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Динаміка та управління космічними апаратами
Spacecraft Dynamics and Control

1. INTRODUCTION

There are operating modes of a spacecraft that do not 

require triaxial orientation. Examples of such modes 

are the mode of spacecraft onboard battery recharg-

ing when only orientation to the Sun is necessary; 

the emergency mode when only two actuators are 

operational and triaxial orientation is impossible; the 

mode of pointing the telescope’s optical axis in iner-

tial space, etc. If triaxial orientation is not required 

or impossible, uniaxial orientation mode is used. A 

feature of the uniaxial orientation mode is that the 

spacecraft orientation is determined up to an arbi-

trary rotation around the axis relative to which the 

orientation is required. In this case, the spacecraft 

can rotate around this axis at an arbitrary speed.

The issues of spacecraft uniaxial orientation algo-

rithms’ construction have been considered in many 

works. In [5], the possibility of using a uniaxial so-

lar orientation mode for a satellite with a solar sail 

in a close-to-circular orbit at an altitude of 900 km 

is considered. The authors of [3] studied the control 

parameters’ optimization for the satellite uniaxial 
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orientation using jet engines. The purpose of control 

is to determine the certain axis rotation trajectory 

from an arbitrary initial position to a given one. A ge-

netic algorithm is used to find the optimal values of 

the control parameters to minimize the number of jet 

engine actuations. In [9], the authors considered the 

problem of uniaxial orientation in the inertial coor-

dinate system of a spacecraft with one faulty reaction 

wheel in the presence of residual angular momentum 

of the spacecraft. In [1], a new uniaxial orientation 

control law to move an optical sensor, jet engine noz-

zle, or antenna to a given position after the failure 

of one of the reaction wheels was proposed. Thus, 

the problem of uniaxial orientation remains relevant 

today.

There are two types of uniaxial orientation prob-

lems: the uniaxial stabilization problem and the termi-

nal reorientation problem. To synthesize algorithms 

of the first type, the method of Lyapunov functions 

is more often used [4, 10]. The disadvantage of this 

approach is the difficulty of obtaining a preliminary 

estimate of the accuracy and dynamic characteristics 

of the algorithm. To get these estimates, numerical 

modeling is necessary. The solution to the problem 

of the synthesis algorithm for spacecraft a terminal 

reorientation is usually sought as a solution to an op-

timization problem. Usually, a model is used for this 

purpose in which the Euler equation describes the 

dynamics [6], and the kinematic equation describes 

the kinematic motion of the vector [2]. This model’s 

advantages are the absence of calculation peculiari-

ties and state vector minimal redundancy. But this 

model is nonlinear, so the solution to the optimiza-

tion problem can be found numerically only, which 

is not always allowable for on-board algorithms. This 

problem can be simplified by using the quaternion 

differential equation proposed in [8], where the au-

thors developed a dynamic quaternion model and 

considered the problems of stabilization and termi-

nal reorientation for the case of triaxial orientation to 

construct the control. As shown in this work, the use 

of the quaternion model significantly simplifies the 

problem of control synthesis, which, in this case, is 

reduced to control synthesis for a system that is a set 

of second-order integrating links. In many cases, for 

such systems, the synthesis problem has an analytical 

solution. The resulting control algorithms are much 

simpler to implement than the algorithms obtained 

using the traditional model.

In this work, this approach was further developed, 

and a dynamic model of vector motion was obtained, 

similar to the dynamic model from [8], its properties 

were investigated, and methods for solving the prob-

lem of uniaxial stabilization and uniaxial terminal re-

orientation using this model were considered.

2. DYNAMIC MODEL OF VECTOR MOTION

Let 
3

Bq  be an arbitrary normalized vector q, 

given by projections onto the axes of the body-fixed 

frame B. Denote by BQ
 
the quaternion mapping of 

the vector Bq . In that case,

   scal 0B Q , (1)

   vect B BQ q , (2)

where  scal .  and  vect .  are the designations of the 

scalar and vector parts of the quaternion.

Since BQ  is a normalized quaternion, the follow-

ing quaternion equation is valid for it

 
1B B  Q Q , (3)

where B
Q  is the conjugate of quaternion BQ , and  is 

the quaternion multiplication operator.

Differentiating equality (3) twice with respect to 

time yields

  2 0B B B B B B         Q Q Q Q Q Q . (4)

From (4), it follows

    2
scal B B B  Q Q Q . (5)

Thus, the quaternion B B
 Q Q  has the following form:

  
2

B B B    Q Q Q f , (6)

where f is an arbitrary vector representing the vector 

part of the B B
 Q Q . Solving this equation for B

Q  

gives

 

2
B B B B   Q Q f Q Q . (7)

Let us introduce the following quaternion:

  B U Q f . (8)

In this quaternion, the scalar part u
0
 and the vector 

part u give

 0u U u . (9)

Taking into account (8), the quaternion equation 

(7) can be written as follows:

 

2
B B B  Q U Q Q  (10)
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where U is a quaternion, by setting which one can 

form the required character of the change in the pro-

jections of the vector Bq  on the axes of the body-

fixed frame B. The quaternion U can be interpreted 

as a control quaternion, and equation (10) as a dy-

namic equation of the motion of vector relative to the 

body-fixed frame in quaternion form, where quater-

nion mappings of the BQ  and its derivative are used 

as the state vector components. Since f is a vector, it 

follows from (8) that quaternion U must satisfy the 

constraint

 
 scal 0.B  Q U  (11)

From (11) and (1), it follows that

 
0T

B q u . (12)

Let us write equation (10) in vector form

 
2

B B B  q u q q . (13)

The control u can be represented as

 
 B B B   u q q m . (14)

In this case, relation (12) will be satisfied for any 

Bm . Taking into account (14), equation can be writ-

ten as

 
  2

B B B B B B     q q q q qm . (15)

Let us decompose the left side of equation (15) 

into two components: perpendicular to Bq  and par-

allel to Bq
2( ) ( )T

B B B B B B B B B B B          q q q q q q q q q qm . 

(16)

The transformations of (16), taking into account 

(12) and (13), give

  B B B B      q q q m
 

  2T T
B B B B    q q q q

 
 2 2 0B B B     q q q . (17)

It follows from (17) that

  B B B q qm , (18)

where  is an arbitrary parameter.

Parameter  is arbitrary, so it can be set equal to 

zero () when solving various problems of vector 

Bq  motion control. In this case, the dynamics model 

(18) takes a simple form

 B Bq m . (19)

This is a linear equation with constant coefficients 

and has a simple form, which makes it possible to ap-

ply well-developed methods of the theory of linear 

systems with constant coefficients to find Bm .

The control u is virtual, and the actual control is a 

torque Mu. Therefore, when using equation (13) to 

solve various problems of attitude control, it is neces-

sary to know the dependence of the control torque 

Mu on the control vector u and the inverse depen-

dence of the control vector u on the control torque 

Mu. Let us find these dependencies. The following 

equations are valid for the Bq  vector’s velocity and 

acceleration:

 
BR

B B B B    q q qw , (20)

 B RB R RB   q qL L , (21)

 
BR

B B B   q q pw , (22)

 
 BR

B B B B      p q q qw , (23)

 B RB R RB    q qL L , (24)

where the relative angular velocity vector 
BR
Bw  is de-

termined from the equation

 

 
 

BR BI BI
B B B

RI BR RI
B B RB R RB u

   

     



 

J J

J M

w w w

w w wL L . (25)

In expressions (20)—(25), R is a reference frame 

in which the spacecraft motion is considered. It is as-

sumed that the rotation angular velocity  RI
R t w  of 

the frame R relative to the inertial coordinate system 

J is a known function of time, which has a time de-

rivative  RI
R tw ; qR is q vector, given by projections 

on the reference frame R axes; RBL  is the transition 

quaternion from reference frame R to body-fixed 

frame B; 
BR
B w  is the angular velocity of the frame B 

rotation relative to the reference frame R, given by 

projections on the axes of the body-fixed frame B; 
BI
B w  is the spacecraft’s absolute angular velocity of 

rotation, provided by projections on the body-fixed 

frame B
 
axes; J is the spacecraft inertia tensor.

Formally, expressions (20)—(24) are the result 

obtained by double differentiation of the relation 

B RB R RB  q qL L . Let us decompose the vector p 
into two components: a component perpendicular to 

the vector Bq  and a component parallel to the vector 

Bq :

    T
B B B B    p q q p q q p . (26)
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According to equations (13) and (22)

  
2T T

B B B B   q p q q q . (27)

Then, expression (26) can be written as follows

 
  2

B B B B     p q q p q q . (28)

Substituting (28) into (22) gives

  
BR

B B B    q q pw

    2BR
B B B B B B       q q q p q qw

  
2

B B   u q q . (29)

From equality (29), it follows that

 
 BR

B B B   u q q pw . (30)

Since 
BR
Bw  is a function of the control torque Mu, 

then (30) is the desired dependence of the vector u 

on the control torque vector Mu. To find the depen-

dence of the control torque vector Mu on the vector 

u, consider expression (30). Let us define the vector 
BR
Bw  as follows:

 
 BR

B B    q u pw . (31)

Substituting relation (31) into equation (30) tak-

ing into account (12) gives

   ( )BR
B B B B B        u q q p q q u uw . (32)

Since (32) is an identity, therefore, formula (31) is 

a dependence 
BR
Bw  on the virtual control u. Solving 

equation (25) for Mu yields

 
    

BI BI
u B B

RI BR RI
B B RB R RB B B

  

        

M J

J J q p

w w

w w w mL L .

(33)

Formula (33) is the dependence of the real control 

torque Mu on the variable Bm . In this case, the vari-

able Bm  is selected based on equation (19), depend-

ing on the requirements of the spacecraft’s uniaxial 

orientation problem.

3. APPLICATION OF A DYNAMIC MODEL 
MOTION OF VECTOR IN SPACECRAFT 
ATTITUDE CONTROL PROBLEMS

3.1. The problem of a spacecraft’s uniaxial stabiliza-
tion. The problem of spacecraft’s uniaxial stabiliza-

tion is usually understood as the problem of synthe-

sizing control laws that ensure the orientation of the 

fixed axis in a body-fixed frame along the direction 

specified in the reference coordinate system. In gen-

eral, the statement of the uniaxial stabilization prob-

lem is formulated as follows. Let qR and eB be given 

unit vectors in the bases R and B, respectively. It is as-

sumed that on the spacecraft board, there is informa-

tion about the projections of the vector q onto frame 

B axes in the form of a vector qB, and the vector eB is 

constant. It is necessary to find the control torque Mu 

using information about the vector qB, angular veloc-

ity 
BI
B w , and orientation quaternion RBL , provid-

ing asymptotic stability to the equilibrium position 

qB = eB . The solution to the formulated problem is 

given by the following.

Theorem 1. Let the spacecraft rotation motion be 

given by the equation (25). Denote the normalized vec-

tors in the reference frame R and the body-fixed frame 

B by qR and eB, respectively. Let there be information 

on the spacecraft board about the absolute angular ve-

locity vector 
BI
B w , orientation quaternion RBL , and 

the vector q projections on the body-fixed frame B axes 

in the form of the vector qB; the vector eB is constant, 

and its coordinates are given. Then, the control law 

(33), where

  1 2B B   K e K qm , (34)

 B B e q e , (35)

 
BR

B B B B     q q qw , (36)

  B RB R RB   q qL L , (37)

     1 1 2 2diag , diag ,i ik k K K
(38)

  1 20, 0, 1, 2, 3i ik k i  
provides asymptotic stability to the equilibrium position 

B Bq e .

Proof. Let us use the equation of motion of the 

vector qB in the form (19). In this case, for the con-

trol error

 B B e q e ,  (39)

the equation

 Be m  (40)

is valid.

Let’s define Bm  as follows

 1 2 B B   K e K qm , (41)

    1 1 2 2diag , diag ,i ik k K K  (42)

 1 20, 0,i ik k i   1, 2, 3, (43)

where Bq  is defined by expressions (20) and (21). A 

system of equations (40) is a system of three inde-
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pendent second-order integrating links. The inputs 

of these links are signals 
iB

m , i = 1, 2, 3. For the i-th 

link, it can be written the equation

 1 2i i i ik k   e e e . (44)

Since (44) is a second-order linear equation, for it 

to be asymptotically stable, according to the Hurwitz 

stability criterion, it is necessary and sufficient condi-

tions (44) to be satisfied. Thus, Theorem 1 is proved.

Example 1. Consider the problem of pointing a 

stationary antenna of an onboard transceiver to a 

ground-based information receiving station (GRS) 

by turning the spacecraft body. This problem arises 

when there is no line-of-sight “antenna-GRS” due 

to the constructive elements at the regular orienta-

tion of the spacecraft. Let us introduce the following 

notations (Figure 1): E is the Earth’s centre of mass, r 

is the radius-vector that specifies the spacecraft cen-

tre of mass position O in orbit;  s rx  is the radius-

vector drawn from the centre of mass of the space-

craft to a given point P on the Earth’s surface, where 

the GRS is located.

Let eB be a unit vector that determines the on-

board transceiver electrical axis position in the body-

fixed frame B. It is necessary to find control torque 

Mu, which provides asymptotic stability to the equi-

librium position

B
B

B
 ex

x
.

Assume the following.

1. The position of the vector eB relative to the 

body-fixed frame is known, and the equality 0B e   

is true for it.

2. The following information is available on board 

the spacecraft:

- projections of the vector ξ on the body-fixed 

frame axes in the form of the vector 
 
ξB;

- position and velocity of the spacecraft centre of 

mass in the Greenwich coordinate system G as vec-

tors rG and Gr  ;

- the spacecraft absolute angular velocity vector 
BI
Bw  and the orientation quaternion IBL .

The problem solution. According to Fig. 1, in the 

frame G, the following equations are valid:

  G G G s rx , (45)

 G G  rx , (46)

 G G  rx . (47)

In this case, the spacecraft’s centre of mass motion 

is described by the equation [2]

  3 2GI GI GI
G G G G G G G

G


       r r r r

r
w w w . (48)

In equation (48), 
143.986005 10    is the gravi-

tational constant of the Earth; 
GI
Gw  is the angular ve-

locity of the Earth’s rotation, given by projections on 

the frame G axes.

Let us denote by q the unit vector of the vector ξ. 

Obviously, in the Greenwich coordinate system, the 

following equation holds for this vector:

 

G
G

G
q x
x

. (49)

Following equations (20)—(25), the expressions 

for calculating the projections of the velocity and ac-

celeration of this vector on the axes of basis B have 

the form

  
BG

B B B B     q q qw , (50)

  B GB G GB   q qL L . (51)

 
BG

B B B   q q pw , (52)

    BG BI BI GI BG
B B B B B u     J J J Mw w w w w , (53)

  BG
B B B B      p q q qw , (54)

 B GB G GB     q qL L . (55)

At the same time, derivatives Gq  and Gq  are de-

fined as follows

  G
G G G

 
     


q q q x

, (56)

Figure 1. Geometric interpretation of pointing the on-board 

transmitter antenna to the GRS
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2

22G
G G G G G G

  
           

  


q q q q qx
x , (57)

where

 G  x ,   
T
G G   q x . (58)

The deducing of formulas (56) and (57) are given 

in the Appendix.

To find the control u that ensures the asymptotic sta-

bility of the equilibrium position b bq e , Theorem 1 

is used. According to this theorem, the control law

 1 2 1 2 0, 0,B Be    K K q K Km  (59)

provides asymptotic stability to the equilibrium posi-

tion e = 0. In this case, the control u is determined by 

the expression (14) and the actual control torque Mu 

by the expression (33).

Simulation results. To analyze the qualitative fea-

tures of the algorithm, the simulation of the proposed 

algorithm was carried out with the following initial 

data.

1. An inertial coordinate system was chosen as the 

coordinate system relative to which the spacecraft’s 

angular motion was simulated.

2. The orbital elements at the start of the point-

ing process were as follows: 7028a   km — the semi-

major axis of the orbit, e = 0.001 — eccentricity of 

the orbit, i = 1.439897 rad — the orbital inclination, 

 = 1.523599 1/s — longitude of the ascending node 

of the orbit,  = 0 rad — argument of periapsis, m = 

= 1.23 rad — mean anomaly at pointing start.

3. The motion of the centre of mass along the orbit 

in the Greenwich coordinate system was simulated 

by a system of differential equations (49).

4. The initial conditions for the rotational motion 

model were as follows:

 0

0
0.001

0

BI
B t

 
   
 
 

w ,

 0

0.670900566645541
 0.077273729904976
0.1628015368791540
0.719316939833235

IB t

 
  
 
   

L .

5. The position of the GRS on the Earth’s sur-

face was given by a point with coordinates: longitude 

60  , latitude 45  .

6. The spacecraft’s inertia tensor

  

195 0 0
0 121 0
0 0 189

 
   
 
 

J , kg m2.

7. The antenna electrical axis unit vector coordi-

nates given by projections on of the body-fixed frame 

B axes,  T0.25 0.43 0.87B  e  .

8. The mutual position of the antenna electrical 

axis and the direction ξ was estimated by the formula

 arccos
T
B

B
B

 
    

 
ex

x
. (60)

Figure 2 shows a graph of the function (t), and 

Figure 3 shows the graphs of time variations of coor-

dinates of the vector Bq . The simulation results indi-

cate the effectiveness of the proposed algorithm for 

uniaxial spacecraft stabilization.

3.2. The problem of uniaxial terminal pointing. Let 

us solve the problem of pointing in inertial space 

some fixed axis associated with the spacecraft to a 

given point. In the general case, this problem is for-

mulated as follows: find the control law u that trans-

fers the vector whose motion is described by (13) 

from the current state qB(t
0
), Bq (t

0
) at time t

0
 to the 

required state qB(t
1
), Bq (t

1
) at time t

1
. The times t

0
 

and t
1
 are fixed. The solution to this problem is given 

by the following theorem.

Figure 2. The  estimation variation with time
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Theorem 2. Let the motion of vector qB relative to 

the reference frame R be given by equation (13). Let us 

introduce an auxiliary vector x, and the motion of this 

vector is described by the equation

 
3,  x xt  . (61)

Suppose that for the fixed times t
0
 and t

1
, the follow-

ing boundary conditions are given for the vector x and 

its first derivative:

 
       0 0 0 0, ,B Bt t t t  x q x q  (62)

        1 1 1 1, ,B Bt t t t  x q x q  (63)

and a control is found that transfers the vector x and 

its first derivative to the position (63).

Let us define the calculated trajectory  ˆB tq  for 

transferring the vector qB(t) from the current position at 

time t
0
 to a given position at time t

1
 and a control that 

implements this motion as follows

   ˆB t 

xq      x , (64)

 

 ˆ ˆ ˆB B Bt       

 xq q q , (65)

 
2

2
ˆ ˆ ˆ ˆ ˆ2ˆB B B B Bt

  
            


 u q q q x q qt

, (66)

where the vectors x, x , and t are defined by the expres-

sions

 
 1 0 2t t  C Ct , (67)

 

1 2 12 3
1 0 1 0

6 12
( ) ( )t t t t

 
 

C y y , (68)

 

1 0
2 1 2

1 0

1   
2

t t
t t


 


C C y , (69)

 
      1 1 0 0 1 0B B Bt t t t t   y q q q , (70)

 
   2 1 0B Bt t  y q q , (71)

 
     

2
0

0 1 2 0
( )

2B
t tt t t t

    x q C C , (72)

 

      0 0 0
3 2

0 0
1 2

( ) ( ) .
3 2

B Bt t t t t
t t t t

   

 
 

x q q

C C
 

 (73)

Then the control

 
( )B B B   u q q m , (74)

 1 2 ˆB    K e K e um , (75)

 
ˆB B e q q , ˆB B   e q q  (76)

ensures the transfer of the vectors Bq  and Bq  from po-

sition  0B tq ,  0B tq  to the given position  1B tq , 

 1B tq  in a fixed time 1 0t t .

Proof. To prove this theorem, equation (61) is 

used. Let us find the control law t(t) that transfers the 

system  x t  from the current state    0 0Bt tx q , 

   0 0Bt t x q  at time 0t  to the required state 

   1 1Bt tx q ,    1 1Bt t x q  at time 1t  and pro-

viding a minimum for the functional

 
1

0

21
2

t

t
V dt  t . (77)

For this problem, there is an analytical solution 

defined by expressions (69)—(74) [7]. Let us define 

the calculated trajectory  ˆB tq  as

 

   
 

ˆB
t

t
t


x

q
x

. (78)

Then, according to Appendix, for the derivative 

 ˆB tq  and control û , the following expressions are 

valid:

 

   ˆ ˆ ˆB B Bt       
 xq q q , (79)

 

 2

22ˆ ˆ ˆ ˆ ˆBB B B B
 

         

t   u q q q x q q . (80)

Since 

   0 0Bt tx q ,    0 0Bt t x q , 

   1 1Bt tx q ,    1 1Bt t x q , 

Figure 3. The spacecraft’s angular velocities variation with 

time
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it is evident that the control û  will ensure the transfer 

of the vector ˆ  Bq from position  0B tq ,  0B tq  to a 

given position  1B tq ,  1B tq  in a fixed time 1 0t t .

The control built in this way is programmatic. 

With such control, the vector  B tq  will move along 

a certain trajectory different from the calculated one. 

That is due to errors in the program control imple-

mentation and disturbance moments presence acting 

on the spacecraft. To stabilize the calculated trajecto-

ry, it is necessary to add a stabilizing control through 

feedback. To find this control, consider the equa-

tion for the relative motion of the vectors  B tq  and 

 ˆB tq . As said above, the motion of vector  B tq  can 

be represented in the form (19). Subtracting equation 

(80) from equation (19) gives

 
ˆs B  e u um . (81)

According to Theorem 1, the control

 1 2 s    u K e K e  (82)

provides asymptotic stability for the position 0e . 

It follows from (81) that

 1 2 ˆB    K e K e um , (83)

which completes the proof of Theorem 2.

Example 2. To analyze the qualitative features of 

the proposed terminal reorientation algorithm, the 

simulation of the reorientation process was carried 

out with the initial data from Example 1. In this case, 

the start time of the manoeuvre was taken 0 0t   s, 

and the end time 1 1000t   s. The boundary condi-

tions were as follows

 0

 0.162161484770419
 0.635129976541619
0.755191078969618

B t
 
   
  

q ,

  4
0

 0.296186315679564
 0.828484883752114 10

0.760371266945204
B t 

 
    
  

q ,

 1

 0.250000000000000
 0.433012701892219
0.866025403784439

B t
 
   
  

q ,

 1

0
0
0

B t
 
   
 
 

q .

Figure 4 shows a graph of the change in the func-

tion (t), and Figure 5 shows the graphs of time vari-

ations of coordinates of the vector Bq . The simula-

tion results indicate the efficiency of the proposed al-

gorithm for the uniaxial orientation of the spacecraft.

4. CONCLUSION

For an arbitrary normalized vector, a dynamic model 

of motion in the associated coordinate system is ob-

tained. This model significantly simplifies the prob-

lem of synthesizing control of the spacecraft’s uni-

axial orientation. In this case, the synthesis problem 

Figure 5. The spacecraft’s angular velocities variation with 

time

Figure 4. The  estimation variation with time
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is reduced to constructing a control for a system with 

three second-order integrating links, and the syn-

thesis problem has an analytical solution for such 

systems. The resulting control algorithms are much 

simpler to implement than the ones obtained using 

the traditional model. A new approach has been sug-

gested for this model, which is a transformation of 

the right-hand side of the Euler dynamics equation 

into a new control vector 
3.u   This allows for 

the concise representation of the right-hand side of 

the dynamics equation for the vector as a function 

of the spacecraft’s angular motion parameters. The 

transformation found is reversible, allowing us to re-

turn to the original form of the right-hand side of the 

Euler dynamics equation and find the control torque 
3

uM  , physically realized by the control system 

actuators. Based on the obtained model, two algo-

rithms for constructing a spacecraft uniaxial orienta-

tion are proposed: an algorithm for spacecraft uniax-

ial stabilization and an algorithm for spacecraft uni-

axial terminal reorientation. The application of the 

proposed model is demonstrated using two examples: 

solving the stabilization problem and the problem 

of the spacecraft’s uniaxial terminal reorientation. 

When solving the stabilization problem, in contrast 

to the well-known works [4, 10], in which the direct 

Lyapunov method was used to construct the control, 

for the first time, it was possible to reduce the prob-

lem of finding the control Mu  to the trivial problem 

of finding the control Bm , which ensures asymptotic 

stability of the error equation Be m . This is a linear 

equation with constant coefficients, which makes it 

possible to apply well-developed methods of the the-

ory of linear systems with constant coefficients. The 

numerical simulation results confirming the efficien-

cy of the proposed algorithms have been presented.

APPENDIX. THE DEDUCING OF FORMULAE 
FOR THE FIRST AND SECOND DERIVATIVES 
OF THE UNIT VECTOR

The formula deducing for the first derivative of a unit 

vector of ξB. Let Bq  be the unit vector of vector ξB. 

Denote by   the modulus of the vector ξB and iden-

tity matrix of order 3  3 as 3I . Then the time de-

rivative of the unit vector is defined by the following 

expressions

 

 

2

3 .

TB B B B B
B B B

B

T B B
B B B B

d
dt
  

             
 

        

  




 

x x x x x
x

x x

q q q

I q q q q
 

(A1)

The formula deducing for the second-time derivative 

of a unit vector of Bx . Differentiating (A1) to time 

gives

  3 2
T T TB B B

B B B B B B B BI
 

         








  q q q q q q qx x x
x

 

   

 

3 32

3

T T TB B B
B B B B B B

T
TB B

B B B

I I

I

 
        

  
 

  

 

x x x
x

x x

q q q q q

q q q

 

 

 

2
3 2 2

2
3 22

T B
B B B B B B

T B
B B B B B

I q q

I q q

  
        

 
       

   











x
x x x x

x
x x x

 

2

22B
B B B B B

 
       

x
x x x

  
q q .  (A2)
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ДИНАМІЧНА МОДЕЛЬ РУХУ ВЕКТОРА ТА ЇЇ ЗАСТОСУВАННЯ 

В ЗАДАЧАХ КЕРУВАННЯ ОДНОВІСНОЮ ОРІЄНТАЦІЄЮ КОСМІЧНОГО АПАРАТА

Об’єкт дослідження: система управління космічного апарата. Предмет дослідження: кватерніонне динамічне рівнян-

ня руху довільного нормованого вектора і методи побудови алгоритмів керування одновісною орієнтацією косміч-

ного апарата на його основі. У роботі отримано нову динамічну модель руху вектора у зв’язаній системі координат, 

досліджено її властивості та розглянуто методи вирішення задач одновісної орієнтації із застосуванням цієї моделі. 

При цьому задача синтезу зводиться до побудови керування для системи, що є сукупністю інтегрувальних ланок дру-

гого порядку. У багатьох випадках для таких систем задача синтезу має аналітичний розв’язок. Отримані при цьому 

алгоритми керування одновісною орієнтацією реалізуються значно простіше, ніж алгоритми, отримані при викорис-

танні традиційної моделі. Наведені результати чисельного моделювання, що підтверджують працездатність запропо-

нованого алгоритму.

Ключові слова: космічний апарат, одновісна орієнтація, термінальна переорієнтація, кватерніон, стабілізація, кутова 

швидкість.




