig. 4.25, there is a strong suppression of long-

wavelength modes in Mimicry 2.
2. From this figure, we also find that the growth of short-wavelength modes

in Mimicry 2 can be substantial, even in a low-density Universe.
Both properties could lead to interesting cosmological consequences. For

instance, the relative suppression of low-k modes may lead to a correspon-
ding suppression of low-multipole fluctuations in the CMB, while the increased
amplitude of high-k modes could lead to an earlier epoch of structure formati-
on. (Since the mimicry models behave as LCDM at low redshifts, they satisfy
the supernova constraints quite well.) A detailed investigation of both effects,
however, requires that we know the form of the transfer function of fluctuations
in matter (and dark radiation) at the end of the radiative epoch. This open
issue lies outside the scope of the present book 16.

For the minimal boundary condition (A = 0), assumed in this section,
equations (4.226) and (4.237) imply Φ = Ψ and

1

a2
∇2Φ =

(
1 +

2

λ

)
∆m

2m2
+

∆C
m2λ

, (4.255)

which is a generalization of the Poisson equation for the mimicry brane.
Mimicry models with the Koyama—Maartens boundary condition exhibit

much stronger instability in the growth of δρC for high values of k, enhancing
the growth of matter perturbations (not shown). This can be explained by
the fact that A = 0 is much closer to the boundary of the stability domain
(4.240) than the Koyama—Maartens value A = −1/2. For the latter, the densi-
ty perturbation ∆ in the Mimicry 1 model grows to be large and negative, while
the perturbation δρC becomes large and positive; for instance, both ∆ and the
dimensionless quantity δρC/m2H2 grow by a factor of 1011 for k/a0H0 = 40.
This provides another example of the very strong dependence of perturbation
evolution on boundary conditions.

In our calculations, we have not found any significant dependence of the
eventual growth of perturbations on initial conditions for dark radiation speci-
fied in a reasonable range (at z = 103).

Scale-free boundary conditions. As mentioned earlier, BC’s lying in
the stability region (4.239) lead to an almost scale-free growth of density
perturbations. A similar result is obtained if we assume the scale-free boundary
condition (4.243) of Sec. 4.12.2. In this case, the momentum potential vC decays
as vC ∝ a−4, and its spatial gradients in (4.234) can therefore be neglected. The

16 For simplicity, the amplitudes of all k-modes were assumed to be equal at high redshifts
in figures 4.22, 4.24 and 4.25. A more realistic portrayal of ∆(k) should take into consideration
the initial spectrum and the properties of the transfer function for matter and dark radiation.
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same is true, of course, if one considers super-horizon modes with k � aH. In
both cases, we have approximately δρC ∝ 1/a4, suggesting that the dynamical
role of perturbations in dark radiation is unimportant. This results in a radical
simplification: as in the DGP model, for BC’s lying in the stability region,
the growth of perturbations in matter can be effectively described by a single
second-order differential equation (4.244), namely,

∆̈ + 2H∆̇ = Θ
ρ∆

2m2
, Θ =

(
1 +

6γ

λ

)
, (4.256)

where λ and γ are defined in (4.229) and (4.230), respectively. We shall call
Θ(z) in (4.256) the ‘gravity term’ since it incorporates the effects of modified
gravity on the growth of perturbations. The value of this term on the brane
can depart from the canonical Θ = 1 in General Relativity.

Figure 4.26 shows the behavior of Θ(z) for a typical mimicry model. At
redshifts significantly larger than the mimicry redshift, z � zm, we have
Θ(z) ' 1, whereas at low redshifts, z � zm, the value of Θ(z) changes to

Θ(z) ' ΩLCDM
m

Ωm
=
ρLCDM

ρ
for z � zm, (4.257)

where ρLCDM is defined in (4.113). The solid line in the same figure shows the
ratio of the Hubble parameter on the brane to that in LCDM. The consequences
of this behavior for the growth equation (4.244) are very interesting. Substi-
tuting (4.257) into (4.244) and noting that H(z) ' HLCDM during mimicry, we
recover the standard equation describing perturbation growth in the LCDM
model

∆̈ + 2HLCDM∆̇ =
ρLCDM∆

2m2
. (4.258)

Thus, ordinary matter in mimicry models gravitates in agreement with the
effective value of the gravitational constant which appears in the cosmological
relation (4.125).

We therefore conclude that, deep in the mimicry regime (z � zm), pertur-
bations grow at the same rate on the brane and in LCDM. This is borne out by
Fig. 4.27, which shows the results of a numerical integration of (4.244) for Mi-
micry 1 [integrating the exact system (4.232)—(4.234) gives indistinguishable
results]. Notice that the total amplitude of fluctuations during mimicry in this
model is greater on the brane than in LCDM. Indeed, for mimicry models, we
have

∆brane

∆LCDM
' Ωm

ΩLCDM
m

for z � zm, (4.259)

and this ratio is greater than unity for Mimicry 1.
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Fig. 4.26. The Hubble parameter in the braneworld ‘Mimicry 1’ is shown relative to LCDM
(solid). The LCDM model has ΩLCDM

m = 0.22 while Ωm = 0.27 on the brane. Also shown is
the ‘gravity term’ Θ(z) defined in (4.244) whose value diminishes from unity at high redshifts
to the asymptotic form (4.257) at low redshifts. The dotted vertical line shows the mimicry
redshift zm ≈ 37. Figure taken from [625]

Fig. 4.27. Density perturbations on the Mimicry 1 brane (dot-dash) and in LCDM (solid).
The evolution of perturbations in Mimicry 1 in this case is effectively described by (4.244).
In both cases, the perturbation amplitude is scaled by the expansion factor a(t). (It may be
noted that ∆/a = 1 in standard CDM with Ωm = 1.) The dotted vertical line shows the
mimicry redshift zm ≈ 37. The braneworld has Ωm = 0.27 while ΩLCDM

m = 0.22. This leads
to a moderate enhancement in the amplitude of brane perturbations over LCDM. Figure
taken from [625]

Since the contribution from perturbations in dark radiation can be
neglected, the growth of matter perturbations in Mimicry 2 is again descri-
bed by (4.244) and by (4.259). However, since Ωm < ΩLCDM

m in this case,
the final amplitude of perturbations will be smaller in Mimicry 2 than the
corresponding quantity in LCDM, which is the opposite of what we have for
Mimicry 1.

It is interesting that during mimicry, when γ ≈ 1/3, the relation between
the gravitational potentials Φ and Ψ reduces to the general-relativistic form
Φ = Ψ, as can be seen from (4.246), where Φ satisfies the generalized Poisson
equation (4.245), namely,

1

a2
∇2Φ = Θ

∆m

2m2
. (4.260)

An interesting feature of Mimicry 1 is that, at early times, the expansion
rate in this model exceeds that in LCDM, i.e., H(z)|Mimicry1 > H(z)|LCDM for
z > zm (see Figs. 4.10 and 4.26). [The opposite is the case for Mimicry 2: the
expansion rate in this model is lower than that in LCDM at early times, i.e.,
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H(z)|Mimicry 2 < H(z)|LCDM for z > zm.] As we can see, this has important
consequences for the growth of structure in this model. The increase in the
growth of perturbations in Mimicry 1 relative to LCDM occurs during the
period before and slightly after the mimicry redshift has been reached, when
the relative expansion rate H(z)/HLCDM is declining while the ‘gravity term’
Θ(z) has still not reached its asymptotic form (4.257). A lower value of H(z) in
(4.244) diminishes the damping of perturbations due to cosmological expansion
while a slower drop in Θ(z) signifies a much more gradual decrease in the force
of gravity. Consequently, there is a net increase in the growth of perturbations
on the Mimicry 1 brane relative to LCDM 17. For the models in Fig. 4.27, which
have ΩLCDM

m = 0.22 and Ωm = 0.27, the increase is about 20%. The increased
amplitude of perturbations in Mimicry 1 stands in contrast to the DGP model
as well as Quintessence model, in both of which linearized perturbations grow
at a slower rate than in the LCDM cosmology [541,542,621,622,628,629].

It is important to note that observations of galaxy clustering by the
2dFGRS survey provide the following estimate [630, 631] for perturbation
growth at a redshift z = 0.15:

d log δ

d log a
≡ − (1 + z)

d log δ

dz

∣∣∣∣
z=0.15

= 0.51± 0.11, (4.261)

where δ ≡ δρ/ρ. Since the growth of perturbations during the mimicry regime
stays proportional to that in the LCDM model (δmimic ∝ δLCDM, z � zm),
it follows that if perturbations in the LCDM model satisfy (4.261) (which
they do), then so will those in the mimicry scenario. Nevertheless, as we
have seen, the net increase in the amplitude of perturbations on the brane
is larger than that in the LCDM model. This clearly has important cosmologi-
cal consequences since it can enhance structure formation at high redshifts as
well as lead to higher values of σ8. Thus, while preserving the many virtues
of the LCDM model, the mimicry models add important new features which
could be tested by current and future observations.

4.13. Perturbations of the bulk
4.13.1. General system of equations

In this section, we consider the full physical problem with
perturbations described dynamically also in the bulk [632]. The background
bulk metric can be written in the form (4.12), where γij is the metric of a
maximally symmetric space with coordinates xi, and the function f(r) in our

17 Figure 4.26 clearly shows that H(z) reaches its asymptotic form much sooner than
Θ(z). Notice that, at redshifts slightly larger than zm, the value of Θ(z) exceeds unity. The
dependence of perturbation growth on the mimicry redshift zm is very weak, and (4.259) is
a robust result which holds to an accuracy of better than 2% for a wide range of parameter
values.
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case of C = 0 is given by
f(r) = κ− Λb

6
r2. (4.262)

The brane is moving along the trajectory (4.14), and the relevant part of the
bulk is given by r ≤ a(τ). In what follows, we will be interested in the case of a
closed Universe κ = 1 and Λb ≤ 0. This makes the brane a spherical boundary
of a ball, and the boundary conditions in the bulk are then specified simply
as the requirement of regularity in this ball (this can be called “no-boundary
conditions”).

It is convenient to present the first part of metric (4.12) in the form
γabdx

adxb, where xa, a = 1, 2 are arbitrary coordinates in place of (τ, r). Thus,
for the background metric, we have

ds2
bulk = γabdx

adxb + r2γijdx
idxj , (4.263)

where r = r(xa). Some auxiliary expressions for the curvature of this metric
are presented in Appendix B.3.

The scalar (with respect to the isometries of γij) perturbations of this
metric can be described as in [626] 18:

δgABdx
AdxB =

∑
k

(
habY dx

adxb + 2haVidx
adxi+

+
[
hLT(L)ij + hY T(Y )ij

]
dxidxj

)
, (4.264)

where Y , Vi ≡ ∇iY , T(L)ij ≡ 2∇i∇jY −
2

3
γij∇2Y , and T(Y )ij ≡ γijY are the

harmonics defined in [626], depending on the coordinates xi and all expressible
through the scalar harmonic Y , and hab, ha, hL, and hY are the perturbation
coefficients depending on xa. Here, as before,∇i is the covariant derivative with
respect to the metric γij . The number k characterizes the Laplacian eigenvalue
of the scalar harmonics Y as defined in [626].

Infinitesimal coordinate transformations of scalar type are defined by the
vector field ξA which has the form

ξAdx
A =

∑
k

(
ξaY dx

a + ξVidx
i
)
. (4.265)

Under diffeomorphisms, perturbations transform as follows:

hab → hab −∇aξb −∇bξa, (4.266)
ha → ha − ξa − r2∇a

(
r−2ξ

)
, (4.267)

hL → hL − ξ, (4.268)
hY → hY − ξa∇ar2 +

2

3
k2ξ. (4.269)

18 In this subsection, we denote the five-dimensional space-time indices by capital Latin
letters.
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Here, ∇a is the covariant derivative in the two-dimensional space spanned by
(τ, r), compatible with the metric γab. From these quantities, one can construct
gauge-invariant variables

Fab = hab −∇aXb −∇bXa, (4.270)

F = hY −Xa∇ar2 +
2

3
k2hL, (4.271)

where
Xa = ha − r2∇a

(
r−2hL

)
(4.272)

is a gauge-dependent combination that transforms as Xa → Xa − ξa.
Note that perturbations of the tensors which are equal to zero for the

background solution are gauge-invariant: if T ······ is any such tensor, then, under
the infinitesimal coordinate transformations xA → xA − ξA, its components
transform as δT ······ = LξT ······ = 0, (4.273)

i.e., are invariant. In particular, perturbations of the Weyl tensor CABCD (and
all its contractions and derivatives) as well as perturbations of the Einstein—
De Sitter tensor

EAB = GAB + ΛbgAB (4.274)

are gauge-invariant because these tensors are identically equal to zero for the
background solution (4.12).

Using the gauge transformations (4.267), (4.268), one can fix the gauge
in such a way as to turn the coefficients hL and ha to zero (at least, this is
possible to do locally). In this gauge, the coefficients hab and hY coincide with
the gauge invariants Fab and F , respectively, and the metric perturbation then
simplifies to

δgABdx
AdxB =

∑
k

Y
(
Fabdx

adxb + Fγijdx
idxj

)
. (4.275)

Expression in this gauge can be used whenever one is to calculate gauge-
invariant perturbations, such as perturbations of the Weyl tensor CABCD,
which is zero for the background solution.

Another set of simplifications can be obtained by taking into account the
equations of motions in the bulk (4.8), which can be presented as

R =
10

3
Λb, RAB =

2

3
ΛbgAB. (4.276)

Using these relations, one can express the Weyl tensor in the bulk as follows:

CABCD ≡ RABCD −
2

3

(
gA[CRD]B − gB[CRD]A

)
+

1

6
RgA[CgD]B =

= RABCD −
1

3
ΛbgA[CgD]B. (4.277)

290



4.13. Perturbations of the bulk

However, when calculating the curvature tensor RABCD to get the per-
turbed equations of motion in the bulk, one needs to deal with the complete
metric perturbation (4.275).

Using (4.277) and equations (B.20), (B.21) and (B.22) from Appendix B.4,
one easily computes the components of the perturbed bulk Weyl tensor CABCD
in the gauge hL = 0, ha = 0. After that, the coefficients hab and hY can be
replaced with gauge invariants Fab and F , respectively. Thus, using (4.12) and
(4.262), one can express the perturbed bulk Weyl tensor as

δCabcd =
∑
k

[
Λb

6
(γd[aFb]c − γc[aFb]d) +∇d∇[aFb]c −∇c∇[aFb]d

]
Y, (4.278)

δCiabc =
∑
k

(
∇[cFb]a −

1

r
Fa[b∇c]r

)
∇iY, (4.279)

δCabij = 0, (4.280)

δCaibj = −1

2

∑
k

Fab(∇i∇jY )+

+
1

2
γij
∑
k

[
r(∇er) (∇aF eb +∇bF ea −∇eFab)−

− Λbr
2

3
Fab −

Λb

6
γabF − r∇a∇b

(
F

r

)]
Y, (4.281)

δCaijk =
∑
k

[
r2∇a

(
F

r2

)
− r(∇br)Fab

]
γi[j∇k]Y, (4.282)

δCijkl =
∑
k

F
(
γi[l∇k]∇jY − γj[l∇k]∇iY

)
+

+ 2γi[kγl]j
∑
k

[
r2(∇ar)(∇br)F ab +

(
κ− Λbr

2

3

)
F − r(∇ar)(∇aF )

]
Y.

(4.283)
Expressed in this way, the perturbed bulk Weyl tensor is not obviously

traceless. In fact, as follows from (4.277), δC = δR, and δC = 0 only if the
perturbed equations of motion in the bulk are taken in to account.

It was shown by Mukohyama (see [626]) that the gauge invariants Fab and
F , satisfying the perturbed bulk equations of motion, can be expressed through
a scalar master variable Ω as

rFab = ∇a∇b Ω− 2

3
∇2 Ω γab −

Λb

18
Ω γab, (4.284)

F =
r

3

(
∇2 Ω +

Λb

3
Ω

)
, (4.285)
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where Ω is a solution of the master equation

∇2 Ω− 3

r
∇ar∇aΩ−

(
k2 − 3κ

r2
+

Λb

6

)
Ω +

U

r2
= 0 (4.286)

with some function U , which, in general case, is a solution of

∇a∇b U +
Λb

6
γab U = 0. (4.287)

One can verify that the trace δC of the perturbed bulk Weyl tensor
δCABCD, defined by (4.278)—(4.283), can be expressed through the Mukohya-
ma master variable Ω as

δC = − 1

3r3

∑
k

[
∇2
(
r2Σ

)
+

Λbr
2

3
Σ

]
Y, (4.288)

where

Σ ≡ ∇2 Ω− 3

r
∇ar∇aΩ−

(
k2 − 3κ

r2
+

Λb

6

)
Ω. (4.289)

Obviously, the Mukohyama master equation (4.286) implies the condition
δC = 0.

4.13.2. Perturbations on the flat
background bulk geometry

The general problem of solving the Mukohyama master equa-
tion and subsequent projection of the bulk Weyl tensor to the brane is greatly
simplified if the background bulk geometry is simply a Minkowski space-time:
γab = ηab and Λb = 0. In this case, the Mukohyama master equation (4.286)
takes the form:

− ∂2
τΩ + ∂2

rΩ− 3

r
∂rΩ−

(n2 + 2n− 3)

r2
Ω = 0, (4.290)

where we have used the fact that, for a compact three-dimensional manifold,
the Laplacian eigenvalues k of the scalar harmonics Y are discrete: k2

n = n(n+
+ 2), n = 0, 1, 2... . We also have restricted ourselves to the case n ≥ 2, for
which the function U from (4.286) can be set to zero [626].

Equation (4.290) is a partial differential equation of hyperbolic type. Its
simple form allows one to separate variables 19: Ω(τ, r) = ξ(τ)χ(r) with the

19 Such a simplification of the problem becomes possible due to the choice of the coordi-
nate system in the form (4.12). In the Gaussian normal coordinates, separation of variables
can be performed for the special case of a de Sitter brane (with constant Hubble parameter
H), which is of great interest because the bulk solution for the master variable in this case
can be obtained analytically [633,634].

292



4.13. Perturbations of the bulk

functions ξ(τ) and χ(r) satisfying the ordinary differential equations

d2ξ(τ)

dτ2
+Bξ(τ) = 0, (4.291)

d2χ(r)

dr2
− 3

r

dχ(r)

dr
+

[
B − (n2 + 2n− 3)

r2

]
χ(r) = 0, (4.292)

where B is some constant, which can be chosen arbitrary until some boundary
or regulatory conditions are specified.

Using expressions (4.291), (4.292) and definitions (4.284) and (4.285), one
can easily compute the components of the perturbed bulk Weyl tensor (4.278)—
(4.283). Once this operation is done, the projection δCµν = δCµAνB nAnB of
the bulk Weyl tensor to the brane is trivial 20. Setting the brane trajectory to
be r = a(τ), we get the components of δCµν [see definition (4.220)] to be

1

m2
δρC = − n(n+ 2)(n2 + 2n− 3)

3a5
Ωb, (4.293)

1

m2
vC(t) =

(n2 + 2n− 3)

3a3

[
aH (∂rΩ)b +

√
1 + a2H2 (∂τΩ)b −HΩb

]
, (4.294)

1

m2
δπC = − 1

2a

[ (
1 + 2a2H2

) (
∂2
τΩ
)

b
+ 2aH

√
1 + a2H2

(
∂2
τrΩ
)

b
+

+

(
1 + 3a2H2

)
a

(∂rΩ)b +
(n2 + 2n− 3)

(
1 + 3a2H2

)
3a2

Ωb

]
. (4.295)

Here, a = a(t) is a scale factor of the background Friedmann—Robertson—
Walker metric on the brane, H = ȧ/a is the Hubble parameter on the brane,
and the function τ = τ(t) is defined by the differential equation dτ/dt =
=
√

1 + a2H2. The subscript (...)b means that the corresponding function
should be evaluated at the brane. For example, Ωb(t) ≡ Ω(τ(t), a(t)).

Using the differentiation rule

Ω̇b =
√

1 + a2H2 (∂τΩ)b + aH (∂rΩ)b , (4.296)

one can write (4.294) and (4.295), respectively, in the following form:

vC =
(n2 + 2n− 3)m2

3a3

[
Ω̇b −HΩb

]
, (4.297)

20 The perturbation δnA of the unit vector nA normal to the brane does not contribute
to δCµν because the Weyl tensor CMANB = 0 for the background solution.

293



CHAPTER 4. Braneworld models

δπC = − m
2

2a

[
Ω̈b −

a2H(Ḣ +H2)

(1 + a2H2)
Ω̇b +

+
(1− a2Ḣ)

a(1 + a2H2)
(∂rΩ)b +

(n2 + 2n− 3)

3a2
Ωb

]
. (4.298)

We observe that the function vC(t) can be related to the function δρC(t),
defined in (4.293), as

vC = − a2

n(n+ 2)
(δρ̇C + 4HδρC), (4.299)

which is in accordance with equation (4.224), which we obtained as one of the
conservation equations on the brane. The relation between functions δπC(t)
and δρC(t) is not so trivial due to the presence of the third term in the square
bracket on the right hand side of (4.298). To investigate the relation between
δπC(t) and δρC(t), one should find the general solution of the master equation
(4.290) and specify Ωb(t).

This can easily be done. As we can see from (4.291), the master variable
Ω demonstrates an oscillatory or exponential behavior depending on the sign
of the arbitrary constant B. In what follows, we consider the constant B to be
positive to avoid problems with stability of our solution. Setting B ≡ ω2, we
get the solution of (4.292) for a given ω in the form

χ(r) = r2 [AωJn+1(ωr) +BωYn+1(ωr)], (4.300)

where Aω and Bω are some constants that can be chosen arbitrary until the
boundary conditions are specified, and Jn+1(ωr) and Yn+1(ωr) are the Bessel
and Neumann functions, respectively.

The asymptotic behavior of the function χ(r) in the neighborhood of the
point r = 0 is determined in the leading order by the asymptotic of the
Neumann functions:

χ(r)→ −2n+1n!Bω
πωn+1

1

rn−1
, r → 0. (4.301)

Our boundary condition at r = 0 is the absence of any singularities; hence,
χ(r) is regular at r = 0, which implies the condition Bω = 0 for all modes
with n ≥ 2.

Finally, the general solution of the master equation (4.290) can be written
in the form of an integral over all possible values of the parameter ω:

Ω(τ, r) =

∞∫
−∞

dωΩ(ω) r2Jn+1(ωr) eiωτ , (4.302)
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where Ω(ω) is some complex function which we expect to be specified from
the boundary equations on the brane. We would like to note that the same
result may be obtained by applying the method of Fourier transform to
equation (4.290).

Substituting (4.302) in to (4.293), (4.295), we obtain

1

m2
δρC = − n(n+ 2)(n2 + 2n− 3)

3a3

∞∫
−∞

dωΩ(ω)Jn+1(ω a)eiωτ(t), (4.303)

1

m2
δπC = −

∞∫
−∞

dωΩ(ω)eiωτ(t)×

×
[
ωaJn(ωa)

(
1 + 3a2H2

2a
+ iωaH

√
1 + a2H2

)
+

+ Jn+1(ωa)

(
n(n− 1)(1 + 3a2H2)

6a
− ω2a(1 + 2a2H2)

2
−

− i(n− 1)ωaH
√

1 + a2H2

)]
. (4.304)

4.13.3. Quasi-static approximation

The quasi-static approximation was proposed by Koyama
and Maartens in [621,622] as a simplification of the general equations describing
the structure formation problem in the braneworld molel. The main assumption
of this approximation is that the terms with time derivatives can be neglected
relative to those with spatial gradients. Specifically, this assumption implies
HΩ̇b, Ω̈b � (n2/a2) Ωb, where the values of n should be taken sufficiently lar-
ge (n� 1). In this case, our general expressions (4.293) and (4.298) turn into
the approximate ones:

1

m2
δρ

(qs)
C ≈ − n4

3a5
Ωb, (4.305)

1

m2
δπ

(qs)
C ≈ − 1

6a

[
n2

a2
Ωb +

3(1− a2Ḣ)

a(1 + a2H2)
(∂rΩ)b

]
. (4.306)

This reproduces the result presented in [621,622] in the limitH2, Ḣ � 1/a2

corresponding to the spatially flat brane geometry. The regularity conditions
imposed in [621, 622] for the master variable in the bulk enabled the authors
of that work to neglect the term with (∂rΩ)b on the right hand side of (4.306)
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in the quasi-static approximation, arriving at a relation between the functions
δρC(t) and δπC(t) in the form

δρ
(qs)
C ≈ 2n2

a2
δπ

(qs)
C , (4.307)

which is just the mode transform of (4.241). Whether this approximation
can work for the general solution (4.302) is a matter of debates and future
investigation.

4.14. Summary

In this chapter, we have considered cosmological implications
of a popular braneworld model with a single extra dimension, described by
action (4.7), which contains both bulk and brane curvature terms and cosmolo-
gical constants.

We first considered an important case where the brane forms the boundary
of the five-dimensional bulk space. This is equivalent to endowing the bulk
with the Z2 reflection isometry with respect to the brane. The presence of
the curvature term in the action leads to two families of braneworld models,
which we called BRANE1 & BRANE2. They differ in the manner in which the
brane forms the boundary of the five-dimensional bulk. Alternatively, the two
different families of braneworld models can be regarded as corresponding to
the two possible signs of the five-dimensional Planck mass M .

Braneworld models of dark energy have an interesting and unusual proper-
ty that their luminosity distance dL can exceed that in the LCDM model with
the same matter content. This is unusual since, within the general-relativistic
framework, the luminosity distance has this property only if the equation of
state of dark energy is strongly negative (w < −1). Phantom dark energy,
which realizes this feature [51], is beset with a host of undesirable properti-
es which makes this model of dark energy unattractive. We have shown that
braneworld models have all the advantages and none of the disadvantages of
phantom models and therefore endow dark energy with exciting new possibi-
lities. A recent analysis of braneworld models in [546—548] has demonstrated
that BRANE1 models (which generically have w ≤ −1) are consistent with
observations of supernovae combined with baryon acoustic oscillations and
integrated Sachs—Wolfe effect.

Another feature of the braneworld scenario discussed in this chapter is that
it allows for a Universe which is transiently accelerating . Recent investigations
indicate that an eternally accelerating Universe, which possesses a cosmological
event horizon, prevents the construction of a conventional S-matrix describing
particle interactions within the framework of string or M -theory [549—551].
We have demonstrated that braneworld models can enter into a regime of
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accelerated expansion at late times even if the brane tension and the bulk
cosmological constant are tuned to satisfy the Randall—Sundrum constraint
(4.50) on the brane. In this case, braneworld dark energy and the acceleration
of the Universe are transient phenomena. In this class of models, the Universe,
after the current period of acceleration, re-enters the matter-dominated regi-
me. We have shown that viable models realizing this behavior are those of
BRANE2 type.

We have shown that braneworld cosmology, in a certain broad region
of the values of fundamental constants, exhibits a property which we called
cosmic mimicry . During early cosmological epochs, the braneworld behaves li-
ke a matter-dominated Friedmann Universe with the value of the cosmological
parameter Ωm that would be inferred from observations of the local matter
density. At late times, however, the Universe evolves almost exactly like in
the LCDM scenario but with a renormalized value of the cosmological densi-
ty parameter ΩLCDM

m . Specifically, a positive-tension BRANE1 model, which
at high redshifts expands with density parameter Ωm, at lower redshifts mi-
mics the LCDM cosmology with a smaller value of the density parameter
ΩLCDM

m < Ωm. A negative-tension BRANE2 model at low redshifts also mi-
mics LCDM but with a larger value of the density parameter ΩLCDM

m > Ωm.
The cosmic-mimicry scenario has interesting cosmological properties. For

instance, in the case of BRANE1 (BRANE2), the Universe expands faster
(slower) than in the LCDM scenario at redshifts greater than the mimicry
redshift zm, whereas, for z < zm, Hbrane(z) ≡ HLCDM(z) in both models. The
smaller value of the Hubble parameter at intermediate redshifts (z > few)
in the case of BRANE2 leads to an older Universe and also to a redshift of
reionization which can be significantly lower than that inferred for the LCDM
model from the WMAP data [94].

The effect of cosmic mimicry and the existence of two asymptotic density
parameters Ωm and ΩLCDM

m is a consequence of the time-dependence of the
effective gravitational coupling in braneworld theory [531], which can be related
to the well known property of the scale-dependence of the effective gravitational
coupling in braneworld models [533—535]. On large spatial scales, kr � 1, the
braneworld model with positive brane tension (BRANE1) exhibits gravity with
the renormalized effective gravitational constant (4.55), and we have shown
that this renormalization corresponds to a renormalization of the cosmological
density parameter (4.125).

Only two effective gravitational constants appear in the cosmology under
consideration, given by (4.55) and (4.66), respectively, for low and high energy
densities. However, in the local gravitational physics, there also appears the
spatial distance r∗ defined in (4.65) and depending upon the mass of the central
source, so that gravity in the range of distances

r∗ . r . ` (4.308)
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from the source has a different value of the gravitational constant, given by
(4.60), and, moreover, has a scalar–tensor character manifest, e.g., in (4.61).
This may be important for the estimates of masses from the dynamics of
clusters of galaxies and from gravitational lensing on these scales in the brane-
world theory [533—535, 541, 542].

On small distances from the central source, r � r∗, both positive-tension
and negative-tension branes apparently behave similarly reproducing the Ein-
stein gravity to a high precision with the gravitational constant 1/m2, which
is the bare gravitational coupling in the braneworld action (4.7). However, this
expectation is to be verified by refined calculations in braneworld models with
arbitrary sign of brane tension and without the RS constraint (4.50). In this
respect, we should note that solution with a spherically symmetric source (the
analog of the Schwarzschild and interior solution in General Relativity) largely
remains to be an open problem in braneworld theory (for recent progress in
the DGP model, see [635]).

We have demonstrated that the braneworld models of dark energy allow
one to construct a loitering Universe. An important aspect of braneworld loi-
tering is that, in contrast to the conventional loitering scenarios that demand
a closed Universe, loitering on the brane can easily occur in a spatially flat
cosmological model. A key role in making the brane loiter is the presence
of (negative) dark radiation — a generic five-dimensional effect associated
with the projection of the bulk gravitational degrees of freedom onto the
brane. The Universe can loiter at large redshifts (z & 6) while accelerating
at the present epoch. During loitering, the value of the Hubble parameter
decreases steadily before increasing again. As a result, the age of the loite-
ring braneworld is larger than that of a LCDM Universe at a given redshift.
This feature may help spur the formation of ∼109M� black holes at redshifts
&6 whose presence (within high redshift QSO’s) could be problematic for
standard LCDM cosmology [561, 562]. Loitering is also expected to increase
the growth rate of density inhomogeneities and could, in principle, be used to
reconcile structure formation models which predict a lower amplitude of initi-
al ‘seed’ fluctuations with the observed anisotropies in the cosmic microwave
background (see [559]).

Braneworld models give rise to cosmological singularities which are not
commonly encountered in General Relativity. This is largely due to the possi-
bility of different kinds of embedding of the brane in the higher dimensional
(bulk) space-time. Singular embedding implies that the expansion (in time) of
the brane cannot be continued indefinitely. The singularities which we have
examined in this chapter have the property that, while the density, pressure,
and Hubble parameter on the brane remain finite, higher derivatives of the
Hubble parameter blow up as the singularity is approached. For this reason, we
called them “quiescent singularities.” Despite its deceptively mild nature, the
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quiescent singularity is a real curvature singularity at which the Kretschmann
invariant diverges (RabcdRabcd → ∞). The importance of quantum effects in
regions of large space-time curvature has been demonstrated in a number of
papers [421], and it should therefore come as no surprise that these effects
can significantly alter the classical behavior near the quiescent singularity, as
demonstrated by us in this chapter.

Unlike the classical Big-Bang singularity, the quiescent singularity in
braneworld models is reached in regions of low density and is therefore en-
countered during the course of the Universe expansion rather than its collapse.
Densities lower than the mean value are known to occupy a large filling fracti-
on within the cosmic web [587, 588]. Therefore, if the braneworld model is
a reasonable representation of reality, one might expect that it is likely to
encounter the quiescent singularity (or its quantum-corrected counterpart, the
“soft singularity”) within large underdense regions, or voids. The rapidly va-
rying space-time geometry near the quiescent singularity can, in addition to
vacuum polarization, also give rise to quantum creation of fields which do not
couple conformally to gravity. This allows one to suggest a cosmological scena-
rio which, at later times, is reminiscent of quasi-steady-state cosmology, with
the Hubble parameter showing oscillations about a constant value.

In this chapter, we have also considered the braneworld model without
the mirror (Z2) symmetry of the bulk space with respect to the brane. We
find that, depending upon the choice of the brane embedding, cosmologi-
cal expansion on the brane can proceed along four independent branches,
two of which survive in the case of Z2 symmetry. An important property
of this class of models is that the four-dimensional gravitational and cos-
mological constants are effective quantities derivable from five-dimensional
physics. In this case, brane expansion mimics ΛCDM at low redshifts, but the
‘screened’ matter density parameter Ω̃m does not equal to its bare (dynami-
cal) value Ωm. This opens a new avenue for testing such models against ob-
servations (see [553,615]). Another important property of these models would
be the growth of density perturbations which is likely to differ from ΛCDM.
Braneworld models can be phantom-like and also exhibit transient acceleration.
Thus, brane phenomenology, with its basis in geometry, provides an interesting
alternative to ‘physical’ dark energy scenarios such as quintessence.

Braneworld theories with large extra dimensions have one common pro-
perty: while the dynamics of the higher-dimensional bulk space needs to be
taken into account in order to understand brane dynamics, all observables
are restricted to the four-dimensional brane. In field-theoretic language, the
situation can be described in terms of an infinite (quasi)-continuum of Kaluza—
Klein gravitational modes existing on the brane from the brane viewpoint. This
property makes braneworld theory complicated, solutions on the brane non-
unique and evolution non-local.
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Fortunately, in situations possessing a high degree of symmetry, the above
properties of braneworld theory do not affect its cosmological solutions (at
least, in the simplest case of one extra dimension). Thus, homogeneous and
isotropic cosmology on the brane is almost uniquely specified since it involves
only one additional integration constant which is associated with the mass
of a black hole in the five-dimensional bulk space. However, in order to turn
a braneworld model into a complete theory of gravity viable in all physical
circumstances, it is necessary to address the issue of boundary conditions.

In this chapter, we adopted a different approach to the issue of boundary
conditions in the brane-bulk system. From a broader perspective, boundary
conditions can be regarded as any conditions restricting the space of soluti-
ons. Our approach is to specify such conditions directly on the brane which
represents the observable world, in order to arrive at a local and closed
system of equations on the brane. The behavior of the metric in the bulk
is of no further concern in this approach, since this metric is for all practi-
cal purposes unobservable. Since the non-locality of the braneworld equations
is known to be connected with the dynamical properties of the bulk Weyl
tensor projected onto the brane [522], it is natural to consider the possibility
of imposing certain restrictions on this tensor. We have assumed the one-pa-
rameter family of boundary conditions (4.236) for perturbations. This family
generalizes the boundary condition derived by Koyama and Maartens [621]
(with A = −1/2) for the DGP model in the small-scale and quasi-static
approximation.

An important conclusion is that the growth of perturbations in braneworld
models strongly depends upon our choice of boundary conditions. This was
illustrated in figure 24 for the DGP model. Specifying boundary conditions
in the form (4.236) allows us to determine regions of stability and instabi-
lity in terms of the single parameter A; they are described by Eq. (4.239).
In the DGP model, perturbations are explicitly demonstrated to be quasi-
stable for A = 1/2 (figure 4.23) and unstable for A = −1/2 (figure 4.22).
In the instability domain, gradients in the momentum potential vC of dark
radiation, lead to the creation of perturbations in this quantity via equati-
on (4.233). This effect can significantly boost the growth of perturbations
in matter. An important implication of this effect is that perturbations in
the baryonic component might overcome the ‘growth problem,’ which plagues
them in standard General Relativity, and grow to acceptable values without
requiring the presence of (deep potential wells in) dark matter. The Mimicry 2
model looks promising from this perspective. Note that, in this model, the
expansion of a low-density Universe is virtually indistinguishable from that of
a (higher-density) LCDM model.

The values of A lying in the stability region (4.239) or a scale-free boundary
condition such as (4.243) may also be important. In this case, perturbations in
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the DGP model grow slower than in LCDM whereas perturbations in Mimi-
cry 1 grow somewhat faster. This suggests that structure formation may occur
slightly earlier in Mimicry 1 than it does in LCDM.

It is well known that the expansion history, H(z), does not characteri-
ze a given world model uniquely, and it is conceivable that cosmological
models having fundamentally different theoretical underpinnings (such as dif-
ferent forms of the matter Lagrangian or different field equations for gravity)
could have identical expansion histories (some examples may be found in
[236,636]).

Whether boundary conditions such as described by Eq. (4.243) will remain
in place for a more fundamental extra-dimensional theory is presently a moot
point. Perhaps, by comparing the consequences of different boundary condi-
tions with observations we will gain a better understanding of the type of
braneworld theory most consistent with reality.

301



CHA PTER

�

ENERGY IN GENERAL
RELATIVITY IN VIEW OF SPINOR
AND TENSOR METHODS

5.1. Introduction

302

It is known that positive energy theorem (PET) in General
Relativity [637,638], possessing independent principal signi-
ficance, also creates the basis for solving of other problems,
for example, stability of Minkowski space. Among assumpti-
ons at proving the theorem there is hypothesis about satis-
fying of one of the energy conditions — dominant energy
condition (DEC). But just in the beginning of the proving
PET searches the change of view of the energy conditions
has taken place. Tipler [639] had analyzed the consequences
of possible violation of strong energy condition on existence
of singularities in space-time. Further Visser [640,641], Vis-
ser and Barcelo [642] pointed out the existence of quan-
tum and classical effects which cause the violation of all
energy conditions. Possibility for proving the positive energy
theorem at more weak energy condition in comparison with
standard one has been discussed by Shiromizu and Sugai
[643]. Consequently the discovery of accelerated expansi-
on of Universe, development of the dark energy concept
and radical change of the energy conditions paradigm requi-
re detailed analysis of influence of this change on all PET
aspects, including different methods of its proving.

From the moment of the first proof of this theorem
[637] there were presented many simplified and complement
proofs [644—647] within the limits of the Witten’s spinor
method, as well as alternative to Wittenian one [648—650].
Among these alternative tensor methods the most developed
one is Nester’s method of special orthonormal frame (SOF),
on the basis of which there is a set of gauge conditions for



CHAPTER 5. Energy in General Relativity

the choice of this orthonormal frame on a three-dimensional Riemannian mani-
fold [651]. These conditions are purely geometrical, because they are expressed
in terms of teleparallel geometry.

Application of SOF is not limited by proof of PET and investigating of
quasilocalization. In particular, by adopting four-dimensional special ortho-
normal frames, the tetrad equations for vacuum gravity are put into explicitly
causal and symmetric hyperbolic form, independent of any time slicing or other
gauge or coordinate specialization [652]. Buchman and Bardeen [653] within a
first order symmetric hyperbolic tetrad formulation of the Einstein equations
developed by Estabrook and Wahlquist obtained stable unconstrained evoluti-
on for certain initial conditions in SOF, but not with some Lorentz gauge.

Dimakis and Müller-Hoissen have shown [650, 654] that Nester’s gauge
conditions are related to the three-dimensional Dirac equation. Since the soluti-
ons of the latter as elliptic equations can have zeros, as Ashtekar and Horowi-
tz [646] have noticed for the first time (see also [654], where the additional
arguments for support of this statement are presented together with corres-
ponding references to works, in which zeros of elliptic equations are investi-
gated), the special orthonormal frame (triad) as well as Dimakis and Müller-
Hoissen SOF (tetrad) are determined only almost everywhere on space-like hy-
persurface in asymptotically Minkowskian manifold. From uniqueness theorem
for system of linear equations of first order with smooth coefficients follows
that nodal sets of codimension 1 of Sen—Witten spinor field are absent, and
Bär [674] proved that nodal set of generalized Dirac equation is a countably
(n− 2)-rectifiable set and thus has Hausdorff dimension (n− 2) at most. But
it is important to obtain conditions for absence of all nodal points, because
possible existence of zeros of spinor field even on the set of zero measure is
the barrier for the correspondence of spinor and tensor methods as well as for
distinguishing of SOF as constituent of frames of reference, since the latter in
some physically non-singular points does not exist.

The connections between triads and Sen—Witten (SWE) equation were
also investigated by Frauendiener [655]. He obtained the necessary and suffi-
cient conditions that have to be satisfied by the triad in order to correspond
to the spinor that satisfies the Sen—Witten equation. These conditions, as it
was marked by Frauendiener, are closely connected with Nester’s conditions,
because they also include some cyclic conditions. But in the process of obtai-
ning of these conditions the possibility of the situation, when the spinor equals
zero in one or even on a set of points of nonvanishing measure, is not taken into
account, therefore Frauendiener’s theorem is correct only under the suitable
additional assumption. SOF reflects general features, domain of SOF appli-
cation is not limited by PET and asymptotically Minkowskian manifold. In
particular, SOF is used in problem of quasilocalization of gravitational energy.
Not long ago Frauendiener, Szabados and Nester performed additional investi-
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gation of zeros absence conditions for Sen—Witten (SWE) equation [656]. De-
veloping our idea of elimination of zeros for Sen—Witten equation by choice
of appropriate boundary conditions [657—659] firstly (2005 Annual Meeting of
Chinese Physics Society, Taipei) denied by Nester, they determined conditions
for zeros absence in class of spaces nearest to the flat one — Petrov class O,
the unique non-trivial representative of which is conformally flat pseudorie-
mannian space.

Our first purpose is to show that non-trivial solutions of SWE on defi-
ned by some conditions hypersurface and, generally, in algebraically more
general space-time, will not have any node point, and to prove on this basis
the equivalence of SWE and Nester’s gauge and therefore the existence of
correspondence of spinor and tensor methods in investigations of the positive
definition of the gravitational energy and its quasilocalization. Further we will
prove that in such spaces even at violation of WEC by dark energy, the full
energy can be positive definite.

5.2. Connection between spinor and tensor
methods in the positive energy problem

In subsection 5.2.2 we review the ascertained by Skorobo-
hat’ko properties of nodal sets of selfadjoint second order elliptic equations
and strong elliptic systems of equations of second order.

In subsection 5.2.3 on the basis of these results we show at what boundary
values for the spinor field the solution for SWE has not any nodal points
in the bounded domain on the space-lake spatial-constant mean curvature
hypersurface in Petrov type N space-time. Then using the methods, introduced
by Reula [645] and Ashtekar and Horowitz [646], we prove that in Petrov type
N space-time non-trivial solutions of SWE with asymptotically flat initial data
set do not equal zero in any point of finite or infinite domain on spatial-constant
mean curvature (SCMC) hypersurface in asymptotically flat Petrov type N
space-time.

This allows us to prove in subsection 5.2.4 the equivalence of SWE and
Nester’s gauge, and also to complement Nester’s investigations, showing that
the local rotation to Nester’s SOF exists not only for geometries in a nei-
ghborhood of Euclidean space, but everywhere on maximal hypersurface with
good topological properties 1. The latter circumstance allows to take down fully
the negation of Dimakis and Müller-Hoissen against the Nester’s method [654],
which was taken down partly by Nester earlier [660].

We use the Witten’s method in the interpretation, given by Reula [645].
In the basis of this interpretation lies the reduction of SL(2, C) spinors of

1 Maximal surface are space-like submanifold which locally maximize the induced area
functional.
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space-time to SU(2) spinors on space-like hypersurface; this reduction was
introduced by Sommers [661] and Sen [662].

From the point of view of theory of differential equations with partial deri-
vatives the necessity for investigation of submanifolds, on which the solutions
of elliptic equations are equal to zero, first of all is connected with the fact that
the necessary and sufficient conditions for absence of such closed submanifolds
of codimension one are simultaneously the necessary and sufficient conditions
for uniqueness of the Dirichlet problem for these equations in the bounded
domain (the existence and stability of solutions at sufficiently smoothed coeffi-
cients leads to its uniqueness). On the other hand, the uniqueness theorems for
Dirichlet problem define conditions for absence of submanifolds of codimension
one, on which the solutions of elliptic equations are equal to zero.

5.2.1. Sen—Witten equation
in Petrov type N space-time

In next sections we prove, that non-trivial solutions of Sen—
Witten equation with asymptotically flat data set in Petrov type N on SCMC
hypersurface does do not equal zero in any point of this hypersurface. On this
basis we ascertain the correspondence between Witten’s spinor method and
Nester’s tensor method.

Let (M, g) be an asymptotically Minkowskian space-time of Petrov type
N with space-like foliation Σt×{t} and metric g of signature (+,−,−,−). We
assume initial data set (Σt, hµν ,Kπρ) to be asymptotically flat in introduced
by Reula [645] sense and hµν , Kπρ to be of C∞ class on C∞ hypersurface
Σt. Assumptions about asymptotical properties (topology) are result of PET
conditions; these are important for existence of SOF, but, as it will be seen
later, these are not necessary for obtaining conditions of the nodal sets absence.

The constraint equations of general relativity on the space-like hypersur-
face Σt are −R−KµνKµν +K2 = 2µ, (5.1)

Dµ (Kµν −Khµν) = J ν, (5.2)

where R is scalar curvature of Σt, h = g−n⊗n is induced metric on Σt. Dµ is
induced by connection ∇µ on M connection on Σt, Kµν is extrinsic curvature
of Σt, K = Kνν . µ and J ν are the energy density and momentum density
respectively of the matter in the frame of reference of an observer, whose one-
form of 4–velocity is ξ = dt. In the case of barionic matter µ and J ν satisfies
the dominant energy condition

µ ≥| J νJν |1/2. (5.3)

As it was shown by Witten [638], if on Σt exists the solution β C of Sen—
Witten equation

DBCβC = 0 (5.4)
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with βC going asymptotically to a constant spinor β0
C , then the total mass is

non-negative. The action of Sen operator DAB on spinor field is

DABλC = DABλC +

√
2

2
KABCDλD. (5.5)

For solving the problem of zeros existence for βC solutions of the equation
(5.4), when βC is going asymptotically to the constant spinor λ0

C 6= 0, we
briefly review the results of Skorobohat’ko.

5.2.2. Nodal surfaces of selfadjoint
elliptic second order equations

The unique solvability of Dirichlet problem for elliptic equa-
tions was studied in the works [663—666]. The results of these works were
generalized in [667,668] where the similar results were obtained independently.
In particular, from the Aronszain [667] and Cordes [668] theorem we see that
non-trivial solutions of the equation

aµν
(
x, u,

∂u

∂x

)
∂2u

∂xµ∂xν
= f

(
x, u,

∂u

∂x

)
, u(x), aµν(x) ∈ C2

in Rn, which is elliptic for all x1, ..., xn and u, in any point ξ0 cannot have zero
of infinite order. Therefore this allows to exclude the existence of the solutions
with zeros of infinite order only.

In the works of Skorobohat’ko [672, 673] the known theorems about the di-
stribution of zeros for linearly independent solutions of the ordinary differential
second order equation y′′+c(x)y = 0 are generalized for selfadjoint elliptic type
equations

∂

∂xµ

[
aµν(xπ)

∂u

∂xν

]
+ a(xπ)u = 0, (5.6)

where aµν(xπ) ∈ C2(Ω), a(xπ) ∈ C1(Ω). The point xπ0 , in which the solution u
equals zero, is said to be a nodal point of this solution. The important property
of the equation (5.6) is given in the following theorem.

Theorem Skorobohat’ko V. The nodal points of any solution u of the
equation (5.6) aren’t isolated in domain Ω, but create the surfaces, which divide
the domain Ω.

From the theorem we can see, that nodal surfaces are closed, or their ends
lie on the boundary of domain Ω. The theorem is simply generalized for the
case of n-dimensional space, where it takes the following form: nodal sets of
codimension (n − 1) are not isolated and create hypersurfaces, which divide
the domain. The theorem is simply generalized for the case of n-dimensional
space, where it takes the following form: nodal sets of codimension (n− 1) are
not isolated and create hypersurfaces, which divide the domain.
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5.2.3. The solutions
of Sen—Witten equation have no zeros

Theorem 1. Let λC satisfies Reula’s condition and is a
solution of the equation (5.4) with asymptotically flat initial data set in Petrov
type N space-time, that satisfies the dominant energy condition (5.3). Then the
solution λC everywhere on the SCMC hypersurface Σt has no zeros.

Proof. From Lemma [646] we obtain, that all solutions λC of equation

DABDBCλC = 0 (5.7)

with the form λC = λ0
C+βC , where spinor field λ0

C is asymptotically constant
and βC is element of Hilbert space H, satisfy also the first order equation (5.4).
Here the space H is the Cauchy completion of C∞0 spinor fields under the norm

||βE||2H=

∫
Σt

(
DABβB

)+ (DACβC) dV.
The equations (5.7) are elliptic system of equations. Indeed,

DABDBCλC = −DABD
B
Cλ

C −
√

2

2
DABλ

B −
√

2

4
λBDABK −

1

8
K2λA;

taking into account that

−DABD
B
Cλ

C = −1

2
DBFDBFλA −

1

8
R(3)λA,

and using the equation (5.1), we obtain:

DABDBCλC =
1

2
DBCDBCλA −

√
2

2
KDABλ

B −
√

2

2
λBDABK−

− 1

4
K2λA +

1

8
KµνKµνλA +

1

4
µλA. (5.8)

Let introduce on an open neighborhood of Σt the Gauß normal coordinates
(t, xα). Then

DABDBCλC =
1

2
√
−h

∂

∂xα

(√
−hhαβ ∂

∂xβ
λA

)
−

−
√

2

2
λBDABK +

1

8
KαβKαβλA +

1

4
µλA = 0, (5.9)

and ellipticity (5.6), as well as (5.4), follows from the negative definition of
||hαβ || matrix.
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On the hypersurface Σt of spacial constant mean curvature 2 the system of
equations (5.11) comes to two independent selfadjoint equations for the spinor
in abstract form

1√
−h

∂

∂xα

(√
−hhαβ ∂

∂xβ
λA

)
+

1

4
KαβKαβλA +

1

2
µλA = 0. (5.10)

Taking into account that space-time belongs to Petrov type N , we can
make a conclusion that system of two equations for real and imaginary parts
for one of components λα of spinor in a spin-frame consists of two independent
equations. Then, applying Skorobohat’ko’s theorem, for every equation we
obtain, that nodal surfaces of every solution are not isolated in arbitrary
bounded domain Ω and divide this domain. According to the dominant energy
condition (5.3)

KαβKαβ + 2µ ≥ 0, (5.11)

then for (5.10) the maximum principle is fulfilled, and the solution of the
Dirichlet problem for every from each of above mentioned equation is unique;
that is why the nodal surfaces set of equation (5.10) does not include the closed
surface. For the case, when real or imaginary part of this component does not
vanish in any point on boundary, equation (5.12) has no node points. Since in
asymptotically flat space-time λC asymptotically tends to λ0

C 6= 0, then for
the solution on Σt the nodal surfaces, which tend to infinity, are also absent.

Therefore the solution λC of equation (5.4) does not have a zero on Σt. Note
that maximality condition is not necessary condition of splitting of equations.
For splitting of equations in space-time of Petrov type N it is sufficiently to
require for hypersurface to be spatial constant mean curvature hypersurface, in
other words, one of realizations of well-known class of hypersurfaces of prescri-
bed mean curvature [674,675].

From Lemma 1 and Lemma [662] we can deduce, that the solution of the
equation (5.4), which vanishes at a point on Σt, vanishes everywhere on Σt.
But during the process of Lemma’s 1 proof the Conjecture, which is based
on the observation of the properties of the solutions for the equation (5.4) in
Minkowski space and at Kαβ = 0, is used; these assumptions are too strong.

For the general case DABK 6= 0 let us restrict by the notice, that the
solutions of Sen—Witten equation do not have zero also everywhere on hyper-
surfaces in some neighborhood of the SCMC hypersurface. The proof can be
obtained on the basis of the Lopatynsky [676] theorem, according to which the
solutions of the Dirichlet problem for elliptic system of second-order equations
continuously depend on its right parts, coefficients, Ω-domain and values of
the functions on ∂Ω. In subsection 5.3 we strengthen this result significantly.

2 It is known, that particular case of SCMC hypersurfaces — hypersurfaces of constant
mean curvature (CMC) — are favorized in cosmologies.
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5.2.4. Sen—Witten equations and SOF

Definition 1. A set of N (0 < N ≤ 10) equations for the
components of orthonormal vector basis emµ (tetrad, vierbein)

ΦN (em′
µ′ , ∂ν′em′

ν′ , ∂2
ν′ρ′ep′

π′) = 0, (5.12)

which are not covariant relatively to the local Lorentz transformations and (or)
coordinate basis transformations, is said to be auxiliary conditions.

Definition 2. The auxiliary conditions (5.12) are said to be gauge fixing
conditions in some domain Ω, if in this domain the solution xµ

′
(xν), Lm

′
n (x)

of the system of equations

ΦN

(
en
ν ∂x

µ′

∂xν
Lnm′ , ..., ...

)
= 0 (5.13)

with arbitrary coefficients enν exists.
The sets of additional and gauge fixing conditions are not identical [676—

678]. This is caused firstly by the fact, that the coefficients of the system
(5.13) are considered in general as the functions of C∞ class, but not Ca,
and the solutions of non-analytical equations may not exist; secondly, even the
conditions of integrability for equations (5.13) can be not satisfied.

Nester [651] introduced the additional conditions for the choice of special
orthonormal frame on three-dimensional Riemannian manifold. Let θa denotes
the corresponding orthonormal coframe field. Nester’s conditions, written in
terms of the differential forms

q̃ = iadθ
a, q = θa ∧ dθa, (5.14)

are given by
dq̃ = 0, d ∗ q = 0. (5.15)

The system of equations (5.13), corresponding to these additional condi-
tions, is a non-linear second-order elliptic system for the rotation Ra′b. Nester
proved the existence and uniqueness of the solution of the linearization of this
system for geometries within a neighborhood of Euclidean space and therefore
the additional conditions (5.15) are gauge-fixing only asymptotically.

Analogously to Nester under investigations and application of the condi-
tions (5.15) we would restrict ourselves to consideration of the spaces with
“good” topology, where the forms q̃ and ∗q are exact (vanishing of the first de
Rahm cohomology class of the three-manifolds is sufficient but not necessary).
Taking into account, that initial data set (Σt, hµν ,Kπρ) is asymptotically flat,
the conditions (5.15) are replaced by their first integrals:

q̃ = −4d ln ρ, ∗q = 0. (5.16)

Function ρ everywhere on Σt is positive.
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Theorem 2 [657] 3. Let an initial data set (hµν ,Kπρ) on maximal hyper-
surface Σt in Petrov type N space-time be asymptotically flat and satisfies the
dominant energy condition. Then everywhere on Σt the Sen—Witten’s equations
(5.4) with Reula conditions and Nester’s condition (5.15) are equivalent.

Proof. Let assume firstly that on Σt the equation (5.4) for SU(2) spinor
λC is given. Then a spatial one-form L with components Lν = −λAλB satisfies
“squared” SWE

〈L̃, D ⊗ L〉 − KL+ 3! i ∗ (n ∧D ∧ L) = 0, (5.17)

where n is one-form of unit normal to Σt, 〈L̃, D⊗L〉 is one-form with compo-
nents L̃νDµL

ν , L̃ = |L|−1 ∗
(
L ∧ L

)
is non-zero spatial one-form. Because Σt

as three-dimensional orientable manifold is parallelisable, it admits a globally
defined orthonormal 3-coframe θa and together with time-like unit one-form n
of the normal to Σt it forms 4-coframe θm.

Let us introduce 4-coframe θm with the help of the correlations

L =
λ√
2

(θ1 + iθ2), θ3 = L̃, θ0 ≡ n = Ndt, (5.18)

where λ = λ+AλA, and let introduce metric ηmn = (1,−1,−1,−1) in which
this frame is orthonormal. Let us substitute the expression for L from (5.18)
into (5.17) and take into account that in agreement with theorem 1 the spinor
λA everywhere on Σt does not equal zero. This allows to write instead of (5.17)

−
〈
θ1, D ⊗ θ3

〉
−Kθ1 + 3! i ∗

[
n ∧ (D + F ) ∧ θ2

]
= 0, (5.19)〈

θ2, D ⊗ θ3
〉

+Kθ3 + 3! i ∗
[
n ∧ (D + F ) ∧ θ1

]
= 0, (5.20)

where we denoted F = D lnλ. Contracting the left parts of (5.19) and (5.20)
with vector field eb and taking into account that ε(0)abc = εabc, we obtain

−ω13
b −Kη1

b + εbcaω
a2c + εc2bFc = 0, (5.21)

ω23
b +Kη2

b + εbcaω
a1c + εc1bFc = 0. (5.22)

The connection one-forms coefficients ωkmn in (5.21)—(5.22) are defined
as usually: ωkmn = 〈θk, ∇emen〉. The system of equations (5.21) and (5.22)
includes only four independent equations:

εabcωabc ≡ ∗q = 0, ωa1a ≡ −q̃1 = F1,

ωa2a = −q̃2 = F2, ω
a

3a = −q̃3 = K + F3.
(5.23)

3 Despite reconfirm our priority in [659], the result of our Theorem 2 is given by authors
in [656, p. 5] as their own. In paper “On the zero set of solutions of the Witten equation
on asymptotically euclidean hypersurfaces” (GR20/Amaldi10 Abstract Book, Warsaw July
6, 2013) Frauendiener repeatedly tried to declare the result of Theorem 2 own, but the
publication of the report on the conference itself in our presence gave.
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5.3. Nodal points of elliptic equations

Let us choose the hypersurface Σt maximal and adjust the parametrization in
V3 and on Σt identifying ρ with λ (xµ) |Σt . After this the direct conjecture of
the theorem becomes evident.

The converse is obvious.

5.2.5. Conclusion

The possibility of the proof of the Theorem 1 is provided
by our splitting off two independent equations from SWE four equations on
SCMC hypersurface in Petrov type N space-time.

Evidently the Theorem 1, which plays auxiliary role in the proof of the
Theorem 2, possesses independent importance for spinor fields in Riemannian
space-time. In particular, it is connected with the fact, that SWE generalizes
the equation for neutrino “zero mode” for the case of curved space. Jackiw
and Rebbi [680] introduced this equation for investigations of vacuum state
structure in quantum gravity.

The main result of presented section — Theorem 2 — solves (under the defi-
ned conditions) the problem of relation between spinor and tensor formalism,
ascertaining that Witten’s spinor formalisms and Nester’s tensor formalisms
are isomorphic; this isomorphism is a result of zeros absence for Witten’s spi-
nor (Theorem 1) and of isomorphism between complexificated vector space
R3 and three-dimensional complex vector space of symmetric second-rank
SU(2) spinors.

We can also say, that on SCMC hypersurface in Petrov type N space-time
there exists globally defined (nowhere degenerate) special orthonormal frame —
Witten’s orthonormal frame, — and this SOF on maximal hypersurface is also
Nester’s SOF.

5.3. Nodal points of elliptic
equations and system of equations
From the mathematical point of view the necessity for

investigation of submanifolds, on which the solutions of elliptic equations are
equal to zero, is connected with the fact that the necessary and sufficient
conditions for absence of such closed submanifolds of codimension one are
simultaneously the necessary and sufficient conditions for uniqueness of the
Dirichlet problem for these equations in the domain. The existence and stabi-
lity of solutions (at sufficiently high smoothness of known functions) follows
from its uniqueness. Since the elliptic equations refer to the static solutions
of the given hyperbolic field equations, the non-uniqueness of solution for the
boundary value problem from the physical point of view defines the instability
of “zero modes” of given field equations. Additionally there appears the necessi-
ty to study not only the closed submanifolds and not only of codimension one,
but all other ones, on which zeros of solutions are located.
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CHAPTER 5. Energy in General Relativity

The purpose of this section is to develop a new approach for establishing
the conditions of solvability and zeros absence for general from the physical
point of view elliptic systems of equations. This will give the possibility to
prove the existence of the wide class of hypersurfaces, in all points of which
there exists the two-to-one correspondence between Sen—Witten spinor and a
certain three-frame; we will name it Sen—Witten orthonormal frame (SWOF).
In all points on such hypersurfaces there exist also the well defined lapses and
shifts, associated by Ashtekar and Horowitz [646] with Sen—Witten spinor. On
a subclass of this class, including also the maximal hypersurfaces, we establish
the existence of two-to-one correspondence between Sen—Witten spinor and
Nester three-frame.

We introduce first three definitions.
Definition 1. The nodal point of the component of the solution is a point,

in which the component is equal to zero.
Definition 2. The nodal point of the solution for the elliptical system of

equations is a point, in which the solution is equal to zero.
From the general theory of elliptic differential equations it is known that

non-trivial solutions cannot vanish on an open subdomain, but they can turn
to zero on subsets of lower dimensions k, k = 0, 1, ..., n−1, where n is dimension
of the domain.

Definition 3. The nodal submanifold of dimension s, s = 1, 2, ..., n− 1,
is a maximal connected subset 4 of dimension s consisting of nodal points of
the solution.

Discrete set of nodal points is 0-submanifold. We will show further, that
for the system of differential equations, interesting for us, all nodal subsets are
formed by intersection of nodal surfaces of the components of the solution.

The connection between the unique solvability for the boundary value
problem in Rn and absence of (n − 1)-dimensional closed nodal submani-
folds was established by Picone [670, 671]. The existence of such connection
follows from the next consideration: if the boundary value problem in a certain
domain Ω is uniquely solvable, then the boundary value problem is also uni-
quely solvable for any subdomain Ω1 ⊆ Ω. This excludes the possibility of
existence of non-trivial solutions which turn to zero on the boundary of the
arbitrary domain Ω1, i.e., excludes the possibility of existence of closed nodal
submanifolds of codimension one, and vice versa.

The known investigation of elliptical equations of general form does not
allow to obtain the conditions for all nodal points absence. For example, even
in the case of the only single equation of general form it is proved the absence of
zeros only of infinite order is proven. [667,668]. Bär [674], continuing Aronszajn

4 Maximal connected subset A is a non-empty connected subset such that the only
connected subset containing A is A.
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5.3. Nodal points of elliptic equations

[667] investigations, proved that the nodal et of Dirac equation is a countable
(n − 2) rectifiable set and thus has Hausdorff dimension (n − 2) at most,
but question about possibility of all nodal points absence remains free-answer.
That is why further we will examine only such general equations, which possess
also the necessary physical properties, in particular, symmetry properties and
reflects embedding of the hypersurface into space-time.

Let Ω be a bounded closed spherical-type domain on space like hyper-
surface in Petrov type N space-time, otherwise, (i) its boundary ∂Ω in every
point has a tangent plane; (ii) for every point P on the boundary there exists a
sphere, which belongs to Ω, and the boundary of sphere includes the point P .

In the domain Ω let us consider the system of elliptic second order
equations

DABDAB uE + CE
BuB = 0, (5.24)

which generalized equation (5.10). The unknown functions uA of independent
variables xα are the elements of complex vector space C2, in which the skew
symmetric tensor εAB is defined, and the group SU(2) acts. CAB is Hermitian
(1, 1) spinorial tensor.

The equation (5.24) and every its summand is invariant under the arbit-
rary transformations of coordinates in V 3, and covariant under the local
SU(2)-transformations of unknown functions in a local space isomorphic to
the complexified tangent space in every point to V 3.

Long ago Picone had ascertained that at arbitrary coefficients of elliptic
equations the boundary value problem is uniquely solvable, and the closed node
submanifolds of codimension one are absent, respectively, only in the domains
with enough small intrinsic diameter.

The general conditions for the absence of closed nodal surfaces for strong
elliptic system (5.24) are ascertained by Theorem [672].

Theorem. If in domain Ω there exist symmetrical quadratic functional
second-order matrices B1, B2, B3 of C1 class, such that matrix

√
−hC −

3∑
α=1

∂Bα
∂xα

+BTG−1B

is positive definite, where

B=(B1, B2, B3), G=
√
−hdiag(‖hαβ‖, ‖hαβ‖, ‖hαβ‖),

then the solutions of system of equations (5.24) with matrix C = ‖CAB‖ of C1

class do not have the closed node surfaces in domain Ω.
The effective geometrical conditions of B-matrix existence and

corresponding unique solvability of Dirichlet problem in dependence on the
domain intrinsic diameter were obtained [672] for the Euclidean space. Since
the conditions of nodal manifolds absence for quantum fields equations are the
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point of our interest, further we will concentrate our attention on the condi-
tions of nodal points absence in the domains of arbitrary as well as infinite
intrinsic diameter.

Evidently, if matrix C is positive definite, then the conditions of Theorem
1 are fulfilled for B ≡ 0, and closed nodal surfaces are absent in the domain
with arbitrary intrinsic diameter. Simultaneously, the boundary value problem
for the system of equations (5.24) is uniquely solvable.

Above cite Theorem does not indicate the conditions at which nodal points,
lines and node surfaces for solutions of equations (5.24) are absent. We will
obtain them in the next subsection.

5.3.1. Conditions for the absence of nodal points

In the case of a single selfadjoint elliptic equation in V 3 the
nodal submanifolds can be only the surfaces which divide the domain, but in
the case of a system of equations the topology of nodal submanifolds becomes
more various: they can be also the lines and the points. We can take this
fact into account and ascertain the conditions for the nodal manifolds absence
exploiting the double covariance of the system of equations (5.24) and using
Zaremba—Giraud Lemma, generalized at first by Keldysh and Lavrentiev [682]
and later by Oleynik [683].

Let us introduce the matrix

R := ||RA′B|| :=
(
α β

−β α

)
, αα+ ββ = 1,

which is of the group SU(2), and let its elements additionally satisfy the
condition

C0
1β2 + (C0

0 − C1
1)αβ − C0

1α2 = 0.

Therefore,
C0′

1′ = R0′
ACA

BR1′
B = 0,

and in accordance with Hermiticity of matrix C also C0′
1′ = C1′

0′ . Then
C0 := C0′

0′ and C1 := C1′
1′ are eigenvalues of matrix C = ||CAB||. This follows

from a fact that for arbitrary matrix R ∈ SU(2) the identity

−εRε ≡ RT+

is valid, where ε = ‖εAB‖. Therefore

C ′ = −εRεCRT+ = RT+CRT = diag(C0, C1). (5.25)

Let us denote

∆ := C1
1 − C0

0 −
[(
C1

1 − C0
0
)2

+ 4|C0
1|2
]1/2

,

and let us denote by S a set of points in domain Ω, in all points of which C0
1

does not equal to zero, and let us denote by T a set of points, in which C0
1 is

314



5.3. Nodal points of elliptic equations

equal to zero. Then the elements of the matrix R, which transforms the matrix
C to diagonal form, satisfy on the set S the conditions

αα(1 + ∆2/4|C0
1|2) = 1, β = α∆/2C0

1

and on the set T the conditions
αα = 1, β = 0.

Functions u0′ and u1′ on the set S will be following:

u0′ = α

(
u0 +

∆

2C0
1
u1

)
, u1′ = α

(
− ∆

2C0
1
u0 + u1

)
, (5.26)

and on set T they will be
u0′ = αu0, u1′ = αu1. (5.27)

Respectively, eigenvalue C0 on S is:

C0 =
4C0

0|C0
1|4 +

(
4∆ |C0

1|2 + C1
1∆2

) (
4|C0

1|2 + ∆2
)

4|C0
1|2 (4|C0

1|2 + ∆2)

and coincides with C0
0 on the set T .

Lemma. If real and imaginary parts of functions uA and of elements of
matrix CAB are functions of class C2 in domain Ω, then the real and imagi-
nary parts of functions uA′ defined by conditions (5.26)—(5.27) are also the
functions of class C2 in this domain.

Proof. Taking into account that it is always possible to choose Imα ∈
∈ C2(Ω), from direct calculation we obtain that on the set S there exists first
and second derivatives of real and imaginary parts of functions uA′ and α with
respect to arguments (∆2/4|C0

1|2) and (∆/2|C0
1|2) and that

lim
P3S→Q∈T

Reα(m)(P ) = Reα(m)(Q), lim
P3S→Q∈T

Imα(m)(P ) = Imα(m)(Q),

(5.28)
lim

P3S→Q∈T
Reu

(m)
A′ (P ) = Reu

(m)
A′ (Q), lim

P3S→Q∈T
Imu

(m)
A′ (P ) = Imu

(m)
A′ (Q),

(5.29)
where symbol f (m) denotes arbitrary partial derivatives of order m = 0, 1, 2.

The following theorem is valid.
Theorem 3. Let:
a) real and imaginary parts of the elements of matrix C be of C2 class in

the domain Ω on space-lake hypersurface in Petrov N space-time;
b) at least one eigenvalue of matrix C, for definiteness C0, be non-negative

everywhere in Ω;
c) real or imaginary part of the function

v :=

{(
u0 + ∆

2C0
1 u1

)∣∣∣
S
⋂
∂Ω
,

u0|T ⋂
∂Ω

be equal to zero in any point.
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Then solution uA of class C2 for the system of equations (5.24) does not
have any nodal points in the domain Ω of spherical type.

Proof. The system of equations (5.24) is covariant under the arbitrary
transformations of coordinates and under the local transformations from the
group SU(2) that allows to use them independently. Let us apply at the
first step the SU(2) spinor transformation uA → RA′

BuB, which transforms
the matrix C to the diagonal form, and under which the equation (5.24)
is covariant.

The eigenvalues of matrix C are real, therefore, the resulting system of
equations (5.24) splits into two independent subsystem for uA′ . Taking into
account that space-time is of Petrov type N , we can make a conclusion that in
a spin-frame subsystem with C0 splits into two independent equations for real
and imaginary parts of u0′ component. Taking into account that uA′ , C0 and
C1 are scalars under transformations of coordinates, and C0 ≥ 0, we can apply
the Zaremba—Giraud principle in the general form grounded by Oleynik [683]
to every equation containing C0. According to this principle, if in a certain
point P0 on the sphere the non-constant function in the ball turns to zero, and
everywhere in the ball Reu0′ < 0, then 〈dReu0′ , l〉 |P0 < 0. Here l — arbitrary
vector field, for which 〈n, l〉 |P0 > 0, and n is one-form of intrinsic normal to
the sphere in the point P0.

Let us show further that a set of the nodal points for function Reu0′

does not contain the isolated points. Let us assume that such point exists,
i.e. Reu0′ = 0, and in a certain neighborhood of the point P0 the function
has a constant sign. For definiteness let in this neighborhood be u0′ < 0.
Let us consider a sphere, on which the point P lies and which is so small that
completely belongs to the mentioned neighborhood of the point P . Then, using
Zaremba—Giraud principle, we obtain 〈dReu0′ , n〉 |P0 > 0, and therefore in
any neighborhood of the point P0, located outside the ball, the function Reu0′

changes its sign, and that is why its zeros are not isolated. Therefore, they form
the surfaces which divide Ω. Since C0 ≥ 0 , then it follows from the maximum
principle that the closed nodal surfaces for the components of solution Reu0′

are absent. Analogous conclusion is true also for the component of solution
Imu0′ . This means that the only surfaces having common points with the
boundary of domain Ω can be the nodal surfaces of real or imaginary part of
function u0′ . According to condition c), if, for definiteness,

Re

(
u0 +

∆

2C0
1
u1

)∣∣∣∣
S
⋂
∂Ω

6= 0, Reu0

∣∣∣
T
⋂
∂Ω
6= 0,

then we can choose

Reα
∣∣∣
S
⋂
∂Ω
6=
{[

Re

(
u0 +

∆

2C0
1
u1

)]−1

Imα Im

(
u0 +

∆

2C0
1
u1

)}∣∣∣∣
S
⋂
∂Ω

,

Reα
∣∣∣
T
⋂
∂Ω
6=
[
(Reu0)−1 Imα Imu0

] ∣∣∣
T
⋂
∂Ω
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and obtain[
Reα Re

(
u0 +

∆

2C0
1
u1

)
− Imα Im

(
u0 +

∆

2C0
1
u1

)]∣∣∣∣
S
⋂
∂Ω

≡

≡ Reu0′

∣∣∣
S
⋂
∂Ω
6= 0,

(Reα Reu0 − Imα Imu0)
∣∣∣
T
⋂
∂Ω
≡ Reu0′

∣∣∣
T
⋂
∂Ω
6= 0.

Therefore nodal surfaces as well as lines and points of the real (or imagi-
nary) part are absent, and that is why any nodal points of complete solution
uA are also absent. The statement of the theorem is proven.

Note. If the conditions a) and b) of the Theorem are fulfilled, and the
matrix C is non-negative definite in domain Ω, then both eigenvalues are non-
negative, and, therefore, the boundary value problem for the system of equati-
ons (5.24) is uniquely solvable in arbitrary bounded domain, as it follows from
the classical maximum principle. Otherwise the solution in finite domain exists
only in the case when its intrinsic diameter does not overcome a certain value.

5.3.2. The conditions of nodal points
absence for the solutions of Sen—Witten equation

After Witten’s positive energy proof the attempts of de-
velopment of tensor method for proof were performed along two lines. The
attempts of the tensor interpretation for Sen—Witten spinor field belong to
the first line. In particular, Ashtekar and Horowitz [646] used Sen—Witten
spinor field for determination of a class of preferred lapses T := λ and shifts
T a := −

√
2 iλ+(AλB). Dimakis and Müller-Hoissen [650, 654] have defined a

preferred class of orthonormal frame fields in which spinor field take a certain
standard form. Frauendiener [655] has noticed a correspondence between Sen—
Witten spinor field and a triad. But, as it was shown by Dimakis and Müller-
Hoissen, frame fields cannot exist in the nodal points of the spinor field.

Let us weaken the conditions of zeros absence for SWE (5.4) on Σt using
the results of subsection 5.3.1. From equation (5.4), taking into account the
equation of Hamiltonian constraint on Σt, in Gauss normal coordinates we
obtained (see also [657]):

DABDBCλC =
1

2
√
−h

∂

∂xα

(√
−hhαβ ∂

∂xβ
λA

)
−

−
√

2

2
λBDABK +

1

4
K2λA +

1

8
KαβKαβλA +

1

4
µλA = 0. (5.30)

Therefore, the system of equations (5.30) is a system of the form (5.24); if it
does not have the nodal points, the SWE also does not have them.
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Spinorial tensor
CA

B :=

√
2

4
DA

BK +
1

4
εA

B

(
2K2 +

1

2
KπρKπρ + µ

)
(5.31)

is Hermitian because

(DABK)+ =
(
εBCDACK

)+
=
(
εBC

)+
(DACK)+ = − (DACK) εCB = (DABK).

So, the SWE solutions of class C2 do not have the nodal points in a boun-
ded closed domain Ω of spherical type on Σt in Petrov type N space-time, if
for spinorial tensor CAB in this domain and for the boundary values of the
solution the conditions of Theorem 3 are fulfilled.

Let us consider further a sequence Ωn of increasing domains of spherical
type covering Σt. If in every domain the conditions of Theorem 3 are fulfilled,
then all solutions of class C2 do not have the nodal points in Ωn. According
to Reula, on Σt there exists the SWE solution of λC = λC∞ + βC form, where
λC∞ is asymptotically covariant constant spinor field on Σt, βC is an element
of Hilbert space H, which is the Cauchy completion of C∞0 spinor fields under
the norm

|| βE ||2H=

∫
Σt

(
DABβB

)+ (DACβC) dV.
Solution λC belongs properly to C∞ class. From the asymptotical flatness

condition it follows that (∆2/(4|C0
1|2), as well as real and imaginary parts of

functions (∆/2C0
1) and (∆/2C0

1) vanish asymptotically. Therefore, condition
c) of Theorem 2 asymptotically takes the form: Reλ0

∞ 6= 0 or Imλ0
∞ 6= 0. In

such a way we obtain the following theorem:
Theorem 4. Let:
a) initial data set be asymptotically flat;
b) everywhere on space-like hypersurface Σt in Petrov type N space-time

the matrix of spinorial tensor (5.31) have at least one non-negative eigenvalue,
for definiteness C0;

c) Reλ0
∞ or Imλ0

∞ equal zero asymptotically nowhere.
Then the asymptotically constant nontrivial solution λC to SWE does not have
the nodal points on Σt.

The conditions of Theorem 4 are fully admissible from the physical point
of view.

5.3.3. Towards Sen—Witten equation, special
orthonormal frame and preferred time variables

Usually the question about existence of system of coordinates
or orthonormal basis, which satisfy certain gauge conditions, is reduced to
the question about existence of solution for non-linear system of differential
equations and often can be solved only at some additional limitations and
assumptions [649].
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The existence theorem for Sen—Witten (linear) equation and the Theorem
4 about their zeros (subsection 4) on surfaces, which can be not maximal, allow
us to prove the existence of a certain class of orthonormal three-frames in all
points of these hypersurfaces which satisfies gauge conditions.

εabcωabc ≡ ∗q = 0, ωa1a ≡ −q̃1 = F1,
ωa2a = −q̃2 = F2, ωa3a = −q̃3 = K + F3,

(5.32)

and generalizes Nester’s SOF. Such three-frame we will name as Sen—Witten
orthonormal frame (SWOF)

Theorem 5. Let the conditions of Theorem 4 be fulfilled. Then everywhere
on Σt there exists a two-to-one correspondence between Sen—Witten spinor and
Sen—Witten orthonormal frame.

Proof. Really, let all conditions of Theorem 3 be fulfilled on Σt. Then
SWE solution λA does not have the nodal points anywhere on Σt. This allows
to prove on such Σt the Sommers [661] assumption that spatial null one-form
L = −λAλB on Σt is non-zero, and allows to turn everywhere on Σt to the
“squared” SWE represented in the form:

〈L̃, D ⊗ L〉 − KL+ 3! i ∗ (n ∧D ∧ L) = 0, (5.33)

where 〈L̃, D ⊗ L〉 is one-form with components L̃νDµL
ν , L̃ =|L |−1 ∗

(
L ∧ L

)
is non-zero spatial one-form, and n is one form of unit normal to Σt.

The bilinear form
1√
2
nAȦλAλȦ = λAλ

A+ ≡ λ,

where n is one-form of a unit normal to Σt, is Hermitian positive definite one,
and the solution λA does not have the nodal points on Σt. Consequently, we
can further introduce real nowhere degenerate orthonormal 4-coframe θm as

θ0 ≡ n = Ndt, θ1 =

√
2

2λ
(L+ L), θ2 =

√
2

2λi
(L− L), θ3 = L̃ (5.34)

and represent immediately (5.33) in the form

−
〈
θ1, D ⊗ θ3

〉
−Kθ1 + 3! ∗

[
n ∧ (D + F ) ∧ ∧θ2

]
= 0, (5.35)〈

θ2, D ⊗ θ3
〉

+Kθ3 + 3! ∗
[
n ∧ (D + F ) ∧ θ1

]
= 0, (5.36)

where F = D lnλ. The system of equations (5.35)—(5.36) includes only four
independent equations, and they are equations (5.32) for the connection one-
forms coefficients. From this it follows that if on Σt the conditions of Theorem
3 and SWE are fulfilled, then on Σt there exists three-frame θa defined by
(5.34) in which conditions (5.32) are fulfilled.

Inversely, if on Σt in some three-frame θa the conditions of Theorem 4
and conditions (5.32) are fulfilled, then it follows from condition of Theorem
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3 that these one-forms have a form θa = θa∞ + φa, where θa∞ tend asymptoti-
cally to the covariant constant forms and φa belongs to H. We can turn from
four-frame θm ≡ {n, θa} to one-forms θ0, L, L̃, assuming λA|Σt 6= 0. After
this we obtain equation (5.33) and further (5.4) 5 for spinor field λA, which,
as we have demonstrated previously, indeed does not have the nodal points
on selected hypersurface Σt and which together with asymptotical conditions
defines up to sign the spinor field λA. Mentioned in conditions of the Theorem
correspondence between Sen—Witten spinor field and Nester’s SOF is defined
by relationship (5.34).

We have proven in Section 5.2.4 that if initial set (Σt, hµν ,Kπρ) on maxi-
mal hypersurface Σt is asymptotically flat and satisfies the dominant energy
condition, then everywhere on Σt from existence of Sen—Witten spinor fi-
eld follows existence Nester’s three-frame and conversely. Theorem 4 allows
to strengthen significantly this result taking away the assumption that Σt is
maximal. Indeed, if all conditions of Theorem 3 are fulfilled on Σt, and addi-
tionally the one-form KL̃ is globally exact, we can perform in conditions the
identification F ≡ d lnλ + Kθ3 and obtain the Nester’s gauge (5.14), or to
perform the inverse transition — from Nester’s gauge to SWE. Therefore, if
on Σt the conditions of Theorem 3 are fulfilled, then SWE and Nester’s gauge
are equivalent if and only if the one-form Kλ+(AλB) is exact. In this case the
correspondence between Sen—Witten spinor and Nester’s SOF is also ascertai-
ned by relationship (5.34).

Ashtekar and Horowitz [646] have accented on the necessity of zeros investi-
gations for SWE solutions introducing the vector interpretation of Sen—Wit-
ten’s spinor which defines a preferred lapse and shift. Evidently, the fulfilling
of the Theorem 4 conditions ensures the existence of corresponding lapses and
shifts well defined everywhere on Σt. And also the preferred class of orthonor-
mal four-frame fields introduced by Dimakis and Müller-Hoissen exists in all
points of Σt under fulfilling of the Theorem 3 conditions.

The presence of zeros in the solutions of elliptic equations is rather ordinary
than exceptional case, therefore, it is necessary to prove the absence of zeros
for concrete cases.

The represented investigation demonstrates the possibility for obtaining
the condition of the nodal manifolds absence for enough general system of
elliptic second order equations owing to its double covariance.

The application of this result to SWE allows to prove the equivalence
of SWE and gauge conditions (5.15), and, respectively, the existence of an
everywhere well defined two-to-one correspondence between Sen—Witten spi-
nor field and the SWOF, which is the Nester SOF in the particular case, when
one of the one-forms Kθa is exact. Therefore, the indicated correspondence

5 The equivalence of the SWE (5.4) and of the equation (5.30) is proven by Reula [645].

320



5.4. Sen—Witten orthonormal three-frame

exists not only on the unique — maximal — hypersurface, but on the whole set
of asymptotically flat hypersurfaces.

Ashtekar and Horowitz [646] have shown that the Reula results hold even
if the energy condition is mildly violated. Also the conclusion about existence
of special three- and four-frames, as well as preferred lapses and shifts, is stable
under the violation of the energy condition, because, as it is seen from (5.31),
there exist the hypersurfaces, on which this condition of nodal points absence
is fulfilled at violation of the energy condition.

5.4. Sen—Witten orthonormal three-frame
and gravitational energy quasilocalization

The equivalence principle excludes a possibility for existence
of the gravitational energy density, however, in the Penrose conception [684]
there is possible its quasilocalization. This conception is realized in several
proposals for the quasilocal energy-momentum [684—689].

According to the Nester and coauthors approach, for each gravitational
energy-momentum pseudotensor there is Hamiltonian boundary term, and the
energy-momentum in a domain, bounded by close 2-surface, depends on the
field values and the frame of reference on the 2-surface. Various criteria are
insufficient and, most probably [689], will be insufficient for selecting a unique
Hamiltonian boundary term. Variety of these terms is characterized by different
choices of dynamic variables (metric, orthonormal frame, spinors), boundary
conditions and reference configurations. According to this there a problem
of the different Hamiltonians comparing [686, 691] appears. Among criteria
that must be satisfied by the quasilocal energy-momentum density, at least in
asymptotically Minkowskian space [692], must be positivity. It can be ensured
by finding the locally non-negative Hamiltonian density dependent on the Sen—
Witten spinor according to Witten [638], or by applying the ADM Hamiltonian
and the Nester special orthonormal frame [649].

In the asymptotically flat space the Hamiltonian is of the general form [694]

H (N) =

∫
Σ

(NH+NaHa)dV +

∮
∂Σ

B (5.37)

and includes the Regge—Teitelboim boundary term [695] at spatial infinity.
Grounding and developing the Wittenian proof of the positive energy

theorem, Nester [696] proposed an expression for the Hamiltonian density as
the 4-covariant quadratic spinor 3-form:

H (ψ) := 2
[
D
(
ψ ∧ γ5γ

)
∧Dψ −Dψ ∧D (γ5γψ)

]
, (5.38)

where
Dψ = ψ +

1

2
ωµνσµνψ, σµν =

1

2
[γµ, γν ], γ = γµθ

µ,

γµγν + γνγν = 2gµν , γ
2
5 = −E, γ5 = γ0γ1γ2γ3.
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From expression (5.38) one can obtain the following expression for H (ψ):

H (ψ) = 4Dψ ∧ γ5γ ∧Dψ = 4∇πψ (γµσπρ + σπργµ)∇ρψdΣµ, (5.39)

where dΣµ =
1

3!

√
|g|εµνπσdxν ∧ dxπ ∧ dxσ.

In the Gaussian normal system of coordinates in the neighborhood of arbi-
trary space-like hypersurface Σ, the Hamiltonian density (5.39) can be written
as a sum of positive and negative definite components [696]

H (ψ) = −4gabDaψ
+Dbψ +Daψ

(
γdγaγb + γaγbγd

)
Dbψ dΣ0 (5.40)

and be locally non-negative if SL(4,C)-spinor ψ on the space-like hypersurface
Σ satisfies the Sen—Witten equation

γaDaψ = 0. (5.41)

Expression (5.40) cannot give the true positive energy density for the gravi-
tational field because ψ, as solution of the SWE, is a non-local functional on
the initial data (h,K,Σ) set; therefore, a concept of the locally non-negative
density of the gravitation energy is treated as the locally non-negative functi-
onal on the set of initial data (h,K,Σ) and the boundary values of function
ψ. The gravitational Hamiltonian density (5.40) has significant advantages in
comparison with the other ones: except a fact that it is explicitly 4-covariant,
the gravitational Hamiltonian, which includes it, allows to prove that the total
4-momentum and the Bondi 4-momentum are time-like. To its liabilities Nester
and Tung have referred the physical mysteriousness of the Sen—Witten spi-
nor field, and absence of the direct relation to the Hamiltonian density in
the SOF method [649, 651, 693]. For establishing such relation, Nester and
Tung [686] had developed a new method of proving the PET and the gravitati-
onal energy localization, which employs the 3-dimensional spinors and a new
identity connecting the 3-dimensional scalar curvature to the spinor expression
in the Hamiltonian. The Einstein 3-spinor Hamiltonian with a zero shift the
authors obtained in the form 6

H =

∫
Σ

[
ϕ+ϕg−1/2

(
πabπab −

1

2
π2

)
−

− 4
(
gab∇aϕ+∇bϕ+∇aϕ+σaσb∇bϕ

)]
d3x, (5.42)

from which follows a conclusion that the density is non-negative definite, if on
the maximal hypersurface the asymptotically constant spinor ϕ satisfies the
Dirac equation in the 3-dimensional space

σa∇aϕ = 0. (5.43)
6 In this formula and in some next formulas we change the signs, comparing with the

original papers, according to the chosen here convention that a signature is (+,−,−,−).
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The main result of the Nester, Tung [686] and the Nester, Tung, Zhytni-
kov [697] works is formulated in the form of a statement that between the
localization method, based on the 4-covariant spinor Hamiltonian, and the
SOF-based method there exists a close connection owing to the 3-spinor Hamil-
tonian (5.42).

Such statement is grounded on the two circumstances: 1) among terms
of which the 4-covariant spinor density consists, the 3-spinorial density is
present; 2) between the 3-spinor field variables there exists, as Nester and
Tung declared, a close relation, since from the 3-dimensional Dirac equation
(5.43) it follows that

σa∇aϕ = σaϕ,a −
1

2
q̃bσ

bϕ+
1

4
i ∗ qϕ = 0, (5.44)

where forms q and q̃ are defined in the following way:

q = θâ ∧ dθâ, q̃ = iâdθ
â (5.45)

and fix SOF on the asymptotically flat surfaces by means of the Nester gauge

∗ q = 0, q̃ = Φ, (5.46)

where Φ is arbitrary exact one-form. Nester, Tung and Zhytnikov results do
not connect the Dirac equation itself and the Nester gauge by the equivalence
relationship of a certain type, and do not establish the explicit and unique
connection in all points of Σ (see, for example, [650, 654, 693]) between the
variables of the 3-spinor field and the SOF variables. That is why search for
the valuable grounding of a statement about existence of a close correlation
between both approaches remains topical.

We propose further a new insight into the problems of this correlation that
is fully correct for the case of maximal hypersurface and is grounded asymptoti-
cally in the case of quite arbitrary hypersurfaces. The reason is known: the
linear equations for the spinor fields become non-linear after transition to the
respective tensor functions.

5.4.1. Direct link between the 4-covariant
spinor 3-form and the Einstein Hamiltonian

Taking into account that the Hamiltonian density (5.38) and
the SWE were obtained by the spinor parameterization for the Hamiltonian
displacement, we write in terms of the Sommers—Sen spinors

Nµ = λAλȦ = λ(AλB)+ +Nµnµn
AB = λ(AλB)+ +

1√
2
λDλ

D+εAB. (5.47)

That is why N ≡ N0 = λAλ
A+ = Φ. Note, that the Nester SOF approach does

not limit a choice of the dependence Φ = Φ(N), but the only case of Φ ≡ N
seems to be meaningful and admissible [693].
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We will further give the 4-covariant Hamiltonian density in terms of the
Sen—Witten spinor using the SWE in the form

DBCλC = 0. (5.48)

An action of operator DAB on the spinor fields is

DABλC = DABλC +

√
2

2
KABCDλD,

where DAB — the spinorial form of the derivative operator Dα compatible with
metric hµν on the C∞ hypersurface Σt, KABCD — the spinorial tensor of the
extrinsic curvature of hypersurface Σ.

The standard substitution transforms (5.39) to the form

H(ϕ, χ) =
[
− 2
√

2
(
nAȦDµϕ

ADµϕȦ + nAȦDµχ
ADµχȦ

)
+

+ 2
(
nBĊDBȦϕ

ȦDµϕA + nBĊDBȦχ
ȦDµχA

)]
d3Σ. (5.49)

Let us take into account that

hµνnAȦDµϕ
ADνϕ

Ȧ = εḂḊεBDnAȦ
(
DBḂϕ

A
) (
DDḊϕ

Ȧ
)

=

= 2nRḂnR
ḊεBD

(
DBḂϕ

A
) (
DDḊϕ

Ȧ
)

=
(
DBRϕA

) (
DBRϕȦ

)
nAȦ, (5.50)

and (
DRBϕȦ

)
nAȦ =

1√
2

[
−DBRϕ+

A −
√

2
(
DBRnAȦ

)
ϕȦ
]
, (5.51)

DBRnAȦ = KBRAȦ +

√
2

2
FAȦε

(BR) = KBRAȦ. (5.52)

Then
nAȦh

µν
(
Dµϕ

ADνϕ
Ȧ +Dµχ

ADνχ
Ȧ
)

=

= (DBRϕA)

(√
2

2
DBRϕ+A +KBRAS ϕ+S

)
+

+
(
DBRχA

)(√2

2
DBRχ+

A +KBRAS χ+S

)
. (5.53)

For transformation of the other terms we will use the identity

DBȦϕ
Ȧ = DBȦ

(
2nȦCnCĊϕ

Ċ
)

= − 2√
2
DBȦ

(
nȦCϕ+

C

)
=

= − 2√
2

(
KBȦ

ȦCϕ+
C +

1√
2
DBCϕ+

C

)
= − 2√

2

(
KBCϕ+

C +
1√
2
DBCϕ+

C

)
(5.54)
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and, therefore,

nBĊDBȦϕ
ȦDAĊϕ

A =

√
2

2

(
DABϕA

) (
DBCϕ+C

)
− 1

2
KBCϕ+CDABϕA. (5.55)

The final expression for H(ϕ, χ) we will give in the form

H (ϕ, χ) =
√

2
{

(DBRϕA)
(√

2DBRϕ+A +KBRAS ϕ+S
)

+

+
(
DABϕA

)(
−DBCϕ+C +KBCϕ+C

)
+(DBRχA)

(√
2DBRχ+A +KBRAS χ+S

)
+

+
(
DABχA

)(
−DBCχ+C +KBCχ+C

)}
dV. (5.56)

The Hamiltonian 3-form H (ϕ, χ) (5.4.1) in comparison with the Hamil-
tonian 3-form, obtained by Ashtekar and Horowitz [646], contains the terms
with the external curvature of hypersurface Σ.

The first and the second terms are positive definite, and the next ones turn
to zero if on hypersurface Σ the spinor fields ϕA and χA satisfy the SWE (5.48).

On the other hand, the ADM Hamiltonian density, parameterized with
orthonormal 3-frames θâ, is of the form [686]

H (N) = −2 |h|1/2 q̃a∂aN +N |h|1/2
(
KabKab −K2

)
−

− 2 |h|1/2 (Kab − δaBK)DaN
b +N |h|1/2

[
qabqab +

1

2
q̃aq̃a −

1

6
(∗q)2

]
, (5.57)

where the symmetric tensor qab, vector q̃a, and scalar ∗q are defined by irreduci-
ble decomposition

Cabc = qadεdcb +
1

2
(δac q̃b − δab q̃c) +

1

3
∗ qεacb.

Varying the lapse in (5.57), we obtain the super-Hamiltonian constraint in the
form

2∂k

(
|h|1/2qk

)
+

1

2
|h|1/2 qkqk+

+
|h|
2

[
KmnKmn −K2 + qmnqmn +

1

2
q̃aq̃a −

1

6
(∗q)2

]
. (5.58)

If the spinor fields ϕA and χA satisfy the SWE and conditions of Theorem
3, then condition (5.15) is fulfilled, and vice versa. Then, on the one hand,
H (ϕ, χ) will be positive, and, on the other hand, this will permit us to write
H(N) in the SWOF, under the necessary in this context limitation for Φ and
at Na = 0, in the form

HSWOF (N) = N |h|1/2
(
−3

2
hmn∂m lnN∂n lnN −K∂3̂ lnN −

− 3

2
K2 +KmnKmn + qmnqmn

)
. (5.59)
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Here the lapse is determined by the super-Hamiltonian constraint

2∂m

(
|h|1/2hmn∂n lnN

)
+ 2∂m

(
|h|1/2θ3̂mK

)
+

+ |h|1/2
(

1

2
hmn∂m lnN∂n lnN+2Kθ3̂m∂m lnN− 3

2
K2+KmnKmn+qmnqmn

)
=

= 2∂m

(
|h|1/2hmn∂m lnN

)
+ |h|1/2

(
1

2
hmn∂m lnN∂n lnN +

+ 2K ∂3̂ lnN − 2∂3̂K +
1

2
K2 +KmnKmn + qmnqmn

)
= 0. (5.60)

Let us consider first of all the especially simple case of a maximal spatial
Cauchy hypersurface. Then the Hamiltonian density (5.59) takes the form

HSWOF (N) = N |h|1/2
(
−3

2
hmn∂m lnN∂n lnN +KmnKmn + qmnqmn

)
(5.61)

and will be everywhere positive definite if on Σ exists an appropriate solution
of the super-Hamiltonian constraint

2∂m

(
|h|1/2hmn∂m lnN

)
+

+ |h|1/2
(

1

2
hmn∂m lnN∂n lnN +KmnKmn + qmnqmn

)
= 0. (5.62)

Unique positive solutionN of this equation exists because Nester’s gauge (5.14)
has the property of conformal invariance and thus fits into the Lichnerowicz—
Choquet-Bruhat—York initial-value problem analysis [693]. Therefore, we con-
clude, that owing to the correspondence between the SWE and the Nester
gauge on the maximal hypersurface there exists the direct relationship between
the Hamiltonian based positivity localization in the 4-covariant spinor method
and in the ADM method based on the SOF.

Now, let us consider the hypersurface Σ which is not maximal, and let it be
asymptotically N = a+O(r−1), ∂mN = O(r−2). Then the super-Hamiltonian
constraint (5.60) for enough large r can be written as

2∂m

(
|h|1/2hmn∂mN

)
+N |h|1/2

(
−2∂3̂K +

1

2
K2 +KmnKmn + qmnqmn

)
= 0.

(5.63)
The Dirichlet problem for equation (5.63) has the unique solution, if

C(x) = |h|1/2
(
−2∂3̂K +

1

2
K2 +KmnKmn + qmnqmn

)
≥ 0. (5.64)

The same condition and the condition that N is positive on the boundary
or asymptotically ensure the non-occurrence of the nodal points of equation
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(5.63), since the nodal submanifolds of elliptic equation of second order are
closed or have common points with boundary. That is why everywhere N > 0,
and we can choose a = 1.

Further, a general theorem for the elliptic second-order system claims
[676] that its solutions continuously depend on coefficients, domain and va-
lues of the functions on the boundary, therefore the Hamiltonian density
HSWOF(N(K), N) (5.59) continuously depends on K and thus is non-negative
on the hypersurfaces which satisfy the condition

− 2∂3̂K +
1

2
K2 ≥ 0 (5.65)

and lie in some neighborhood of the maximal one. The presence of the terms
−2∂3̂K and 1

2K
2 in the right-hand side of relationship (5.64) is caused just by

the fact that we used the SWOF; the application of Nester’s gauge does not
give a possibility to prove the existence of this class of hypersurfaces, on which
the Hamiltonian density in the SOF is non-negative.

In order to establish a correspondence between condition b) of Theorem 4
and (5.65), we write the following space spinors definition

DA
BK = −

√
2nα̂σ

α̂
AȦσ

β̂BȦ∂β̂K = −
√

2σ0̂
AȦσ

β̂BȦ∂β̂K, (5.66)

and obtain that the diagonal elements of matrix
√

2

4
DA

BK +
1

2
εA

BK2

are 1

4
∂3̂K +

1

2
K2 and − 1

4
∂3̂K +

1

2
K2.

Therefore, the second of them is non-negative on the hypersurfaces which
satisfy condition (5.65). This means that under fulfilling condition (5.65) condi-
tion b) of Theorem 3 is also fulfilled.

So, if the SWE and conditions a) and c) of Theorem 3 are fulfilled,
then on hypersurfaces, which satisfy condition (5.65) and lie in some neigh-
borhood of the maximal one, the Hamiltonian density H (ϕ, χ) (5.4.1) and
the ADM Hamiltonian density HSWOF (N) (5.59) are locally non-negative si-
multaneously.

Let us note that just an absence of the result on connection between the
SWE equation and the Nester gauge (a theorem like Theorem 3 and Theo-
rem 4) did not permit Nester and Tung to obtain a direct relationship between
the 4-spinor 3-form of the Hamiltonian density under fulfilling the SWE and
the Hamiltonian density in the SOF formalism, both on the enough general hy-
persurfaces and even on the maximal ones. The 3-spinor formalism, developed
by these authors and Zhytnikov, provides the partial solving of this problem;
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in particular, the energy is guaranteed to be locally non-negative only on the
maximal hypersurfaces.

Generalization of the SOF by the SWOF allows us to remove two liabilities
of the SOF method: necessity of the restriction to the maximal hypersurfaces,
and impossibility of extension to the future null infinity and, hence, description
of the Bondi 4-momentum. Therefore, for the quasilocal Hamiltonian density
(5.38) investigation not the Dirac equation and the 3-spinors are suitable, but
the SWE and the space spinors introduced by Sommers [661]. Although the
3-dimensional Dirac equation and the SWE are very similar, we see that fi-
xing of the spinor field by the Dirac equation or by the SWE leads to different
physical consequences. The mathematical consequences for application of these
gauge conditions for the spinor field are also different; in particular, the condi-
tions for existence of solutions differ in domains of finite measure [658].

The equivalence of the Sen—Witten spinor field and the SWOF, under the
reasonable from the physical point of view fulfilling of conditions of Theorem
3, permits to establish that the method of the 4-covariant quadratic spinor
Hamiltonian and the SOF method are very close. The spinor parameterization
of the Hamiltonian displacement and correlations (5.34) are the key for the
orthonormal frame interpretation of the Hamiltonian 4-covariant spinor form
(5.38) and the spinor interpretation of the ADM Hamiltonian density even in
the case when the spinor field or the orthonormal frame are not fixed.

Note at the end that conditions of (5.64) and (5.65) type are the only
sufficient ones, and we expect to weaken them significantly or to exclude com-
pletely.

5.4.2. In which cases
the conditions of Theorem 4 are fulfilled?

Theorem 4 implies that the absence of nodal submanifolds
can be ensured in accordance with condition 2) at least for some hypersurfaces
Σt in Petrov type N space-time with tensor of extrinsic curvature Kπρ and for
some physical fields with density of energy in comoving frame µ. Further we
will work out in detail these constituents of condition 2).

Apparently, nodal sets are absent on SCMC hypersurfaces in empty space
and hence by continuity — in a neighborhood. However, significantly more
strong result takes place.

Theorem 6. Let:
a) everywhere in the bounded domain on the space-like hypersurface on Σt

in Petrov type N space-time the dominant energy conditions be fulfilled;
b) the functions Reλ0 or Imλ0, which correspond to non-negative eigen-

value C0, nowhere on domain boundary equal zero.
Then the non-trivial solution λC to SWE does not have the nodal points

in domain Ω.
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This theorem is a corollary of the following lemma:
Lemma. If in a point of the domain Ω the dominant energy condition is

fulfilled, then in this point the matrix of spinorial tensor

CA
B :=

√
2

2
DA

BK +
1

4
εA

B

(
2K2 +

1

2
KπρKπρ + µ

)
(5.67)

has at least one non-negative eigenvalue.
Proof. Applying strengthening of Descartes theorem we see that this is

possible in two cases:

1.
1

2
K2 +

1

8
KπρKπρ + µ ≥ 0.

2.
1

2
K2 +

1

8
KπρKπρ + µ < 0,

1

2

(
K2 +

1

8
KπρKπρ + µ

)2

− 1

4

[
(∂1K)2 + (∂2K)2 + (∂3K)2

]
≥ 0.

Condition 1 is fulfilled, if the dominant energy condition is fulfilled.
Taking into account this lemma, let us substitute condition b) of Theorem

5 by the dominant energy condition, let us denote non-negative eigenvalue by
C0 and refine condition c). Then we obtain Theorem 6.

Now we can strengthen significantly Theorem 6.
Theorem 7. Let on Σt in Petrov type N space-time Einstein constrai-

nts and the dominant energy condition be fulfilled. Then everywhere on Σt

there exists a two-to-one correspondence between Sen—Witten spinor and Sen—
Witten orthonormal frame.

Since for all physical fields, whose existence hitherto is confirmed experi-
mentally, the dominant energy condition is fulfilled, then Theorem 7 permits
to state that Sen—Witten spinor and Sen—Witten orthonormal frame are equi-
valent in majority of physical models. Nevertheless, in recent years the physical
situations in which the dominant energy condition will be violated (primarily
of dark energy, but also in wormhole space-time, in sudden future singularity
or in gravastar) appear. That is why we note that Theorem 7 does not exhaust
all cases, when Sen—Witten spinor and Sen—Witten orthonormal frame are
equivalent. In particular, from condition 1) it follows, that even if the domi-
nant energy condition is violated (µ < 0), Sen—Witten spinor and Sen—Witten
orthonormal frame are equivalent on hypersurfaces, which satisfy condition

1

2
K2 +

1

8
KπρKπρ ≥ −µ

or simultaneously two conditions
1

2
K2 +

1

8
KπρKπρ ≤ −µ,

1

2

(
K2 +

1

8
KπρKπρ + µ

)2

− 1

4

[
(∂1K)2 + (∂2K)2 + (∂3K)2

]
≥ 0.
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The result of our investigations shows that mystery, above mentioned
by Nester and Bartnik, is eliminated for all spaces with typical geometrical
properties and fields with typical physical properties.

5.5. Summary
Spinor methods in general relativity became not only a tool

for description of interaction between gravity field and particles with half-
integer spin, but one of main methods for description of algebraic properties of
curvature tensor and gravitational and electromagnetic radiation in the curved
space-time. This confirmed their efficiency for proving the positive gravity
energy theorem that became not only proof for correspondence of properti-
es for gravity and other physical fields, but opened a way for establishing of
conditions of stability or spontaneous compactification of Minkowski space in
multidimensional theories of Kaluza—Klein type. Discovery of Witten spinor
method for positive energy theorem (PET) proof increased significantly an
interest to study all aspects of spinor fields behavior in Riemannian spaces.

Schoen and Yau proof of Einstein hypothesis about positive energy of
asymptotically flat space solved one of longstanding problems in General Re-
lativity, nevertheless its complexity stimulated an appearance of alternative
methods of proving, and first of all the most prospective one from the physi-
cal point of view — Wittenian spinor method (with significant contributi-
on of Reula, Ashtekar, Horovitz, Nester). Despite the fact that Wittenian
proof after its refinement obtained a perfect mathematical form, the physi-
cal interpretation of proof is treated up to date ambiguously because of
decisive part of auxiliary spinor field in proof. According to common view
(Goldberg, Nester, Bartnik) this spinor field remains physically mysterious.
Establishing of correspondence between Witten spinor method and tensor
methods became a subject of many investigations. Taking into account that
local orthorepers may not exist on subsets of asymptotically flat manifolds, Di-
makis and Müller-Hoissen made final conclusion about impossibility of tensor
method of proving PET.

In Chapter 5 we ground the Nester tensor method for proving PET, taking
into account its criticism by Dimakis and Müller-Hoissen, and generalize it for
systems with radiation. Such grounding establishes the connection between
Witten spinor method and Nester tensor method.

The main ideas of realized approach are the following. Firstly, we take into
account that existence of nodal points of Sen—Witten equation is not a barrier
for existence of correspondence between the local orthoreper field and Witten
spinor field, because for Sommers transformation we can use such SWE soluti-
ons that do not have the nodal points. Secondly, we show that the reason for
existence of the nodal points comes from the properties of SWE and boundary
values first of all, but not topological properties of space. On this basis we
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develop the theory of nodal manifolds for physically meaningful elliptic systems
of equations, the most wide class among which consists of double-covariant
systems, and establish conditions for coefficients and boundary values, for
which the nodal points are absent. Absence of nodal sets of dimension n − 1
for generalized Dirac (and SWE) equation is the known fact, but for the case
of nodal sets of lower dimensions the consideration of the system of first order
equations gives the possibility to obtain the only conclusion that the nodal set
of solutions of generalized Dirac equation on an n-dimensional manifold has
the dimension at most n − 2 and does not ascertain when the nodal sets of
such or lower dimension are absent. That is why we consider the differential
consequence of SWE in form of the second-order equation and formulate the
conditions, under which zeros of solution are absent independently on dimensi-
on of nodal sets. It is clear that for nodal sets of dimension 2 these conditions
are not necessary, but they are not too rigid from the physical point of view.

After ensuring the absence of zeros of SWE we obtain the possibility to
use the Sommers transformation and prove the existence of correspondence
between Witten spinor field and some orthonormal frame, which on maximal
hypersurface coincides with Nester special orthonormal frame.

Nester method did not cover the systems with radiation. Generalizati-
on of tensor method on radiating systems, i.e. nonmaximal hypersurfaces, is
presented in Chapter 5, where we prove the existence of tensor interpretation
of Wittenian spinor field also on nonmaximal hypersurfaces.

Equivalence principle excludes the possibility of existence of the gravitati-
onal energy density, but one can describe the distribution of energy as integrals
over finite regions, as it was proposed by Penrose and known as quasilocalizati-
on. As it was mentioned above, /in theory of quazilocal values there appears
a problem of comparison of different Hamiltonian three-forms, in particular,
Hamiltonian density with spinor variables and Arnowitt—Deser—Misner densi-
ty, parametrized by special Nester orthonormal frame. We establish existence
and correspondence between these forms.

One of necessary conditions for possibility of existence of tensor interpreta-
tion of Wittenian spinor field and for existence of correspondence between
Hamiltonian density with spinor variables and Arnowitt—Deser—Misner densi-
ty in SOF is fulfilling of dominant energy condition. Existence of dark energy,
which violates the dominant energy condition, puts the question about possi-
ble change of status for Wittenian spinor field in its presence. We show that
at violation of DEC the correspondence between Witten spinor field and SOF
continues to exist, i.e. Witten spinor field keeps its geometrical (gauge) nature.
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We consider n scalar fields minimally coupled to gravity in
four dimensions. The effective action of this model reads as
(see, e.g., (3.15))

S =
1

16πGN

∫
d4x
√
|g̃(0)|

(
R
[
g̃(0)
]
−

− Gij g̃
(0)µν∂µϕ

i∂νϕ
j − 2U(ϕ1, ϕ2, ...)

)
, (A.1)

where the kinetic term is usually taken in the canoni-
cal form Gij = diag(1, 1, ...) (flat σ model). We use the
usual conventions c = ~ = 1, i.e. LPl = tPl = 1/MPl(4) and
8πGN = 8π/M2

Pl(4). Here, scalar fields are dimensionless
and potential U has dimension [U ] = length−2.

Because we want to investigate the dynamical behavior
of our Universe in the presence of scalar fields, we suppose
that scalar fields are homogeneous: ϕi = ϕi(t) and four-
dimensional metric is spatially flat Friedmann—Robertson—
Walker one: g̃(0) = −dt⊗ dt+ a2(t)d~x⊗ d~x.

For the energy density and pressure we easily get (see
also Eqs. (2.5) and (2.6)):

ρ =
1

8πGN

(
1

2
Gijϕ̇

iϕ̇j + U

)
,

P =
1

8πGN

(
1

2
Gijϕ̇

iϕ̇j − U
) =⇒ (A.2)
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=⇒
1

2
Gijϕ̇

iϕ̇j = 4πGN (ρ+ P ),

U = 4πGN (ρ− P ),
(A.3)

where overdots denote the derivatives with respect to the synchronous time
t. In chapter 1, overdots denote the derivatives with respect to the conformal
time η.

The Friedmann equations for considered model are

3

(
ȧ

a

)2

≡ 3H2 = 8πGNρ =
1

2
Gijϕ̇

iϕ̇j + U, (A.4)

and
Ḣ = −4πGN (ρ+ P ) = −1

2
Gijϕ̇

iϕ̇j . (A.5)

From these two equations, we obtain the following expression for the accelerati-
on parameter:

qa ≡
ä

H2a
= 1− 4πGN

H2
(ρ+ P ) = −8πGN

6H2
(ρ+ 3P ) =

=
1

6H2

(
−4× 1

2
Gijϕ̇

iϕ̇j + 2U

)
. (A.6)

It can be easily seen that the equation of state (EoS) parameter ω = P/ρ and
parameter qa are linearly connected:

qa = −1

2
(1 + 3ω). (A.7)

From the definition of the acceleration parameter, it follows that qa is
constant in the case of the power-law and De Sitter-like behavior:

qa =

{
(s− 1)/s; a ∝ ts,
1; a ∝ eHt.

(A.8)

For example, qa = −0.5 during the matter dominated (MD) stage where
s = 2/3.

Because the minisuperspace metric Gij is flat, the scalar field equa-
tions are:

ϕ̈i + 3Hϕ̇i +Gij
∂U

∂ϕj
= 0. (A.9)

For the action (A.1), the corresponding Hamiltonian is

H =
8πGN

2a3
GijPiPj +

a3

8πGN
U, (A.10)
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where
Pi =

a3

8πGN
Gijϕ̇

j (A.11)

are the canonical momenta and equations of motion have also the canonical
form

ϕ̇i =
∂H
∂Pi

, Ṗi = − ∂H
∂ϕi

. (A.12)

It can be easily seen that the latter equation (for Ṗi) is equivalent to the
Eq. (A.9).

Thus, the Friedmann equations together with the scalar field equations
can be replaced by the system of the first order ODEs:

ϕ̇i =
8πGN
a3

GijPj , (A.13)

Ṗi = − a3

8πGN

∂U

∂ϕi
, (A.14)

ȧ = aH, (A.15)

Ḣ =
ä

a
−H2 =

1

6

(
−4× 1

2
Gijϕ̇

iϕ̇j + 2U

)
−H2 (A.16)

with Eq. (A.4) considered in the form of the initial conditions:

H(t = 0) =

√
1

3

(
1

2
Gijϕ̇iϕ̇j + U

)∣∣∣∣∣
t=0

. (A.17)

We can make these equations dimensionless:

dϕi

MPl(4)dt
=

8π

MPl(4)qba3
GijPj ⇒

dϕi

dt
=

8π

a3
GijPj , (A.18)

dPi
MPl(4)dt

= −
a3MPl(4)qb

8π

∂(U/MPl(4)sq)

∂ϕi
⇒ dPi

dt
= − a

3

8π

∂U

∂ϕi
. (A.19)

That is to say the time t is measured in the Planck times tPl, the scale factor
a is measured in the Planck lengths LPl and the potential U is measured in
the M2

Pl(4) units.
This system of dimensionless first order ODEs together with the initial

condition (A.17) can be used for numerical calculation of the dynamics of
considered models with the help of a Mathematica package applied to these
equations in [482].
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APPENDIX B

MATHEMATICAL DETAILS
OF THE BRANEWORLD MODEL

B.1. Variational problem
in the presence of the brane

Here, we derive the expression for the first variation of the
action for gravity

Sg =

∫
B

R− 2

∫
Σ

K, (B.1)

the notation of which is the same as in (4.7). Equations
of this appendix are valid for arbitrary dimension of space-
time. In this derivation, we do not assume that the variation
of gab vanishes at the boundary Σ, which is taken to be
time-like.

We start from the standard expression (see, e.g.,
Appendix E of [508])

δ

(∫
B
R
)

=

∫
B

Gab δgab +

∫
B

∇ava, (B.2)

where
va = ∇b (δgab)− gcd∇a (δgcd). (B.3)

The second integral in (B.2) can be transformed with the
use of the Stokes theorem as∫

B

∇ava = −
∫
Σ

van
a, (B.4)

where we remember that we are using the inner unit normal
na to Σ, and

van
a = nagbc [∇c (δgab)−∇a (δgbc)] =

= nahbc [∇c (δgab)−∇a (δgbc)]. (B.5)

Then we have

δK = δ
(
hab∇anb

)
= δhab∇anb+hab(δC)bacn

c+hab∇aδnb,
(B.6)
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where
(δC)bac =

1

2
gbd [∇a (δgcd) +∇c (δgad)−∇d (δgac)]. (B.7)

The first term on the right-hand side of (B.6) is identically zero. Indeed, we
have δna = − nanbδnb, so that

δhab∇anb = − (δnanb + naδnb)∇anb = − (δna − nancδnc)nb∇anb =

= −δnchacnb∇anb = −δncnbKc
b = 0. (B.8)

Thus, variation of the second term of (B.1) is

δ

2

∫
Σ

K

 =

∫
Σ

[
nchab∇c (δgab) + 2hab∇aδnb −Khabδhab

]
, (B.9)

where the last term in the square brackets stems from the variation of the
volume element

√
−h d4x in the integral over Σ.

The total boundary term in the variation of action (B.1) is given by the
sum of (B.4) and (B.9) with the result

(Boundary term) = −
∫
Σ

[
nahbc∇c (δgab) + 2hab∇aδnb −Khabδhab

]
. (B.10)

We transform the first term in the integrand of the last expression:

nahbc∇c (δgab) = hbc∇c (naδgab)− hbc∇cnaδgab =

= hbc∇c (naδgab) +Kabδh
ab. (B.11)

Then
(Boundary term) = −

∫
Σ

[
hbc∇c (naδgab) + 2hab∇aδnb

]
−

−
∫
Σ

(Kab −Khab) δhab. (B.12)

Now we show that the integrand of the first integral in (B.12) is a di-
vergence, so that this integral vanishes for variations of gab with compact
support in Σ. Indeed,

hbc∇c (naδgab) + 2hab∇aδnb = hbc∇c (δnb − gabδna) + 2hab∇aδnb =

= hab∇a
(
gbcδnc + δnb

)
= hab∇a

(
hbcδn

c
)

= Db

(
hbcδn

c
)
, (B.13)
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where Da is the (unique) derivative on Σ associated with the induced metric
hab, and the last equality in (B.13) is valid by virtue of Lemma 10.2.1 of [508].

As a final result, we obtain

δSg =

∫
B

Gab δg
ab −

∫
Σ

(Kab −Khab) δhab. (B.14)

B.2. Graphical representation
of the brane evolution

The variables {X,Y }:

X ≡ ρtot

3m2
−H2, Y ≡ H2, ρtot = ρ+ σ, (B.15)

allow us to rewrite equation (4.177) in the form

X = −
∑
i=1,2

ζi
`i

√
Y + λ−2

i , (B.16)

which has a convenient visual interpretation. Equation (B.16) describes four
branches in the physically restricted range Y ≥ 0, with the symmetry of
reflection with respect to the Y axis. If there exists a positive root Yc of the
right-hand side of (B.16) for ζ1ζ2 = −1, then the two mixed branches intersect
each other at the point

Yc = H2
c =

`21λ
−2
2 − `22λ

−2
1

`22 − `21
. (B.17)

The condition for the existence of this intersection point is that the constant
on the right-hand side of (B.17) be positive.

The four branches (with and without intersection) are shown in Figs. B.1
and B.2, respectively.

Fig. B.1. Four branches described by Eq. (B.16) in the (X,Y ) plane and in the (ρtot, H
2)

plane in the case where two of them intersect. The horizontal dotted line indicates the
position of the H2 = 0 axis in the case Λ1Λ2 = 0. The region below this axis is nonphysical
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Fig. B.2. Four branches described by Eq. (B.16) in the (X,Y ) plane and in the (ρtot, H
2)

plane in the case of absence of intersection. The horizontal dotted line indicates the position
of the H2 = 0 axis in the case Λ1Λ2 = 0. The region below this axis is nonphysical

The brane evolves along one of the four branches towards decreasing values
of ρtot (during expansion). Depending (in particular) on the value of the brane
tension σ, three distinct possibilities can arise:

(i) The trajectory may reach the value of H = 0, after which the universe
recollapses and evolves along the same branch in the opposite direction. This
happens when the value of ρtot at this point is greater than its minimum
value σ.

(ii) The trajectory may asymptotically tend to either De Sitter space or the
Minkowski universe with the minimum value ρtot = σ. The second possibility
occurs when the minimum value of ρtot = σ is exactly the point where the
corresponding graph crosses the axis H2 = 0, which, therefore, requires some
amount of fine tuning. This possibility can be realized as transient acceleration.

(iii) The trajectory may end in a quiescent singularity at a finite value
of H. This happens when the critical minimum point of ρtot on the evolution
curve is reached, and if this value of ρtot is greater than its minimum value σ.
The reasons for the existence of quiescent singularities can be seen from the
right panels in Figs. B.1 and B.2. They occur at the points of infinite derivative
dH2/dρtot.

B.3. Background
cosmological solution in the bulk

For the background bulk metric (4.12) the following relations
are satisfied:

Rabcd = Rabcd,

Raibj = −γij r∇a∇b r,

Rijkl = r2
[
κ− (∇ar)2

]
(γikγjl − γilγjk),

(B.18)
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where the curvature tensor Rabcd and covariant derivative ∇a correspond to
the two-dimensional metric tensor γab, defined by

ds2
(2) = γabdx

adxb = −f(r)dτ2 +
dr2

f(r)
. (B.19)

For the case under consideration in this book, f(r) = κ − Λbr
2/6, the

following expressions can be verified:

Rabcd =
Λb

6
(γacγbd − γadγbc),

∇a∇b r = −Λbr

6
γab, (∇ar)2 = κ− Λb

6
r2.

(B.20)

B.4. Scalar perturbation of the bulk metric

In the gauge hL = 0 and ha = 0, the general expression for
the perturbed bulk metric (4.263), (4.264) can be written in the form

ds2
bulk =

[
γab +

∑
k

habY

]
dxadxb +

[
r2 +

∑
k

hY Y

]
γijdx

idxj , (B.21)

where r, hab and hY depend on xa, while Y depends on xi.
The perturbation of the five-dimensional Riemann curvature tensor

RABCD for the metric perturbation (B.21) is found to be

δRabcd =
∑
k

(
he[bRa]ecd +∇c∇[bha]d −∇d∇[bha]c

)
Y,

δRiabc =
∑
k

(
∇[chb]a −

1

r
ha[b∇c]r

)
∇iY,

δRabij = 0,

δRaibj = − 1

2

∑
k

hab∇i∇jY +

+
1

2
γij
∑
k

[r(∇er) (∇aheb +∇bhea −∇ehab) −

− ∇a∇br
r

hY − r∇a∇b
(
hY
r

)]
Y,

δRaijk =
∑
k

[
r2∇a

(
hY
r2

)
− r(∇br)hab

]
γi[j∇k]Y,

δRijkl =
∑
k

hY
(
γi[l∇k]∇jY − γj[l∇k]∇iY

)
+

+ 2γi[kγl]j
∑
k

[
r2(∇ar)(∇br)hab + κhY − r(∇ar)(∇ahY )

]
Y,

(B.22)

where Rabcd is the background curvature tensor, defined in (B.20).
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502. Hořava P. and Witten E., Heterotic and Type I string dynamics from eleven
dimensions, Nucl. Phys. B 460, 506 (1996).
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