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DYNAMIC MODEL OF VECTOR MOTION AND ITS APPLICATION
IN SPACECRAFT UNIAXIAL ORIENTATION PROBLEMS

The object of study is the spacecraft attitude control system. The subject of the study is the quaternion dynamic equation of motion of
an arbitrary normalized vector and methods for constructing on its basis algorithms to control the spacecraft’s uniaxial orientation.
In this work, a new dynamic model of vector motion in a body-fixed frame is obtained, its properties are investigated, and methods
Jor solving uniaxial orientation problems using this model are considered. This model application significantly simplifies the synthesis
control task, which, in this case, is reduced to control synthesis for a system that is a set of second-order integrating links. In many
cases, the synthesis problem has an analytical solution for such systems. The resulting control algorithms are much simpler to imple-
ment than the ones obtained using the traditional model. The results of numerical simulation, which confirm the effectiveness of the
proposed algorithm, are presented.
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1. INTRODUCTION spacecraft orientation is determined up to an arbi-

There are operating modes of a spacecraft that do not
require triaxial orientation. Examples of such modes
are the mode of spacecraft onboard battery recharg-
ing when only orientation to the Sun is necessary;
the emergency mode when only two actuators are
operational and triaxial orientation is impossible; the
mode of pointing the telescope’s optical axis in iner-
tial space, etc. If triaxial orientation is not required
or impossible, uniaxial orientation mode is used. A
feature of the uniaxial orientation mode is that the

trary rotation around the axis relative to which the
orientation is required. In this case, the spacecraft
can rotate around this axis at an arbitrary speed.

The issues of spacecraft uniaxial orientation algo-
rithms’ construction have been considered in many
works. In [5], the possibility of using a uniaxial so-
lar orientation mode for a satellite with a solar sail
in a close-to-circular orbit at an altitude of 900 km
is considered. The authors of [3] studied the control
parameters’ optimization for the satellite uniaxial
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orientation using jet engines. The purpose of control
is to determine the certain axis rotation trajectory
from an arbitrary initial position to a given one. A ge-
netic algorithm is used to find the optimal values of
the control parameters to minimize the number of jet
engine actuations. In [9], the authors considered the
problem of uniaxial orientation in the inertial coor-
dinate system of a spacecraft with one faulty reaction
wheel in the presence of residual angular momentum
of the spacecraft. In [1], a new uniaxial orientation
control law to move an optical sensor, jet engine noz-
zle, or antenna to a given position after the failure
of one of the reaction wheels was proposed. Thus,
the problem of uniaxial orientation remains relevant
today.

There are two types of uniaxial orientation prob-
lems: the uniaxial stabilization problem and the termi-
nal reorientation problem. To synthesize algorithms
of the first type, the method of Lyapunov functions
is more often used [4, 10]. The disadvantage of this
approach is the difficulty of obtaining a preliminary
estimate of the accuracy and dynamic characteristics
of the algorithm. To get these estimates, numerical
modeling is necessary. The solution to the problem
of the synthesis algorithm for spacecraft a terminal
reorientation is usually sought as a solution to an op-
timization problem. Usually, a model is used for this
purpose in which the Euler equation describes the
dynamics [6], and the kinematic equation describes
the kinematic motion of the vector [2]. This model’s
advantages are the absence of calculation peculiari-
ties and state vector minimal redundancy. But this
model is nonlinear, so the solution to the optimiza-
tion problem can be found numerically only, which
is not always allowable for on-board algorithms. This
problem can be simplified by using the quaternion
differential equation proposed in [8], where the au-
thors developed a dynamic quaternion model and
considered the problems of stabilization and termi-
nal reorientation for the case of triaxial orientation to
construct the control. As shown in this work, the use
of the quaternion model significantly simplifies the
problem of control synthesis, which, in this case, is
reduced to control synthesis for a system that is a set
of second-order integrating links. In many cases, for
such systems, the synthesis problem has an analytical
solution. The resulting control algorithms are much
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simpler to implement than the algorithms obtained
using the traditional model.

In this work, this approach was further developed,
and a dynamic model of vector motion was obtained,
similar to the dynamic model from [8], its properties
were investigated, and methods for solving the prob-
lem of uniaxial stabilization and uniaxial terminal re-
orientation using this model were considered.

2. DYNAMIC MODEL OF VECTOR MOTION

Let q, eR® be an arbitrary normalized vector ¢,
given by projections onto the axes of the body-fixed
frame B. Denote by Q, the quaternion mapping of
the vector q, . In that case,

scal(QB)zo, (1)
vect(QB ) =q;, (2)

where scal(.) and vect(.) are the designations of the
scalar and vector parts of the quaternion.

Since Q; is a normalized quaternion, the follow-
ing quaternion equation is valid for it

QpoQ; =1, (3)
where QB is the conjugate of quaternion Qg , and ° is
the quaternion multiplication operator.

Differentiating equality (3) twice with respect to
time yields

QBOQB+ZQBOQB+QBOQB=0- (4)
From (4), it follows
~ . . 2
scal(QB OQB)Z—”QB” : (&)
Thus, the quaternion Q 5 © Q  has the following form:
~ . . 2
Q,0Q,=-|Q,] +£. (6)

where f'is an arbitrary vector representing the vector
part of the Qz°Q. Solving this equation for Q
gives

.. . 2
Qy=Q f-|Qs] Q- (7)
Let us introduce the following quaternion:
U=Q°f. (3)

In this quaternion, the scalar part u, and the vector
part u give
U=u,+u. )
Taking into account (8), the quaternion equation
(7) can be written as follows:

QB zl]_”())g"2 QB (]0)
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where U is a quaternion, by setting which one can
form the required character of the change in the pro-
jections of the vector q, on the axes of the body-
fixed frame B. The quaternion U can be interpreted
as a control quaternion, and equation (10) as a dy-
namic equation of the motion of vector relative to the
body-fixed frame in quaternion form, where quater-
nion mappings of the Q, and its derivative are used
as the state vector components. Since fis a vector, it
follows from (8) that quaternion U must satisfy the
constraint

scal(Qy°U ) =0. (11)
From (11) and (1), it follows that
qu=0. (12)
Let us write equation (10) in vector form
iy = =|as a5 (13)
The control u can be represented as
u=—q,x(qzxpy). (14)

In this case, relation (12) will be satisfied for any
pg . Taking into account (14), equation can be writ-
ten as

. .2

‘IBz_qBX(‘IBXNB)_"qB” qp - (15)
Let us decompose the left side of equation (15)

into two components: perpendicular to g, and par-

allel to q,
.- .- . 2
~q; (a5 X i) + Q55 = —q5 < (@5 < 115)— 5] 25 -
(16)

The transformations of (16), taking into account
(12) and (13), give

43 X[qB X(qB ~Hg )] =
T.-T . 2
= _(quB +||q3|| )qB =
.12 .12

(il +f a0

It follows from (17) that
qp =Hp+0qy, (18)

where o is an arbitrary parameter.

Parameter o is arbitrary, so it can be set equal to
zero (o = 0) when solving various problems of vector

q, motion control. In this case, the dynamics model
(18) takes a simple form

Gy = M- (19)

a7

26

This is a linear equation with constant coefficients
and has a simple form, which makes it possible to ap-
ply well-developed methods of the theory of linear
systems with constant coefficients to find g .

The control u is virtual, and the actual control is a
torque M,. Therefore, when using equation (13) to
solve various problems of attitude control, it is neces-
sary to know the dependence of the control torque
M, on the control vector # and the inverse depen-
dence of the control vector # on the control torque
M,. Let us find these dependencies. The following
equations are valid for the g, vector’s velocity and
acceleration:

Gy =—wp X qy+4p, (20)
5 = Ay A g @1

4y =Wy Xqy+P, (22)
p=-wy x(dy+dy )+ 4> (23)
Q5 = A s i A g (24)

where the relative angular velocity vector ng is de-
termined from the equation

Jtk = —wl x(]wgl)—
_I(""gl xwy" +ARB OwgloARB)+ M,. (25

In expressions (20)—(25), R is a reference frame
in which the spacecraft motion is considered. It is as-
sumed that the rotation angular velocity wﬁl (t) of
the frame R relative to the inertial coordinate system
J is a known function of time, which has a time de-
rivative wﬁf (t) ; qp is q vector, given by projections
on the reference frame R axes; A, is the transition
quaternion from reference frame R to body-fixed
frame B; ng is the angular velocity of the frame B
rotation relative to the reference frame R, given by
projections on the axes of the body-fixed frame B;

wgl is the spacecraft’s absolute angular velocity of
rotation, provided by projections on the body-fixed
frame B axes; ] is the spacecraft inertia tensor.

Formally, expressions (20)—(24) are the result
obtained by double differentiation of the relation
qs = Aps°qr°Agg - Let us decompose the vector p
into two components: a component perpendicular to
the vector g, and a component parallel to the vector
9z -

pz—qBX(qup)+qu£p. (26)
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According to equations (13) and (22)
.. .12
5P = dpiis =] -
Then, expression (26) can be written as follows
.2
P=-9; X(‘]B XP)_”qB" qdp -
Substituting (28) into (22) gives

qs :_ng Xqptp=
=4z X“"ER —4q3 X(‘]B XP)_||‘13||243 =

:”W%W%'
From equality (29), it follows that

u=g, x(w}" g, xp). (30)

Since wy" is a function of the control torque M,
then (30) is the desired dependence of the vector u
on the control torque vector M,. To find the depen-
dence of the control torque vector M, on the vector
u, consider expression (30). Let us define the vector

Wit as follows:

27)

(28)

(29)

wpt =—q,x(u-p). (31)
Substituting relation (31) into equation (30) tak-
ing into account (12) gives

u=q,x (0~ 4y xp) =, x(g; xw) =u. (32)
Since (32) is an identity, therefore, formula (31) is

a dependence wy" on the virtual control u. Solving
equation (25) for M, yields

M, =w§’x(}w§l)+

+](w§I xng +ARBOQ§IOARB)—](qB x(uB —p)) .

(33)

Formula (33) is the dependence of the real control

torque M, on the variable p . In this case, the vari-

able p, is selected based on equation (19), depend-

ing on the requirements of the spacecraft’s uniaxial
orientation problem.

3. APPLICATION OF A DYNAMIC MODEL
MOTION OF VECTOR IN SPACECRAFT
ATTITUDE CONTROL PROBLEMS

3.1. The problem of a spacecraft’s uniaxial stabiliza-
tion. The problem of spacecraft’s uniaxial stabiliza-
tion is usually understood as the problem of synthe-
sizing control laws that ensure the orientation of the
fixed axis in a body-fixed frame along the direction
specified in the reference coordinate system. In gen-

eral, the statement of the uniaxial stabilization prob-
lem is formulated as follows. Let g, and ey be given
unit vectors in the bases R and B, respectively. It is as-
sumed that on the spacecraft board, there is informa-
tion about the projections of the vector g onto frame
B axes in the form of a vector g, and the vector e is
constant. It is necessary to find the control torque M,
using information about the vector ¢ 5, angular veloc-
ity wy', and orientation quaternion A, provid-
ing asymptotic stability to the equilibrium position
qp= e . The solution to the formulated problem is
given by the following.

Theorem 1. Let the spacecraft rotation motion be
given by the equation (25). Denote the normalized vec-
tors in the reference frame R and the body-fixed frame
B by q and ey, respectively. Let there be information
on the spacecraft board about the absolute angular ve-
locity vector ng , orientation quaternion A .., and
the vector q projections on the body-fixed frame B axes
in the form of the vector qp; the vector ey is constant,
and its coordinates are given. Then, the control law
(33), where

my=-Ke-K,q,, (34)
e=q,—e,, (35)
qs = _“’ER Xqg +‘;13 ) (36)
éB =Ap®dr°Agg (37)

K, = diag(kli),K2 = diag(kZi),
(38)

ku >0,k,>0,i=12,3
provides asymptotic stability to the equilibrium position
qs =€
Proof. Let us use the equation of motion of the
vector ¢, in the form (19). In this case, for the con-
trol error

e=q,—eg, 39)

the equation
€=, (40)

is valid.
Let’s define puj, as follows

py=—-K e-Kqg, (41)
K, =diag(k, ). K, = diag(k,, ), (42)
k,>0,k,>0,i=1,2,3, (43)

where g, is defined by expressions (20) and (21). A
system of equations (40) is a system of three inde-
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Figure 1. Geometric interpretation of pointing the on-board
transmitter antenna to the GRS

pendent second-order integrating links. The inputs
of these links are signals p, ,i=1, 2, 3. For the i-th
link, it can be written the eqhation

(44)

Since (44) is a second-order linear equation, for it
to be asymptotically stable, according to the Hurwitz
stability criterion, it is necessary and sufficient condi-
tions (44) to be satisfied. Thus, Theorem 1 is proved.

Example 1. Consider the problem of pointing a
stationary antenna of an onboard transceiver to a
ground-based information receiving station (GRS)
by turning the spacecraft body. This problem arises
when there is no line-of-sight “antenna-GRS” due
to the constructive elements at the regular orienta-
tion of the spacecraft. Let us introduce the following
notations (Figure 1): Eis the Earth’s centre of mass, »
is the radius-vector that specifies the spacecraft cen-
tre of mass position O in orbit; £ =s—r is the radius-
vector drawn from the centre of mass of the space-
craft to a given point P on the Earth’s surface, where
the GRS is located.

Let ey be a unit vector that determines the on-
board transceiver electrical axis position in the body-
fixed frame B. It is necessary to find control torque
M, which provides asymptotic stability to the equi-
librium position

&5

=e€g.
&1

Assume the following.

1. The position of the vector e, relative to the
body-fixed frame is known, and the equality é, =0
is true for it.

28

e=—k,e—kye,.

2. The following information is available on board
the spacecraft:

- projections of the vector & on the body-fixed
frame axes in the form of the vector &,

- position and velocity of the spacecraft centre of
mass in the Greenwich coordinate system G as vec-
torsryand 7 ;

- the spacecraft absolute angular velocity vector
wy and the orientation quaternion A, .

The problem solution. According to Fig. 1, in the
frame G, the following equations are valid:

E, =515, 45)
£G =1, (46)
£.=—F.. (47)

In this case, the spacecraft’s centre of mass motion
is described by the equation [2]

i = —LSrG +wd xwd xr, + 2w xF, . (48)
7]

In equation (48), p=3.986005x10" is the gravi-
tational constant of the Earth; wg' is the angular ve-
locity of the Earth’s rotation, given by projections on
the frame G axes.

Let us denote by ¢ the unit vector of the vector ¢&.
Obviously, in the Greenwich coordinate system, the
following equation holds for this vector:

&

A =7 7

ol

Following equations (20)—(25), the expressions
for calculating the projections of the velocity and ac-
celeration of this vector on the axes of basis B have
the form

(49)

p =—wp’ Xqy+{y, (50)
‘;13 = AGB OqG OAGB . (51)
Gy =—Wy Xqz+p, (52)

Ing =—w§1 x(]wgl)—](wgl xwgc)+Mu ,(53)

Pz_ngx(q.B-’-‘L]B)_'-éB’ (54)

éB = AGB Oéc OAGB . (55)

At the same time, derivatives 4. and g are de-
fined as follows

9 =4 X(‘]G X%J ) (56)
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9z = ~9c X{qc X[%;_ngc J} _"qc;”2 . (57)

where ) _
d=¢ . o=a5¢; - (58)

The deducing of formulas (56) and (57) are given
in the Appendix.

To find the control u that ensures the asymptotic sta-
bility of the equilibrium position g, =e,, Theorem 1
is used. According to this theorem, the control law

p, =K, e—K,q, K, >0,K,>0 (59)
provides asymptotic stability to the equilibrium posi-
tion e = 0. In this case, the control u is determined by
the expression (14) and the actual control torque M,
by the expression (33).

Simulation results. To analyze the qualitative fea-
tures of the algorithm, the simulation of the proposed
algorithm was carried out with the following initial
data.

1. An inertial coordinate system was chosen as the
coordinate system relative to which the spacecraft’s
angular motion was simulated.

2. The orbital elements at the start of the point-
ing process were as follows: a =7028 km — the semi-
major axis of the orbit, e = 0.001 — eccentricity of
the orbit, /i = 1.439897 rad — the orbital inclination,
Q =1.523599 1/s — longitude of the ascending node
of the orbit, ® = 0 rad — argument of periapsis, m =
= 1.23 rad — mean anomaly at pointing start.

3. The motion of the centre of mass along the orbit
in the Greenwich coordinate system was simulated
by a system of differential equations (49).

4. The initial conditions for the rotational motion
model were as follows:

0

wy (£,)=|0.001 |,

0
0.670900566645541
~0.077273729904976
~0.1628015368791540 |
~0.719316939833235

AIB (to) =

5. The position of the GRS on the Earth’s sur-
face was given by a point with coordinates: longitude
A =60 , latitude @ =45 .
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Figure 2. The W estimation variation with time

6. The spacecraft’s inertia tensor

195 0 0
J=| 0 121 O |, kgm?
0 0 189

7. The antenna electrical axis unit vector coordi-
nates given by projections on of the body-fixed frame

Baxes, e, =(0.250.43-0.87)" .
8. The mutual position of the antenna electrical
axis and the direction & was estimated by the formula

& J
Y =arccos| —>-e, |.
(IIEBII ’

Figure 2 shows a graph of the function ¥(¢), and
Figure 3 shows the graphs of time variations of coor-
dinates of the vector q, . The simulation results indi-
cate the effectiveness of the proposed algorithm for
uniaxial spacecraft stabilization.

3.2. The problem of uniaxial terminal pointing. 1 ct
us solve the problem of pointing in inertial space
some fixed axis associated with the spacecraft to a
given point. In the general case, this problem is for-
mulated as follows: find the control law u that trans-
fers the vector whose motion is described by (13)
from the current state g (7)), q;(,) at time #, to the
required state gp(7)), q,(f)) at time ¢,. The times £,
and ¢, are fixed. The solution to this problem is given
by the following theorem.

(60)
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Figure 3. The spacecraft’s angular velocities variation with
time

Theorem 2. Let the motion of vector qp relative fo
the reference frame R be given by equation (13). Let us
introduce an auxiliary vector x, and the motion of this
vector is described by the equation

¥=7,xcR’. (61)
Suppose that for the fixed times , and t,, the follow-

ing boundary conditions are given for the vector x and
its first derivative:

x(ty)=a5(t ) %(1) =4 (t,).  (62)
x(tl):qB(tl)’x(tl)qu(tl)’ (63)

and a control t is found that transfers the vector x and
its first derivative to the position (63).

Let us define the calculated trajectory q, (t) for
transferring the vector q y(f) from the current position at
time 1, to a given position at time t, and a control that
implements this motion as follows

as(t)=3 o=lal. (64)
éB(t):—leX(éBX%j ) (65)

NN N . S . PR
uqu(t)z_qu[qBX(%_zg)()}_ qB qB 5(66)

where the vectors x, X, and T are defined by the expres-
sions

7=C,(t-t,)-C,, (67)

6 12
= - 9 68
1 (tl _to)z y2 (tl —t0)3 y1 ( )

30

_ tl_to _ 1
C,=C 5 Py Y, > (69)
V=05 (t) =05 ()= A5 (£ ) (1, 1) (70)
Y :qB(tl)_qB(tO)’ (71)

. . (t-t,)’
X(t)=d,(t,)+C, -C,(t—1,), (72

X(£)=dy(t,)+6(5)(E—1,)+
3 2
+cl(t_t°) —Cz(t_to) . (73)
3 2
Then the control

UZ—QBX(qBX/,LB), (74)
py=—Ke-Ke+u, (75)
e=q,—G,, €=0, 0, (76)

ensures the transfer of the vectors Oy and Q from po-
sition (, (to) , O (to) fo the given position (|, (tl) ,
4z (¢, ) in afixed time t, —t,.

Proof. To prove this theorem, equation (61) is
used. Let us find the control law 7(7) that transfers the

system X =7 from the current state X(to) =0, (to) ,
X (to) =0, (to) at time ¢, to the required state

X(tl) =0, (tl) , )'((tl) =0, (t1) at time ¢, and pro-

viding a minimum for the functional
1¢n 2

V=2 j . Il at . (77)

For this problem, there is an analytical solution
defined by expressions (69)—(74) [7]. Let us define
the calculated trajectory C]B (t) as

()= )

()
Then, according to Appendix, for the derivative
(jB (t) and control U, the following expressions are

valid: '
dB(t) _CAIBX(QBX%j )
N PO . A2 .
d, =G, x4, [ x]—HqBH Gy (30)
x(ty) =05 (te), *(t) =05 (%),

X(t,)=0,(t,). *(t,)=d5(t,).

ISSN 1561-8889. Kocmiuna nayxa i mexnonoeis. 2024. T. 30. No 4
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it is evident that the control U will ensure the transfer
of the vector ¢, from position qB(tO) , Up (to) to a
given position g, (tl) , Up (tl) in a fixed time ¢t —t.

The control built in this way is programmatic.
With such control, the vector g (t) will move along
a certain trajectory different from the calculated one.
That is due to errors in the program control imple-
mentation and disturbance moments presence acting
on the spacecraft. To stabilize the calculated trajecto-
1y, it is necessary to add a stabilizing control through
feedback. To find this control, consider the equa-
tion for the relative motion of the vectors g, (¢) and
G5 (t) . Assaid above, the motion of vector g, () can
be represented in the form (19). Subtracting equation
(80) from equation (19) gives

€=u =p,—U. (81)
According to Theorem 1, the control
u =-Ke-K;ze (82)

provides asymptotic stability for the position e =0.
It follows from (81) that
py=—-Ke-Keé+a,

which completes the proof of Theorem 2.

Example 2. To analyze the qualitative features of
the proposed terminal reorientation algorithm, the
simulation of the reorientation process was carried
out with the initial data from Example 1. In this case,
the start time of the manoeuvre was taken f, =0 s,
and the end time #, =1000 s. The boundary condi-
tions were as follows

—0.162161484770419
0.635129976541619 |,
—0.755191078969618

(83)

U5 (tO) =

0.296186315679564
—0.828484883752114 |x107*,
—0.760371266945204

qB(tO)z

0.250000000000000
0.433012701892219 |,
—0.866025403784439

qB(tl):

0
ds(t,)=]0.
0
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Figure 4. The W estimation variation with time
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Figure 5. The spacecraft’s angular velocities variation with
time

Figure 4 shows a graph of the change in the func-
tion W(¢), and Figure 5 shows the graphs of time vari-
ations of coordinates of the vector (. The simula-
tion results indicate the efficiency of the proposed al-
gorithm for the uniaxial orientation of the spacecraft.

4. CONCLUSION

For an arbitrary normalized vector, a dynamic model
of motion in the associated coordinate system is ob-
tained. This model significantly simplifies the prob-
lem of synthesizing control of the spacecraft’s uni-
axial orientation. In this case, the synthesis problem
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is reduced to constructing a control for a system with
three second-order integrating links, and the syn-
thesis problem has an analytical solution for such
systems. The resulting control algorithms are much
simpler to implement than the ones obtained using
the traditional model. A new approach has been sug-
gested for this model, which is a transformation of
the right-hand side of the Euler dynamics equation
into a new control vector ueR>. This allows for
the concise representation of the right-hand side of
the dynamics equation for the vector as a function
of the spacecraft’s angular motion parameters. The
transformation found is reversible, allowing us to re-
turn to the original form of the right-hand side of the
Euler dynamics equation and find the control torque
M, e R?, physically realized by the control system
actuators. Based on the obtained model, two algo-
rithms for constructing a spacecraft uniaxial orienta-
tion are proposed: an algorithm for spacecraft uniax-
ial stabilization and an algorithm for spacecraft uni-
axial terminal reorientation. The application of the
proposed model is demonstrated using two examples:
solving the stabilization problem and the problem
of the spacecraft’s uniaxial terminal reorientation.
When solving the stabilization problem, in contrast
to the well-known works [4, 10], in which the direct
Lyapunov method was used to construct the control,
for the first time, it was possible to reduce the prob-
lem of finding the control M, to the trivial problem
of finding the control g, , which ensures asymptotic
stability of the error equation € = . This is a linear
equation with constant coefficients, which makes it
possible to apply well-developed methods of the the-
ory of linear systems with constant coefficients. The
numerical simulation results confirming the efficien-
cy of the proposed algorithms have been presented.
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APPENDIX. THE DEDUCING OF FORMULAE
FOR THE FIRST AND SECOND DERIVATIVES
OF THE UNIT VECTOR

The formula deducing for the first derivative of a unit
vector of p. Let @, be the unit vector of vector &p.
Denote by 6 the modulus of the vector §z and iden-
tity matrix of order 3 x 3 as |,. Then the time de-
rivative of the unit vector is defined by the following
expressions

. €s €_B_§£_B E_B_ T£B:
9z = dt("ﬁg"} 5 55 5 quB82

(1, quB)£B=—q (qug—Bj (Al)

The formula deducing for the second-time derivative
of a unit vector of &, . Differentiating (Al) to time
gives

d, = (1, quB)(ég ;Ssj

(13_‘13‘11]5;)(6_3_553J ( quB)gB qg EB

T€B

quB . T EB _

_quB S -

)
—qp 683 (I _quB)iB =
£B _é. _i. g 2 B
( quB)[g 8253 82£BJ ”53” &=

= (I3 _qug )(%_25_825‘3

gy [ﬁ——z—q lele,. @

]—us;u%f
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HauionanpHuii yHiBepcuTeT «3amnopizbka moJliTexHika»
ByJ1. 2KykoBcbKoro 64, 3amopixoks, Ykpaina, 69093

JTUMHAMIYHA MO/JIEJTb PYXY BEKTOPA TA 11 3ACTOCYBAHHS
B 3AJAYAX KEPYBAHHA OJHOBICHOIO OPIEHTALIIEIO KOCMIYHOI'O AITAPATA

OO’€eKT DOCHIIKEHHST: CUCTeMa YIIPaBJIiHHS KOCMiYHOTO arnapara. [IpenMer nocmimKeHHS: KBaTepHiIOHHE TMHAMIYHE PiBHSIH-
HS pyXy JOBiIbHOIO HOPMOBAHOTO BEKTOpa i METOAM MOOYIOBU aIrOPUTMiB KEPYBaHHS OJHOBICHOIO Opi€EHTAlli€0 KOCMiu-
HOTO arapaTa Ha HOoro ocHoBi. Y po00OTi OTpUMaHO HOBY IMHAMIYHY MOJEJIb PyXy BEKTOpa y 3B’s3aHiii CUCTeMi KOOPAMHAT,
JIOCJTIIXKEeHO ii BJACTUBOCTI Ta PO3MISIHYTO METOAM BUPILLICHHS 3a71a4 OJHOBICHOI OpieHTallii i3 3aCTOCYBaHHSM L€l MoIeJIi.
[Mpu boMy 3amava cCMHTE3Y 3BOAUTHCS 10 TTOOYIOBU KepyBaHHSI JIJIST CUCTEMU, 1110 € CYKYITHICTIO iHTETpYBaIbHUX JIAHOK JIPY-
TOTO MOPSAKY. Y 6araThOX BUIAAKAX ISl TAKUX CUCTEM 3aadya CUHTE3y Ma€ aHAITUIHUIM po3B’130K. OTpUMaHi MpU LIbOMY
JITOPUTMU KePyBaHHS OJHOBICHOIO Opi€HTALIIE€I0 peasli3yloThCsl 3HAYHO MPOCTillle, HiXK aITOPUTMU, OTPUMaHi TPy BUKOPUC-
TaHHi TpaauuiitHoi Mozaeni. HaBeneHi pe3yabraTy YuCeIbHOIO MOAEIIOBAHHS, 110 MiATBEPAXYIOTh Mpale31aTHICTh 3aIpoIio-
HOBAHOTO aJITOPUTMY.

Karouogi caosa: KocMiuyHMI anapaT, OTHOBICHA OpieHTallisl, TepMiHaJbHa TIEpeopieHTallisl, KBaTepHiOH, cTabii3allisi, KyToBa
IIBUIKICTb.
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