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Abstract

The machine learning methods both supervised/unsupervised and reinforcement
have invaded and conquered many scientific fields. During the last decade, novel al-
gorithms and codes were developed and intended since huge observational sky sur-
veys and databases have been conducted. Machine Learning methods are widely used
to study the cosmological parameters and models, modified gravity theories, cosmic
microwave background radiation in Big Bang cosmology, the gravitational lensing ef-
fect, photometry and image-based morphological classification of galaxies in various
spectral range including gamma-ray and transient objects, large-scale structures of the
Universe (galaxies, galaxy clusters and superclusters, filaments and voids) with their
distance moduli at the cosmological scales, gravitational wave signals detection from
merging black hole star and other events. It allows us to obtain a more structured
picture of the evolutionary properties of these celestial bodies and the Universe as a
whole. Classification accuracy (success rate) of machine learning is varied depending
on the mathematical subtleties of the applied methods and the quality of astronomical
data samples. Improvement of these methods and their limitations/correctness help us
to interpret an astrophysical essence of results. In this context, we discuss the recent
trends of machine learning applications in cosmology and gravitational wave astron-
omy.
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1. Machine Leaning in Cosmology

Modern cosmology is a relatively young branch of astronomy that involves the origin and
evolution of the Universe from the Big Bang to the present time and on into the future.
Current challenges it faces are, in general, about:

- the Dark Matter and the Dark Energy nature;
- growth of structures from inflation;
- formation of galaxies and stars;
- astrophysical feedback;
- Hubble tension.
Basically, what cosmology wants to know are the answers to the following questions:
- How did the Universe begin?
- How was the structure formed in the very early Universe? What were the initial

conditions?
- How did all those structures grow? (This is a function of cosmic content, so the things

that make up the Universe are neutrinos, baryons, and dark matter - all the components of
the Universe.)

- How the Universe then evolved and the dynamics of the Universe (both in terms of
growth of structure, but also globally the background dynamics, because the expansion
geometry of the Universe is an essential clue to what is going to happen, what is dark
energy, why the Universe is accelerating its expansion today)?

In contrast to the situation of just over a decade, the lack of data is no longer the bottle-
neck for cosmological knowledge. There are numerous current and upcoming experiments
and missions dedicated to studying more about the Universe with significant datasets with
observational data as an output. Among them, which are related to the modern cosmology,
the most important and well-known are:

Planck (Planck Collaboration et al. (2020)) – is the third space mission (after COBE -
COsmic Background Explore (a NASA space mission) and WMAP - Wilkinson Microwave
Anisotropy Probe (a NASA Explorer mission)), which mapped the anisotropy of the cosmic
microwave background (CMB) at microwave and infrared frequencies, with high sensitivity
and small angular resolution. The space observatory was launched and operated by the
European Space Agency (ESA) in 2009-2013.

Euclid (Euclid Collaboration et al. (2022)) – is a visible to near-infrared space tele-
scope developed by the ESA and the Euclid Consortium. The Euclid mission is a Medium
class astronomy and astrophysics space mission that aims at understanding the nature of the
late Universe’s accelerated expansion, planned for launch in 2023. The imprints of the dark
energy and gravity will be tracked by using two complementary cosmological probes to
capture signatures of the expansion rate of the Universe and the growth of the cosmic struc-
tures: Weak gravitational Lensing and Galaxy Clustering (Baryonic Acoustic Oscillations,
BAO, and Redshift Space Distortion).

Square Kilometre Array, SKA (de Lera Acedo et al. (2020)) – is the world’s largest
telescope co-located primarily in Western Australia and South Africa. SKA will be a collec-
tion of hundreds of thousands of radio antennas with a combined collecting area equivalent
to approximately one million square meters.
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Figure 1. Albert Einstein. Computer Art Painting.
Credit: Ihor T. Zhuk (Institute for Space Research of the NAS of Ukraine)
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Dark Energy Spectroscopic Instrument, DESI (DESI Collaboration et al. (2016) and
Dey et al. (2019)) – is dedicated to obtaining optical spectra for tens of millions of galaxies
and quasars, constructing a 3D map spanning the nearby Universe to 11 billion light-years
to measure the effect of dark energy on the expansion of the Universe. The survey is being
conducted on the Mayall 4-m telescope at Kitt Peak National Observatory in the United
States.

Sloan Digital Sky Survey, SDSS I, II, III, IV, V (Blanton et al. (2017)) – is a multi-
spectral imagining and spectroscopic redshift sky survey performed by Apache Point Ob-
servatory (New Mexico, the United States) with a 2.5-m wide-angle optical telescope. It
provided the community with multi-color images of ∼ 1/3 of the sky and high-resolution
spectra of millions of Galactic and extra-galactic objects.

Canada France Hawaii Telescope Legacy Survey, CFHTLS (Everett et al. (2022))
– the scientific collaboration between Canada and France joined a large fraction of their
dark and grey telescope time from mid-2003 to early 2009 for a large project. The data
acquisition and calibration have been a major undertaking for the Canadian and French
communities: more than 2300 hours over 5 years (an equivalent of 450 nights) have been
devoted to the survey using the wide-field optical imaging camera MegaCam, a 1-degree by
1-degree field of view 340 Megapixel camera.

Cosmic Microwave Background-S4 (Chang et al. (2022)) – is the Stage-IV ground-
based CMB polarization experiment. It will allow measuring the CMB temperature fluctu-
ations with unprecedented precision, mapping the visible and dark matter seeds, and recov-
ering for signatures of primordial gravitational waves.

Large Synoptic Survey Telescope, LSST (Ivezić et al. (2019)) – is the Vera C. Rubin
astronomical Observatory currently under construction in Chile that features an 8.4-meter
telescope, a 3200-megapixel camera, an automated data processing system, and an online
public engagement platform. The Rubin Observatory will advance science in four main
areas: the nature of dark matter and understanding of dark energy, cataloging the Solar
System, exploring the “changing” sky, and Milky Way structure and formation (entire op-
erations for the ten-year survey commencing in October 2022).

Dark Energy Survey, DES (Müller and Schnider (2021) and S. J. Schmidt et al.
(2020)) – is an astronomical survey designed to constrain the properties of dark energy.
It uses images taken in the near-ultraviolet, visible, and near-infrared to measure the expan-
sion of the Universe using Type Ia supernovae, baryon acoustic oscillations, weak gravita-
tional lensing, the galaxy clusters and other elements of the large-scale structure (LSS) of
the Universe. The collaboration comprises research institutions and universities from the
United States, Australia, Brazil, the United Kingdom, Germany, Spain, and Switzerland.

Nancy Grace Roman Space Telescope (previously known as - the Wide Field In-
frared Survey Telescope, WFIRST) (Spergel et al. (2013)) – is an infrared space telescope
currently in development by NASA and scheduled to launch in 2027. In its present incar-
nation, a significant fraction of the Joint Dark Energy Mission (JDEM) between NASA and
the Department of Energy (DOE) will be focused on probing the expansion history of the
Universe and the growth of cosmic structure with multiple methods in overlapping redshift
ranges with the goal of precisely measuring the effects of dark energy, the consistency of
general relativity, and the curvature of space-time.
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Figure 2. Network and graph of 780 publications related to “cosmology” and “machine
learning” search words over last 15 years, which are indexed in the SAO/NASA Astronom-
ical Data System

The cosmological observables we can use the information about are such as LSS sur-
veys, precise redshifts of galaxies and galaxy clusters in a wide cosmological scale, 21-cm
absorption and brightness mapping, weak lensing, quasars, Lyman-α Forest, CMB spectral
distortions, neutrino background, primordial gravitational waves, etc.

What we know about the cosmological parameters soon will be no longer limited by the
amount of data but by our ability to analyze it, use it, and interpret it. In such an arrange-
ment, the machine learning (ML) methods provide us with new perspectives in modern
science (e.g., Carleo et al. (2019), Fluke and Jacobs (2020), and I. Vavilova, Dobrycheva,
et al. (2020)). The most important feature of ML techniques in general and in cosmology in
particular, is the inference directly from data, without summary statistics required by “for-
mer” cosmological approaches. The rapid growth of relevant publications during the last
15 years is clearly demonstrated in Fig. 2.

There are three main types of machine learning being categorized: supervised, unsu-
pervised, and reinforcement learning.

Unsupervised machine learning describes algorithms that are used to learn complex re-
lationships that exist in the dataset, with no labels or tags set up manually. Unsupervised
learning can be used to describe the extraction of features and parameters or characteristics
and for such tasks as clustering, dimensionality reduction, and anomaly detection, which are
potentially important since they can extract new knowledge and cause insights and discov-
eries. This type of machine learning has been used within spectroscopy for dimensionality
reduction (e.g., Kaderali et al. (2019)), outlier and novel source detection (e.g., Giles and
Walkowicz (2019)), and other purposes (e.g., Kügler and Gianniotis (2016) and Vadai et al.
(2017)).

Supervised machine learning algorithms typically seek to classify or label/flag some
data using regression tasks. In other words, supervised machine learning algorithms are
used to learn a mapping from a set of features to a target variable, based on example input-
output pairs provided manually. While classification organizes data into different groups,
regression tasks label data with continuous quantities. Random forest and neural networks
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are among the most popular and widely used algorithms for these tasks. Neutral networks
have an expansive hierarchy of varieties (e.g., convolutional, recurrent, generative adversar-
ial networks). Similarly, random forest and other tree-based methods allow several possible
algorithmic choices.

Implementing a supervised machine learning model typically involves training, valida-
tion, and testing sets of data to train, optimize, and test the performance of a model for a
given task. Overall, understanding and labeling new data is the main goal for such model
development. While training, the relationship between the data and the labels that describe
the data is captured by the model. A validation set is used to optimize the parameters of the
model (the so-called hyperparameters). The test set of data is unseen data labeled utilizing
the model. Test sets are typically used to assess the performance of the model. Numerous
metrics can be used to quantify the performance of a supervised machine learning model,
including the metrics specific to classification (e.g., accuracy and precision) and regres-
sion (e.g., R-square and bias). The choice of evaluation metrics is often particular to the
particular uses and goals of the model.

Reinforcement learning is a field of machine learning related to how intelligent agents
should act in the environment to maximize the notion of cumulative reward. Unlike super-
vised learning, reinforcement learning does not require the presence of labeled input/output
pairs and does not require explicit correction for suboptimal actions. In the absence of a
training dataset, it is bound to learn from its experience, in other words, by seeking a balance
between exploration of the unknown and exploitation of current knowledge. The combina-
tion of the advantages of supervised and reinforcement learning algorithms is defined as
partially supervised reinforcement learning algorithms.

The environment is usually specified in a Markov Decision Process (MDP) because
many reinforcement learning algorithms for this context use dynamic programming tech-
niques. The main difference between classical active programming methods and reinforce-
ment learning is that the latter does not require knowledge of the exact MDP mathematical
model and is aimed at large MDPs, where precise methods become impossible.

The main problems of ML learning at the stage of data processing can be divided into
two categories. The first one is related to dataset preparation, which includes: determining
the parameters that are the best for dividing objects into classes, selecting a homogeneous
dataset for classification parameters, creating a sub-directory for training algorithms, clean-
ing the sub-list of ”undesired” (misclassified) objects, determining the best ML methods
for the task, and selecting the best ML features to build training sample. The second cate-
gory includes problems related to the individual peculiarities of selected objects and to the
quality of their explored data.

The classic methods in cosmology are primarily about summary statistic processing,
while the analytical models are complicated to use and provide only qualitative understand-
ing due to the limited model complexity. With all the diversity of cosmological and astro-
physical surveys to process and the number of data available, the question of looking for
more advanced technologies seems reasonable and rightful while the goal is to extract the
maximum information from the data sets and scale up our abilities. Thus, the ML tech-
niques, while most of them learn (e.g. Convolutional Neural Networks (CNN)) from the
“raw data”, with no need to be fed with any summaries, are considered a powerful tool to
help us solve cosmological problems that are intractable nowadays.
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Many traditional applications of machine learning elements can be implemented in cos-
mology: classification, regression, clustering analyses, outlier detection, data mining, data
compression, also data and model emulation. While still facing a lot of uncertainties and
concerns (cosmology, as every science, cares about detailed uncertainty quantification, re-
liability/trust, and understanding of the models and approaches), there are substantial suc-
cesses of machine learning applications in cosmology that have been archived recently.
They illustrate the potential for sophisticated machine learning data-analysis tools to make
significant strides in cosmology (see, computer art painting in Fig. 3).

The list of the most important achievements includes the results about the gravita-
tional lensing (Barnacka (2018), Bonnett (2015), Jacobs et al. (2019), and Khramtsov et al.
(2019), CMB (Ciuca and Hernández (2017), Douspis et al. (2022), Hortúa et al. (2020), and
A. Mishra et al. (2019)), cosmological parameters and models (Angulo and Hahn (2022),
Ansari et al. (2019), Burgazli et al. (2015), Doux et al. (2021), Sergijenko and Novosyadlyj
(2009), Tsizh et al. (2020), Villaescusa-Navarro et al. (2022), Wandelt (2008), and Zaninetti
(2019)), photometry and image-based morphological classification of galaxies in various
spectral range (Aniyan and Thorat (2017), Barchi et al. (2020), Manning et al. (2020),
I. B. Vavilova et al. (2021), Vega-Ferrero et al. (2021), and Walmsley et al. (2022)) includ-
ing gamma-ray and transient objects (Bellm et al. (2019), Kang et al. (2019), Krause et al.
(2017), Mahabal et al. (2019), A. L. Miller et al. (2019), Mukund et al. (2017), Ruhe (2020),
and Schlickeiser et al. (2012)), large-scale structures such as galaxies, galaxy clusters and
superclusters, filaments and voids (He et al. (2019), Kremer et al. (2017), Matthews (2014),
Saulder et al. (2016), Sergijenko et al. (2009), Sorce et al. (2017), and Tully et al. (2019)),
galaxy distance moduli and the Zone of Avoidance of our Galaxy (Brescia et al. (2021),
A. A. Elyiv et al. (2020), Huertas-Company et al. (2018), Jones et al. (2019), Lee and Shin
(2022), Salvato et al. (2019), Schawinski et al. (2017), I. B. Vavilova et al. (2018), and I.
Vavilova, Dobrycheva, et al. (2020)), the investigation of the epoch of reionization (Billings
et al. (2021)), topological data analysis (Fussell and Moews (2019), Pranav (2022), and
Wilding et al. (2021)), ML supernova classification (Kessler and Scolnic (2017), Kodi Ra-
manah et al. (2022), and Lochner et al. (2016)), gravitational wave astronomy (see, Section
2), and significant success on cosmological simulations both N-body and hydrodynamical
ones (e.g. Angulo and Hahn (2022), Doux et al. (2021), Lazanu (2021), Ntampaka and
Vikhlinin (2022), and Villaescusa-Navarro et al. (2021)).

Modern cosmology has relied on computer simulations for more than a decade, which
is an effective tool to predict the structure formation of the Universe. Two different types
of cosmological simulations are based on the N-body simulations approach and hydrody-
namics. Both approaches have their own advantages and limitations. For example, while
the N-body simulations consider the influence of gravity only, the hydrodynamics simula-
tions are more computationally expensive but can enrich the data also with fluid dynamics
and astrophysics. Hydrodynamics simulations are valid on all resolved scales and can shed
light on such a problem as galaxy formation, while the N-body simulations are valid in the
regime not affected by baryons, and are used to investigate the structure formation and halo
formation.

The well-known problems with the N-body simulations (such as Uchuu, Bacco, Qui-
jote, Flagship, Aemulus, and many more) are storage needs, high resolution, and parameter
space/total volume. Machine learning has been shown to develop some kind of emulators
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(such as CosmoPower, DarkEmulator, etc.) of summary statistics to estimate the power
spectrum. The future challenges in using ML for N-body simulations are about covering
the development of the field-level emulators (based, for example, on such parameters as gas
temperature and gas metallicity).

Among the most used hydrodynamical simulations, are the ones such as Illustris and
IllustrisTNG, Magneticum, SIMBA, Romulus25, EAGLE, Massiveblack-II, Horizon-AGN,
and more. The problem the science faces here is the small volume, storage needs, and high
resolution (even more significant than for N-body simulations), and that’s expensive to
cover parameter space / with no control of uncertainties. The small volume problem can
be solved within a baryonification approach while using N-body to reproduce the power
spectrum for hydrodynamics. This approach does not require any ML implementation.
Still, an impressive application of machine learning and/or deep learning techniques is about
creating a bridge to convert N-body simulations into hydrodynamical ones. Basically, the
idea is about running standard N-body simulations and “painting” gas and other components
(such as halo, galaxies, etc.) to reproduce the hydrodynamics. The halo-galaxy connection
was one of the first applications of reinforcement learning in astrophysics and cosmology.
It is based on the idea of running the N-body simulations, finding dark matter halos, taking
galaxies from the actual data, and using reinforcement learning to train how to paint galaxies
on top of the dark matter halos. For example, the dark matter halos formation problem has
been recently studied within ML application by Lucie-Smith et al. (2020) while trying to
bring insights into dark matter halo collapse from machine learning and CNN. The approach
for this investigation is about training the machine learning algorithms to learn the mapping
between the initial condition and dark matter halos from N-body simulations, and the aim
was to gain new physical insights into dark matter halo formation.

It is worth mentioning the advantages and disadvantages of Convolutional Neural Net-
works here. The critical advantage of this technique is about no featurization approach -
CNNs learn directly from initial conditions, so they use the “raw data”. Also, CNNs iden-
tify which initial conditions features are relevant for halo mass. The main problem of deep
learning applications is that DL algorithms are always some kind of “black-box” algorithm.
Also, there is an essential question: how do we extract physical knowledge from a deep
learning algorithm?

In general, extracting the maximum amount of information from current and upcoming
experiments is crucial to constrain the value of the cosmological parameters with the highest
accuracy. Still, there are some problems related to this task.

Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) are
among the most potent ML application projects (Villaescusa-Navarro et al. (2022)) designed
for machine learning applications in cosmology that help resolve some of those issues. The
project is a suite of more than 4,000 N-body and hydrodynamic simulations run with three
different codes (GADGET III for N-body simulation, AREPO (IllistrisTNG), and GIZMO
(SIMBA) for hydrodynamic simulations), that contains more than 140 000 snapshots, more
than 200 Tb of data (with approximately 10 millions CPU hours), and more than 100 billion
particles over (400Mpc/h)3. The main scientific goals of the CAMELS project are:

- Provide theory predictions for statistics, or fields, as a function of cosmology and
astrophysics.

- Extract cosmological information while marginalizing over baryonic effects.
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- Find the mapping between N-body and hydrodynamical simulations.
- Quantify the dependence of galaxy formation and evolution on astrophysics and cos-

mology.
- Use machine learning to efficiently calibrate subgrid parameters in cosmological hy-

drodynamic simulations to match a set of observations.
One of the problems with the survey processing is that the optimal summary statistic

is unknown. CAMELS approach is about training neural networks to search through all
possible summary statistics and extract the maximal amount of cosmological information
at the field level.

Lots of information on small scales is affected by baryonic processes, which are poorly
understood, and the CAMELS project offers training the NNs to marginalize over uncer-
tainties in baryonic effects and extract cosmological information down to the smaller scales.
To capture the baryonic effects for arbitrary observables on large cosmological volumes
more efficiently than within the standard approach, CAMELS is about developing the ML
techniques to find the mapping between N-body simulations and hydrodynamic simulations
with full baryonic physics as a function of model implementation and feedback parameters.
Besides N-body simulations (based on GADGET III simulations), CAMELS covers also
cosmological hydrodynamical simulations. Based on two codes - IllustrisTNG and SIMBA,
that both are plausible models (reproducing galaxy observables), CAMELS is about cov-
ering thousands of simulation runs with different galaxy formation implementations and
model parameter variation, to cover the range of plausible baryonic effects in the real Uni-
verse.

Based on the CAMELS application, the following summary of ML usage in cosmolog-
ical simulation can be made - neural networks can extract information and marginalize over
baryonic effects at the field level. Neural network also can infer the value Ωm and σ8 with
a few percent accuracies from (25h( − 1)Mpc)2 2D maps for most of the fields from cos-
mological hydrodynamical simulations. Also, the combination of the fields can constrain
Ωm better than maps from dark matter-only simulations. Besides that, estimators are not
robust for some fields, but they are for the total matter. And at least 10% accuracy can also
be obtained from the combination of galaxy clustering statistics.

Machine learning is performed to reduce scatter in cluster mass estimates compared to
more traditional methods while studying galaxy clusters, that are sensitive to the underlying
cosmological model, where the low-scatter cluster mass proxies are one essential ingredient
in using these objects to constrain parameters (Ho et al. (2019) and Ntampaka and Vikhlinin
(2022)).

Weak gravitational lensing is a powerful probe of the large-scale cosmic matter distribu-
tion. The weak lensing maps can shed light on the fundamental nature of gravity and cosmic
acceleration. Apart from the already mentioned works, we note work by Peel et al. (2019),
where ML was applied with such maps to discriminate between standard and modified
gravity models that generate statistically similar observations. Also, the non-Gaussianities
in weak lensing maps can encode cosmological information, but it is hard to measure or
parameterize. ML has been shown to tighten parameter constraints by a factor of five or
more by harnessing these non-Gaussianities (Gupta et al. (2018) and Ribli et al. (2019)).

The strong gravitational lensing probes cosmic structure along the lines of sight, where
the strong lensing is a source of uncertainty. ML was the most effective method for correctly
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Figure 3. Curvature of space-time of the Universe. Computer Art Painting.
Credit: Ihor T. Zhuk (Institute for Space Research of the NAS of Ukraine)
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identifying strong lensing arcs in a recent data challenge, outperforming humans at this
classification task (Lanusse et al. (2018)). ML analyzes strong lensing systems 10 million
times faster than the state-of-the-art method (see, for example, Hezaveh et al. (2017) and
Perreault Levasseur et al. (2017)).

Next-generation cosmic microwave background (CMB) experiments will have lower
noise and therefore increased sensitivity, enabling improved constraints on fundamental
physics parameters such as the sum of neutrino masses and the tensor-to-scalar ratio r.
Achieving optimal conditions on these parameters requires high signal-to-noise extraction
of the projected gravitational potential from the CMB maps. The application of CNNs here
provides a few innovations - the machine learning techniques have been used to provide
competitive methods for this extraction and are expected to excel in capturing hard-to-
model non-Gaussian foreground and noise contributions (Caldeira et al. (2019)). While
the accurate estimation of cosmological parameters of the Universe is traditionally done
with large-scale matter distribution usage, by calculating summary statistics of the observed
structure traced by galaxies and then compared to the analytical theory, the ML application
can help distribute them directly from the distribution of matter - from the large-scale struc-
ture field and find more stringent constraints on the cosmological parameters, that opens the
way to estimate the parameters of the Universe with higher accuracy (Ravanbakhsh et al.
(2016)).

The information on the earliest luminous sources can be taken from the observations of
the Epoch of Reionization. Within CNN, it’s possible to classify the types of sources driving
reionization (Hassan et al. (2018)) and measure the duration of reionization to within 10%,
given a semi-analytic model and a strong prior on the midpoint of reionization. These
results have exciting impacts on estimating τ , the optical depth to the CMB, which can help
constrain other cosmological parameters (La Plante and Ntampaka (2019)).

Topological Data Analysis (TDA) comprises a set of ML techniques and statistical
methods, whose ability to extract robust geometric information has to led novel insights
in the analysis of complex data. TDA has been useful for discriminating dark energy mod-
els on simulated data (van de Weygaert et al. (2013)), isolating structures of the cosmic
web (A. Elyiv et al. (2009), Libeskind et al. (2018), Sousbie et al. (2011), and I. Vavilova
et al. (2021)), and defining new types of structures in the cosmic web such as filament loops
(Xu et al. (2019)). TDA may also help constrain the sum of neutrino masses (Asselmeyer-
Maluga and Król (2019)).

At the end of the 20th century, extragalactic distance measurements based on type Ia
supernovae (SNe Ia) provided the first evidence that our Universe is currently undergoing
an accelerated expansion. A result was subsequently confirmed by a series of independent
probes, each contributing with different pieces of what is known as the standard model of
cosmology.

Nevertheless, two decades into the 21st century, a fundamental theory concerning the
physics of dark energy – the energy component causing cosmic acceleration – is still miss-
ing. In a remarkable community effort, astronomers have devoted a significant fraction
of their resources to imposing more restrictive constraints over cosmological parameters
– in the hope that they might shed some light on the properties of dark energy. In this
new scenario, SNe Ia continues to play a central role as cosmological standardizable can-
dles – and consequently, feature among the main targets of modern large-scale sky surveys.
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Supernova classification is a critical step in obtaining cosmological constraints from type
Ia supernovae in photometric surveys such as LSST. ML has proven to be a powerful tool
(Lochner et al. (2016)) and has been successfully applied to the current largest public super-
nova dataset (Narayan et al. (2018)). The public has become heavily involved in developing
new classification techniques (Malz et al. (2019) and The PLAsTiCC team et al. (2018)).

Machine learning can be used for tasks that are about high-dimension interpolation
or lower storage needs operating with big astroinformatics data resource (Feigelson et al.
(2021) and I. Vavilova, Pakuliak, et al. (2020)), where we would like to speed up sim-
ulations, find anomalies, generate new synthetic data, or, thus, learn more with modern
computing about dark energy, distribution and properties of dark and baryonic matter, the
consistency of General Theory of Relativity, and complex physics of the Universe as a
whole (e.g. Alexandrov et al. (2015), Amendola and Tsujikawa (2015), Andersson (2019),
M. C. Miller and Yunes (2021), Mo et al. (2010), Novosyadlyj et al. (2014), S. Schmidt
et al. (2021), and I. B. Vavilova et al. (2015)).

2. Machine Leaning in the Gravitational Wave Astronomy

The ML applications to gravitational wave (GW) science have grown explosively over the
past few years (Fig. 4). Describing briefly some significant results in this review, we do
not touch the glitch classification and noise mitigation as well as speed-up of the waveform
generation and search for continuous GWs.

Real-time detection and parameter estimation are among the most important applica-
tions of ML techniques to GW data analysis. They are critical for prompt follow-up of the
electromagnetic (EM) and astroparticle counterparts to binary neutron-star and black-hole
neutron-star mergers. One of the key challenges is the computational cost of conventional
approaches: matched-filtering and Bayesian inference.

Deep Filtering, a highly scalable method for end-to-end time-series signal processing
based on a system of two deep CNNs, has been proposed by George and Huerta (2018b) for
classification and regression to rapidly detect and estimate parameters of signals in highly
noisy time-series data streams. They demonstrated a novel training scheme with gradu-
ally increasing noise levels a transfer learning procedure between the two networks. Deep
Filtering significantly outperforms conventional ML techniques and achieves similar per-
formance as the matched-filtering while being several orders of magnitude faster extending
the range of gravitational wave signals detectable with the ground-based GW detectors. In
the other work (George and Huerta (2018a)), the Deep Filtering has been exploited with the
real data from LIGO. The ability of ML to detect and estimate the true parameters of real
binary black hole (BBH) mergers observed by LIGO has been demonstrated for the first
time.

Krastev (2020) used deep learning to rapidly identify transient GW signals from binary
neutron star (BNS) mergers in noisy time series representative of typical GW detector data.
It has been shown that the deep CNN trained on 100,000 data samples can promptly iden-
tify BNS GW signals and distinguish them from noise and signals from merging BBHs.
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The possibility of EM and astroparticle counterparts based on the presence of an NS com-
ponent and remnant matter post-merger in real time was reported by D. Chatterjee et al.
(2020) with supervised ML. Also, a real-time GW detection of spinning BBH mergers
deep learning ensembles has been studied by Wei et al. (2021). Their analysis consisted of
training independent neural networks that simultaneously process strain data from multi-
ple detectors, with the output combined and processed to identify significant noise triggers.
The deep learning ensemble has been trained with millions of modeled waveforms that de-
scribe quasi-circular, spinning, non-precessing, and binary black hole mergers. The method
has been applied to O2 and O3 open-source data available at the Gravitational-Wave Open
Science Center. The performance has been benchmarked by processing 200 hours of open-
source advanced LIGO noise from August 2017 to find that the approach identifies real GW
sources in advanced LIGO data with a false positive rate of 1 misclassification for every 2.7
days of searched data (a follow-up of these misclassifications identified them as glitches).

Krastev et al. (2021) have demonstrated, for the first time, that artificial neural networks
(ANNs) can promptly detect and characterize BNS GW signals in real LIGO data and dis-
tinguish them from noise and signals from coalescing BBHs: the deep learning framework
classifies correctly all GW events from the Gravitational-Wave Transient Catalog GWTC-1.
Using this LIGO-Virgo GWTC-1, the eight GW events were analyzed by Dax et al. (2021)
with neural networks as surrogates for Bayesian posterior distributions. A very close quan-
titative agreement with the standard inference codes has been achieved, while the inference
times have been reduced from O(day) to a minute per event. The networks were trained on
simulation data including an estimate of the detector noise characteristics near the events to
enable inference for any observed data consistent with the training distribution, accounting
for the noise non-stationarity from event to event. The developed algorithm DINGO should
enable further real-time data analysis without sacrificing accuracy.

The performance of two ML methods, random forest, and neural networks, has been
benchmarked for ranking of the candidate GW events by Kim et al. (2020). For both meth-
ods, the evaluation time takes tens of milliseconds for ∼45000 evaluation samples. The
classification efficiency of both ML methods and a conventional low-latency search method
has been compared with respect to the true positive rate at a given false positive rate: about
10% improved efficiency can be achieved at lower false positive rate ∼ 2 × 10−5 with
both ML methods and the search sensitivity can be enhanced by about 18% at ∼10-11 Hz
false alarm rate. Applying only publicly available information from the LIGO-Virgo open
public alerts, a real-time framework GWSkyNet was introduced by Cabero et al. (2020) to
distinguish between astrophysical events and instrumental artefacts. It consists of a non-
sequential CNN involving sky maps and metadata attaining a prediction accuracy of 93.5%
on a testing data set.

Chua and Vallisneri (2020) trained a deep neural network to take as input a signal+noise
data drawn from the astrophysical source-parameter prior and the sampling distribution
of detector noise. They relied on compact representation of the data, which are based
on the reduced-order modeling, and generated with a separate neural-network waveform
interpolant to output a parametrized approximation of the corresponding posterior (see,
also, their work on using fully relativistic extreme-mass-ratio-inspiral waveform templates
for LISA data by Chua et al. (2021)).

There are many attempts to use ML to improve GW detection and parameter inference
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Figure 4. Network and results graph of 260 publications related to “gravitational waves” and
“machine learning” search words over last 7 years, which are indexed in the SAO/NASA
Astronomical Data System

efficiency. So, Gabbard et al. (2018) constructed a deep CNN, which is able to reproduce the
sensitivity of a matched-filtering search for BBH GW signals. Wang et al. (2020) applied
a deep learning to LIGO O1 data. Lin and Wu (2021) proposed the detection of GW from
BNS mergers based on wavelet packet (WP) decomposition and CNN: the scheme is more
than 960 times faster than the matched filtering. Singh et al. (2021) developed CNNs,
which were trained to predict the physical parameters of GW events (the maximum accuracy
reached 90.93%, with a validation accuracy of 89.97%). Bayley et al. (2020) analyzed the
robustness of their new ML algorithm to detect continuous GW.

A combination of results of the three-detector network in a unique RGB image and deep
networks to the advanced LIGO O2 public data with injected GW signal waveforms allows
to improve the single detector performance by as much as 70% (Álvares et al. (2021)).
As well, Morales et al. (2021) exploited CNNs to detect GW signals of compact binary
coalescences using single-interferometer data from LIGO. They found after a post-analysis
that for SNR≥21.80 with H1 data and SNR≥26.80 with L1 data the developed CNNs could
remain tentative alternatives for detecting GW signals. However, the use of CNNs as a tool
to search for merging black holes has been critically analyzed by Gebhard et al. (2019): its
strengths and limitations have been identified as well as some common pitfalls in translating
between ML and GW astronomy was highlighted in their article.

A novel neural network algorithm using time series strain data from GW detectors has
been proposed for the detection of signals from the non-spinning BNS mergers by Schäfer et
al. (2020). For the advanced LIGO design sensitivity, the network has an average sensitive
distance of 130 Mpc at a false alarm rate of 10 per month. As compared to other state-of-the-
art ML algorithms, it demonstrates an improvement by a factor of 4 in sensitivity to signals
with a signal-to-noise ratio between 8 and 15. Results of the search for the coalescence
of compact binary mergers using CNNs in the O2 LIGO/Virgo data were presented by
Menéndez-Vázquez et al. (2021). They explored 2D images in time and frequency as input
and trained two sets of neural networks separately for low mass (0.2 – 2.0 MSun) and
high mass (25 – 100 MSun) events. A scan over the full O2 dataset demonstrates that the
performance of the CNNs is compatible with traditional pipelines using matched filtering
techniques.
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T. Mishra et al. (2021) proposed a new ML approach to optimize the sensitivity of
the Coherent WaveBurst (cWB) – search algorithm identifying generic GW signals in the
LIGO-Virgo strain data – to BBH mergers. The ML-enhanced cWB search was tested on
strain data from the O1 and O2 runs of advanced LIGO. It has successfully recovered all
BBH events previously reported by cWB with higher significance. For the simulated events
with a false alarm rate of less than 1 per year, the improvement in detection efficiency
of 26% for stellar-mass BBH mergers and 16% for intermediate mass BBH mergers was
attained.

Results on training a neural network conditional density estimator to model posterior
probability distributions over the full 15-dimensional space of BBH system parameters are
presented by Green and Gair (2021). These authors exploited strain data from multiple
detectors using the method of normalizing flows, specifically, a neural spline normalizing
flow, which allowed them for rapid sampling and density estimation. Training the network
is likelihood-free, and requires only samples from the data generative process. The detec-
tor noise power spectral density was estimated at the time of GW150914 and conditioned
on the event strain data. The neural network has been able to generate accurate posterior
samples consistent with analyses using conventional sampling techniques. Marulanda et al.
(2020) proposed a new frequency CNN domain (FCNN) to predict the merger masses from
the spectrogram of the detector signal and compared to the time domain neural networks
(TCNN). FCNNs are trained using spectrograms, therefore the dimension of the input is re-
duced with respect to TCNNs, implying a substantially lower number of model parameters
and less over-fitting. The additional time due to the spectrogram computation is approxi-
mately compensated by the lower execution time of the FCNNs.

The mass and spin magnitude of Kerr black holes resulting from the BBH coalescence
have been estimated for the first time using a deep neural network by Haegel and Husa
(2020). The model was trained on a dataset containing 80% of the full publicly available
catalog of numerical simulations of GW emission by BBHs including full precession effects
for spinning binaries. The network predicts the remnant black hole mass and spin with an
error less than 0.04% and 0.3% for 90% of values in the non-precessing test dataset, 0.1%
and 0.3% respectively in the precessing test dataset.

Green et al. (2020) introduced how to use the autoregressive normalizing flows for rapid
likelihood-free inference of the BBH system parameters from GW data with deep neural
networks. As well, Khan et al. (2020) introduced a modified version of WaveNet trained
with a novel optimization scheme incorporating general relativistic constraints of the BH
spin properties. It allows quantifying the suitability of deep learning to estimate the indi-
vidual spins, effective spin, and mass ratio of quasi-circular, spinning, non-precessing BBH
mergers. Another powerful dimension reduction technique – the Random projection (RP),
which is widely used in the analysis of high dimensional data – was explored by Kulkarni
et al. (2019) to improve the computational efficiency of GW searches from compact BBHs
and BNSs. A novel ML approach to estimate selection effects in GW observations, includ-
ing the effect of spin precession, higher-order modes, and multiple detectors, is proposed
by Gerosa et al. (2020). These authors discussed also the limitations, which lead to the
overestimation of the inferred merger rate in selected regions of the parameter space.

We also note several works, where Bayesian neural networks were exploited. A condi-
tional variational autoencoder (CVAE), which was pre-trained on BBH signals, can return
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Bayesian posterior probability estimates ∼6 orders of magnitude faster than traditional tech-
niques as concluded by Gabbard et al. (2022). A new model of Bayesian neural networks
allowing the compact binary coalescence events in GW data was proposed by Lin and Wu
(2021). It’s able to identify the full length of the event duration including the inspiral stage.
This Bayesian approach has been incorporated into the CLDNN classifier integrating CNN
and the Long Short-Term Memory Recurrent Neural Network (LSTM).

ML techniques can also help with enhancing the significance of detection. Vinciguerra
et al. (2017) applied a multivariate analysis based on ANNs to classify GW waves emitted
in compact binary coalescences, enhancing by orders of magnitude the significance of sig-
nals against the noise background or, at a given level of misclassification of noise events,
detecting about 1/4 more of the total signal population. In recent work, Jadhav et al. (2021)
described the first ML-based search making a clean detection of GW151216 (not significant
enough to be included in the GWTC-1 catalog). Transfer learning along with curriculum
learning has been used to re-train the InceptionV3 network for the classification of contin-
uous wavelet transform maps of transients in the LIGO data and MLStat (a new coincident
ranking statistics). It incorporates information into the coincident search likelihood used
by the standard PYCBC search. In own turn, it leads to at least an order of magnitude
improvement in the inverse false-alarm-rate for the “low significance” events GW151012,
GW170729, and GW151216, and, as has been shown by the injection study, bringing the
average improvement in the sensitive volume of ∼10% for low chirp masses (0.8–5 MSun)
and ∼30% for higher masses (5–50 MSun).

GW observations of BNS mergers constrain the NS equation of state (EoS) by enabling
measurement of the tidal deformation of each NS, well approximated by the tidal deforma-
bility Λ parameter. Hernandez Vivanco et al. (2020) combined the data from GW170817
and GW190425 to place constraints on the NS EoS. They applied an ML algorithm to derive
interpolated marginalized likelihoods for each event allowing for results from multiple GW
signals to be easily combined. The radius of a fiducial 1.4MSun NS has been constrained
to 11.6+1.6

−0.9 km and the pressure at twice the nuclear saturation density to 3.1+3.1
−1.3 × 1034

dyne/cm2 at the confidence level of 90%.
GW signals from the BNS mergers cannot be easily distinguished from those from

comparable-mass mixed binary mergers, in which one of the companions is a black hole
(NS-BH). In this context, Fasano et al. (2020) developed a new data analysis strategy em-
ploying Bayesian inference and ML. It allows for the identification of NS-BH systems with
the distribution of tidal deformability parameters inferred from the GW observations. Ka-
padia et al. (2017) described a multivariate classifier for the candidate events. It exploits
a templated search for the GW inspiral signals from the NS-BH systems in data, whereas
detectors have a sensitivity limited by the non-Gaussian noise transients.

The Random Forest classifier has been evaluated on a set of single-detector events from
the realistic simulations of advanced LIGO data, using simulated NS-BH signals added to
the data. It detects a factor of 1.5-2 more signals at low false positive rates compared to the
standard “re-weighted SNR” statistics.

Early warning of coalescing neutrons star and neutron star – black hole binaries can
significantly improve the chances of detecting GW signals and their EM and astroparticle
counterparts. Baltus et al. (2021) analyzed the possibility of a combination of small CNNs,
trained on the whitened detector strain in the time domain, to detect and classify early
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inspirals. Yu et al. (2021) found that the neural networks with simulated data representing
the real LIGO detectors allow a typical binary neutron star (neutron star – black hole) to be
detected 100 s (10 s) before the merger at a distance of 40 Mpc (160 Mpc).

A small fraction of the GW signals detectable by 2G and 3G detectors are expected to be
strongly lensed by galaxies and clusters, producing multiple observable copies, processing
of which is computationally expensive for large numbers of possible pairs. That’s why an
ML approach to rapidly rule out a vast majority of candidate lensed pairs has been proposed
by Goyal et al. (2021),

As well, we mention a significant work by Huerta et al. (2021). These authors developed
a workflow connecting the Data and Learning Hub for Science, a repository for publishing
AI models, with the Hardware Accelerated Learning (HAL) cluster, using funcX as a uni-
versal distributed computing service. It allows an ensemble of the four openly available AI
models to be run on HAL to process August 2017 data of advanced LIGO in 7 minutes,
identifying all 4 BBHs previously identified in this dataset and reporting no misclassifica-
tions.

Precise localization of a GW source is also crucial for the follow-up of the EM and
astroparticle counterparts. C. Chatterjee et al. (2019) constructed a deep ANN to localize
simulated GW signals in the sky with high accuracy. The sky has been modeled as a sphere
divided into 18, 50, 128, 1024, 2048, and 4096 sectors. The sky direction of the GW source
was estimated by classifying the signal into one of these sectors based on its right ascension
and declination. The proposed model is able to classify GW samples not used in the training
process into the correct sectors with high accuracy (>90%) for coarse angular resolution
using 18, 50, and 128 sectors.

ML can also be used to enhance the traditional MCMC and nested sampling techniques.
Ashton and Talbot (2021) introduced the Bilby-MCMC, an MCMC sampling algorithm
tuned for the GW analysis from merging compact objects. It provides a parallel-tempered
ensemble Metropolis-Hastings sampler with access to a block-updating proposal library in-
cluding problem-specific and ML proposals allowing for over a 10-fold improvement in
efficiency by reducing the autocorrelation time. Williams et al. (2021) proposed a novel
method for sampling iso-likelihood contours in nested sampling with normalizing flows. It
was incorporated into the sampler Nessai, designed for problems where computing the like-
lihood is computationally expensive and, therefore, the cost of training a normalizing flow
is offset by the overall reduction in the number of likelihood evaluations. The sampler has
been validated on 128 simulated GW signals from compact binary coalescence. Compared
to results obtained with dynesty, the Nessai results are in good agreement whilst requiring
2.07 times fewer likelihood evaluations.

The ML methods are very effective in extending the duty cycle of the GW detectors.
Local seismic disturbances cause GW detectors to lose light resonance in one or more
of their component optic cavities and make them unable to take data until resonance is
recovered. Biswas et al. (2020) identified a minimal set of optic cavity control signals and
data features capturing the interferometer behavior leading to a loss of light resonance (or
lock loss). These channels have been explored to accurately distinguish between lock loss
events and quiet interferometer operating times via both supervised and unsupervised ML
methods. The state of the component optical cavities is found to be a better predictor of
lockloss than ground motion trends. The prediction accuracy is 98% for times just prior to
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Figure 5. Gravitational waves. Computer Art Painting.
Credit: Ihor T. Zhuk (Institute for Space Research of the NAS of Ukraine)
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lockloss, and 90% for times up to 30 seconds prior to lockloss.
The interesting problem in a technical sense was investigated by Mukund et al. (2019).

They applied various machine learning algorithms to archival seismic data for prediction of
the ground motion and the state of the GW interferometer during the event of an earthquake.
An improvement from a factor of 5 to a factor of 2.5 in scatter of the error in the predicted
ground velocity over a previous model fitting-based approach has been demonstrated. The
analysis of IRIS seismic network data (Incorporated Research Institutions for Seismology)
yields similar levels of agreement between the estimated and the measured amplitudes.

ML techniques are also applied in cosmology with GWs. Apart of the articles men-
tioned in Section 1, we note yet several works.

Negative results of the search for WIMPs revived the interest to other dark matter can-
didates, e.g. primordial black holes (PBHs) formed in the early Universe. Wong et al.
(2021) exploited the GWTC-2 dataset from the O3 run of the LIGO-Virgo Collaboration.
They found the constraints on PBH formation models based on deep learning techniques
and hierarchical Bayesian inference framework. The upper limit on the fraction of PBHs in
this study is 0.3% of the total dark matter.

The potential of arrays of future GW detectors to study the cosmological and modified
gravity models using the catalogs of standard sirens has been forecasted by Yang (2021)
through the Gaussian process (GP) with the ANN reconstruction. The results showed that
the GP reconstructions can already give comparable results with the traditional MCMC ap-
proach as well as the modified GW propagation can be a powerful probe of dark energy and
modified gravity. Belgacem et al. (2020) applied the GP technique to measurements of the
GW luminosity distance from simulated joint GW-GRB detections combined with measure-
ments of the photometric (luminosity) distance by simulated DES data has demonstrated a
remarkable discovery potential of the proposed 3G detector Einstein Telescope (ET). In
own turn, Cañas-Herrera et al. (2021) explored the possibility of joint reconstruction of the
modified GW propagation law and the linear bias of GW sources using the ML technique
for a network of ETs combined with a high-redshift galaxy survey (z ≲ 3). Arjona et al.
(2021) used two ML approaches, Genetic Algorithms (GAs) and GPs, to reconstruct the
mock data of strongly lensed GW events from ET and to demonstrate how the luminosity
and angular diameter distances can be combined to test in a model-independent manner
deviations from the cosmic distance duality relation. Both approaches are found to be capa-
ble of correctly recovering the underlying fiducial model and able to provide percent-level
constraints at intermediate redshifts.

Gravitational waves have been detected from mergers of BBHs, BNSs, and BHNS, but
signals from the most energetic explosions in the modern Universe – core-collapse super-
novae (CCSNe) – remain undetected. Astone et al. (2018) proposed the new method based
on a classification procedure of the time-frequency images of the LIGO, Virgo, and KAGRA
network data performed by a CNN. It allows to recognition of the signal for enhancing the
detection efficiency of the GW signal emitted by CCSNe. The method has been validated
with phenomenological waveforms injected in Gaussian noise, whose spectral properties
are those of the LIGO and Virgo advanced detectors. Its performance is better than the
present algorithm for GW selection of a transient signal. The simulated time series of GW
detectors and the waveforms in the training of CNN were used by Chan et al. (2020). These
authors showed that the network of KAGRA and advanced LIGO and VIRGO, or the net-
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work of LIGO A+, advanced VIRGO and KAGRA is likely to detect a magnetorotational
CCSN within the Large and Small Magellanic Clouds, or a Galactic event if the explosion
mechanism is neutrino-driven. For the CNN with waveforms not used for training, the true
alarm probabilities are 52% and 83% at 60 kpc for the waveforms R3E1AC and R4E1FC L
and are 70% and 93% at 10 kpc for the waveforms s20 and SFHx. False alarm probability
equals to 10%.

A newly developed Mini-Inception Resnet neural network has been trained by López
et al. (2021) with the time-frequency images corresponding to injections of simulated phe-
nomenological signals that mimic the waveforms obtained in 3D numerical simulations of
CCSNe. Robustness has been tested by injecting signals in the real noise data taken by the
Advanced LIGO-Virgo network during the O2 run. This algorithm is able to identify sig-
nals from both phenomenological template banks and numerical 3D simulations of CCSNe.
For SNR higher than 15 the detection efficiency is 70% at the false alarm rate lower than
5%. In the case of O2 run it would have been possible to detect events at a distance of 1
kpc. Lowering the efficiency down to 60%, the distance reach grows to 14 kpc.

Apart from compact binary mergers, there might be other sources for which there are
no reliable models, either expected to exist but to be very rare (e.g., SNe) or totally unantic-
ipated. No unmodeled sources have been discovered so far, but the search for such sources
is much more difficult and less sensitive. In this context, Marianer et al. (2021) presented
a search for unmodeled GW signals with semi-supervised ML methods. Deep learning
and outlier detection algorithms are applied to the labeled spectrograms of GW strain data.
About 13% of the public coincident data from the O1 and O2 runs have been searched
for the spectrograms with anomalous patterns, and no candidates of GW signals have been
detected.

We noted in this brief review the research, which only contours the recent trends of
effective ML application in GW astronomy. A more extensive description of ML methods
for the analysis of ground-based GW detector data and multi-messenger astrophysics can
be found in works by Cuoco et al. (2021), Huerta et al. (2019), Huerta and Zhao (2021),
and Soni et al. (2021).

3. Computer Art and General Relativity

Instead of a conclusion, we illustrate our vision of cosmology and gravitational waves
through the computer art paintings “Albert Einstein” (Fig. 1), “The curvature of the Uni-
verse” (Fig. 3), and “Gravitational waves” (Fig. 5) created by Dr. Ihor Zhuk. Modern
cosmology and gravitational wave science owe their appearance to Albert Einstein and the
General Theory of Relativity. The significance of achievements in these fields of knowl-
edge for mankind is indirectly confirmed by the Nobel Prizes in Physics awarded over
the past two decades: J.C. Mather and G.F. Smoot “for their discovery of the blackbody
form and anisotropy of the cosmic microwave background radiation” (2006); S. Perlmutter,
B.P. Schmidt and A.G. Riess “for the discovery of the accelerating expansion of the Uni-
verse through observations of distant supernovae” (2011); R. Weiss, B.C. Barish and K.S.
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Thorne “for decisive contributions to the LIGO detector and the observation of gravitational
waves” (2017); J. Peebles “for theoretical discoveries in physical cosmology” (2019); R.
Penrose “for the discovery that black hole formation is a robust prediction of the General
Theory of Relativity”, R. Genzel and A. Ghez “for the discovery of a supermassive com-
pact object at the center of our galaxy” (2020).

The new mathematical tools and algorithms as machine learning have invaded and con-
quered cosmology, extragalactic astronomy, astrophysics, and gravitational wave astron-
omy since the huge observational sky surveys and databases have been conducted. Today
machine Learning methods are widely used to study the cosmological parameters and mod-
els, modified gravity theories, cosmic microwave background radiation in Big Bang cos-
mology, the gravitational lensing effect, photometry, and image-based morphological clas-
sification of galaxies in various spectral ranges including gamma-ray and transient objects,
large-scale structures of the Universe (galaxies, galaxy clusters and superclusters, filaments
and voids) with their distance moduli at the cosmological scales, gravitational wave signals
detection from merging black hole star and other events. It allows us to obtain a more struc-
tured picture of the evolutionary parameters and nature of these celestial bodies as well as
to provide new revolutionary discoveries of properties of the Universe as a whole.
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Álvares, J. D., Font, J. A., Freitas, F. F., Freitas, O. G., Morais, A. P., Nunes, S., Onofre, A.,
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and Efficient Deep Learning Method for Dynamical Mass Measurements of Galaxy



Machine Learning in Cosmology and Gravitational Wave Astronomy 219

Clusters. Astrophys. J., 887(1), Article 25, 25. https : / / doi . org / 10 . 3847 / 1538 -
4357/ab4f82
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O., Hellwing, W. A., Hoffman, Y., Jones, B. J. T., Kitaura, F., Knebe, A., Manti, S.,
Neyrinck, M., . . . Yepes, G. (2018). Tracing the cosmic web. Mon. Not. R. Astron.
Soc., 473(1), 1195–1217. https://doi.org/10.1093/mnras/stx1976

Lin, Y.-C., & Wu, J.-H. P. (2021). Detection of gravitational waves using Bayesian neural
networks. Phys. Rev. D, 103(6), 063034. https://doi.org/10.1103/PhysRevD.103.
063034

Lochner, M., McEwen, J. D., Peiris, H. V., Lahav, O., & Winter, M. K. (2016). Photometric
Supernova Classification with Machine Learning. Astrophys. J. Suppl. Ser., 225(2),
Article 31, 31. https://doi.org/10.3847/0067-0049/225/2/31
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