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PREDICTION AND RISK MANAGEMENT OF SPREADING
FOREST PEST INFESTATIONS USING SATELLITE DATA

The article is devoted to predicting the risk of occurrence of large foci of infection in a pine forest with bark beetles, pathogenic fungi,
and nematodes. The areas of disease observed on satellite images have a spotted, clustered structure of drying forest. An important
statistical characteristic of the infestation structure is the power law of distribution of infestation clusters in size. Large, catastrophic
events have a significant probability in processes with power laws of distributions. The given methods of computer identification and
analysis of cluster distributions make it possible to form a statistical percolation model of prediction and risk management of forest
infestation based on information captured (read out) from space images.

The only effective means of combating the bark beetle is sanitary felling of the forest. The sanitary cuttings area is considered
a control parameter in the model. The model uses forest observation on a lattice of satellite image pixels, similar to the lattice of a
percolation system. The universality of the theory is explained by the fact that it considers the interaction of elements of infection
clusters, which, near the critical state of a forest ecosystem, obey a power-law distribution.

The value of the power-law indicator indicates the formation of large clusters and is used in the model for the risk prediction of
infestation development. In the model, risk prediction is understood as a statistical assessment of risk in the future, taking into account
changes in the conditions for its manifestation. Changes are determined based on the results of satellite imagery, and the effectiveness
of sanitary tree cuttings is considered.

An example of a prediction of the development of forest infestations (drying) using images from the Sentinel-2 satellites is presented.
Model identification methods are considered, and a test verification of the model is performed. Using scale-invariant indicators of
power-law distributions made it possible to abandon expensive high-precision images and replace them with images of average spatial
resolution. The approach to synthesizing a prediction and risk management model from space images discussed in the article is based
on the theory of self-organized criticality. The model is quite universal and can be used in space geoinformation technologies to orga-
nize effective environmental management.
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1. INTRODUCTION

The degradation and death of pine forests in vast ar-
eas of several European states and other countries
worldwide is a serious public concern [15]. This
trend, which has emerged in Ukraine over the last
decade, has now taken on catastrophic proportions.
Data from recent years show that the most common
pest species in pine forests in Ukraine, the stem pests
Ips acuminatus and Ips sexdentatus, are rapidly in-
creasing in number. Previously nonaggressive bark
beetle Ips acuminatus is now considered among the
most serious pests of pine forests in Ukraine and oth-
er European countries Fig 1. The bark beetle is a car-
rier of pathogenic fungi and nematodes.

Among serious forest pests in Ukraine, xylophages
(stem pests) were taking the dominant position
gradually, making up 23 % of the area of all pests
in 2018 and increasing the area of its outbreak for
4 years by 7.7 times [5]. Most experts acknowledge
that the main factor for the mass infestation of for-
est pests is the critical state of forest ecosystems in
the regions under consideration. The pine bark bee-
tle invades weakened trees, which completely dry up
within a short period of a few weeks. The observed
mass weakening and desiccation of forests reflect the
general critical state of forest ecosystems [8].

The only effective means of bark beetle control are
timely identification of infested areas, sanitary fell-
ing, and rapid disposal of infested wood [13]. The
number of bark beetles caught in pheromone traps is
counted to determine the distribution level quickly.
In [12], an algorithm for expert prediction of Ips acu-

-

Figure 1. Forestry territory (June 2019) inhabited by xylophag-
es: Ips sexdentatus, Ips acuminatus, Blastophagus minor (from
left to right)
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minatus spread risk depending on environmental fac-
tors was proposed.

Remote sensing data proved to be an effective tool
for detecting and monitoring areas infected with bark
beetles, as they provide global, spatially continuous,
and periodic data on vegetation status. [11]. In addi-
tion, there are now many freely available satellite data
sources with worldwide coverage and high temporal
resolution (e.g., Landsat and Sentinel programs).
These are a cost-effective alternative to costly terres-
trial forest field surveys [18]. Remote sensing opens
possibilities for detecting and mapping bark beetle in-
festations based on spectral features of the vegetation.
Spectral features are related to various functional and
structural characteristics of plants, such as pigment
amount, leaf structure, moisture content, nitrogen
concentration, leaf surface area index, and other spe-
cific indexes. In the current study, the influence of
pests is known to be reflected in plants’ biophysical
and biochemical properties and consequently affects
spectral signatures [1]. An analysis of the dynamics
of the spread of infestations observed from satellite
images reveals the formation of infestation patches.
Infestation patches have a coherent (clustered) struc-
ture consisting of individual elements (pixels, cells)
with at least one side in common. The emergence of
such a spatial structure of infestations cannot be de-
scribed using regular dynamics methods. A statistical
model of percolation theory is used to describe the
formation of the cluster structure of forest infesta-
tions based on satellite images [3].

The percolation model in our research is based
on one of the first works by S.R. Broadbent and
J. M. Hammerslay on percolation processes [6],
which discusses the propagation of liquid (fluid) in
inhomogeneous media. A model of spreading an in-
fectious epidemic in a garden on a square grid is con-
sidered among the examples. The authors showed
that there is a critical value for the probability of
infection spreading across the grid cells. Below this
value, an epidemic cannot occur, and above a criti-
cal value, the spread of large infections (epidemics)
occurs with a high probability. Subsequent studies
revealed [16, 19] that in a regime close to the critical
value, a large percolation cluster of fluid (infection)
appears, a power law distribution of infection clus-
ters by size takes place [14], and the percolation clus-
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ter has a fractal structure [9]. In our work, we retain
the terminology of the first percolation model [6]
— “contagion”. Tree infestations are observed from
spacecraft as clusters of dead and fresh dead trees of a
pine forest populated by xylophages.

If the statistical analysis of the distribution of for-
est infestation clusters follows a power law [2, 14],
then the dynamics of the process may show synergis-
tic (cooperative) properties of environmental factors,
which are emergent [4]. The prediction behaviour of
systems and processes with such systemic properties
cannot be made by studying and subsequently gene-
ralizing the effects of individual factors. The occur-
rence of large outbreaks of pests depends on many
factors, including ongoing sanitary measures (tree
felling), the initial area of pest outbreaks, air temper-
ature, groundwater levels, soil conditions, tree age,
forest stand structure, and others. It is impossible to
accurately account for and mathematically describe
the impact of even the significant factors influencing
the spread of infestations, and a statistical distribu-
tion of clusters models their generalizing effect.

A feature of the power law of distribution, also
called Zipf law, Pareto distribution, is the slow de-
creasing probability of large values of a random vari-
able. The power law is one of the indicators of di-
sasters in the natural, technical, and socio-economic
spheres [4]. In the case of non-power statistics, the
area of large values of a quantity is characterized by
a small probability. In systems with a power-law dis-
tribution, large events are not rare enough to neglect
their probability. The power-law distribution of forest
infestation clusters indicates the possible occurrence
of large-scale infestation foci. This is because the
evolution of the forest ecosystem has accumulated a
large amount of a resource (weakened trees), and a
favourable combination of environmental factors has
occurred that can synergistically affect the deploy-
ment of large clusters of infestation foci. This results
in the process moving into the high-risk category of
large-area tree mortality.

Events that give rise to dangers and risks can be
described in statistical language. However, statistics
is subject to well-defined deterministic laws. Conse-
quently, risks can be predicted and assessed if process
statistics are considered. Risks can be managed by
influencing control parameters promptly.
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Risk management is the process of identifying, as-
sessing, and taking steps to reduce risk to an accept-
able level [17].

The study’s objectives are to substantiate and devel-
op a statistical method and models for risk predicting
and managing the drying of a pine forest caused by the
colonization of trees by stem pests. This will avoid sig-
nificant financial losses associated with a decrease in
the commodity value of wood damaged by pests. The
source data for the statistical method are the remote
sensing data over studied areas of the forest.

2. IDENTIFICATION OF A RISK PREDICTION MODEL

The synthesis of a statistical risk model is carried out
using forest remote sensing data from spacecraft.
The synthesis includes the stages of structural and
parametric identification.

The decryption of images. To monitor changes in
the composition of the controlled area of the pine
forest, optical data from the MSI (Multispectral In-
strument) Sentinel-2A, -2B scanner were used. Im-
age interpretation was performed using a pixel-based
approach and artificial neural networks [18]. The
classification method with learning involved the fol-
lowing steps:

1) creation of a “region of interest” to pre-define
3 classes of objects,

2) histogram analysis and creation of training sam-
ples,

3) image classification by artificial neural network
method.

This method confidently segments the images
into 3 classes: glades and areas of sanitary cuttings,
healthy coniferous forests, and areas with completely
and partially dried trees. The spatial resolution of the
classification result is 10 m/pixel.

Structural identification. By classifying an image
of a forest area from a spacecraft, the formation of a
cluster structure of infection is established. The size
of each cluster in pixels is determined in Fig. 2.

A comparative statistical analysis of the sizes of in-
fection clusters is carried out to identify the model’s
structure.

Let u(x)dx be the fraction of clusters with size be-
tween X and x + dx . Distributions of the form (1) are
said to follow a power law:

u(x)=Cx™“, a>0. (1
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Figure 2. Classification of the image of a test forest area, 2017:
a — Fragment of the image of a pine forest from the Sentinel-
2A spacecraft, the study area is marked with a square in the
image for the 2017 year, b — Result of image fragment classi-
fication: / — glades and areas of sanitary cuttings, 2 — healthy
forests, 3 — clusters of withered trees

The constant C in Eq. (1) is given by the normali-
zation requirement.

The histogram is a straight line on log-log scales,

Inu(x)=-alnx+c, 2)
where o, and ¢ are constants and ¢ =InC . The con-
stant o, is called the exponent of the power law.

In the case of power distributions, huge sample
sizes are needed to construct good-quality histo-
grams, which are empirical analogues of probabili-
ty densities. In most cases, just making a histogram
(Fig. 3, a) and plotting it on log scales to see if it looks
straight is a poor way to proceed. The right-hand end
of the distribution is noisy because of sampling er-
rors. In practice, the rank method identifies power
distributions, which reduces the requirement for a
large volume of statistical data and avoids the early
appearance of statistical noise [2, 14]. In order to
process the observation data using the rank method,
it is necessary to order the sequence of values of varia-
ble x in descending order and assign an ordinal num-
ber to each element of the sequence, starting from
the highest value. Elements with the same value get
different numbers in the descending sequence. Each
sampled value has a rank equal to the highest element
number with that value. The ranks of values are the
cumulative frequencies of the distribution, and the
maximum value of the cumulative frequency (the
total frequency) is equal to the number of items N
in the sample. The frequency with which values of a
random variable occur, expressed relative to N units,

is treated as a statistical probability. Identification of
a power rank distribution is done by constructing a
probability cumulative function F(X):
F(x)=U(X>x)= Y U(X=x,), (3)
x;2x
where X — is a random variable and x — is the current
value of the variable. The notation below the sum
signs in (3) indicates that the summation applies to
all values that are greater than or equal to the current
value. The probability cumulative function of a pow-
er distribution has a maximum value equal to one if
X=x_. ., F(x__ )=1.The function F(x) is defined
for both discrete and continuous values. For a con-
tinuous value x, the function F(x) is related to the
density function u(x) by the integral relation, which
takes into account the fact that the power distribu-
tion (1) diverges for small values of x,

F(x)= Tu(x’)dx’ = CT(x’)‘“dx' =

=& e Cx™. (4)
a-—1

Power laws with exponents less than one cannot be
normalized and are not usually found in nature [13].
Comparison of relations (1) and (4) shows that the
cumulative function F(X) of a power distribution is
also a power function with a value of the exponent
one less than that a of the function U(X) and is ex-
pressed in bi-logarithmic coordinates as a linear re-

lationship:
InF=InC, —(a—1)Inx. &)

In practice, it is possible to construct rank dia-
grams in natural rather than relative units. Determi-
nation of the coefficient of the direct oo —1 of the
cumulative function in the notation (5) is usually
performed using many values of X and F(X) by the
least squares method. The method of graphing cu-
mulative functions in bi-logarithmic coordinates is
the most obvious method for structurally identifying
power-law distributions since the functions’ graphs
should well approximate straight lines.

Based on the graph of the cumulative function
(Fig. 3, b), it follows (we can conclude) that the struc-
ture of distributions of infection clusters (Fig. 2, b)
obeys a power law.

Parametric model identification. However, it is
known that the least squares method of approximat-
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ing a power function gives a systematic error in de-
termining o [10, 14]. In [14], the derivation of the
maximum likelihood method is recommended to
determine the exponent and estimate the statistical
error o. Considering that the value of the power-law
index is an important indicator for predicting the oc-
currence of large infection forest foci, we use these
recommendations and the formulas of the maximum
likelihood method:

o= 1+r{ilni} , (6)

i=1 xmin

-1
} =°°T1, )
n
where x, — the quantities i=1,n are the measured
values of x and x_, is the minimum value of x,
X, — the minimum value of the quantity x, at
which the power law is satisfied, oo — the exponent
of the power law, c — an estimate of the expected
statistical error.

For the example under consideration (see Fig. 2),
exponent values o were calculated using the maxi-
mum likelihood method of Eq. (6), statistical error
c—Eq (7):a=174,6=0.09, a = 1.74 + 0.09,
o = 1.74(9). Numbers in parentheses give the error
on the trailing figures. The distribution follows a
power law, see Eq. (1). The constant C is mostly un-
interesting.

Gzﬁ{imi
=1 X

min

3. THE DIVERGENCE OF THE AVERAGE
CLUSTER SIZE AS AN INDICATOR OF RISK

Consider the probability density function u(X) of a
random continuous variable X with values x, in the
notation of Eq. (1). The first-order moment M, de-
termines the mean { X) and expected value:
M, = (x)= I xu(x)dx =C j x'dx =
- - (8)

At a <2, the mean value of the power-law distri-
bution Ml —> 00, the first-order moment diverges,
but at o > 2, the mean value is completely deter-
mined. From this, we can conclude that the average
value of infection clusters tends to be tremendous
for the values of the exponent ao<2 calculated by
Egs. (6), (7). Critical value o = 2. Consequently,
significant losses will be associated with catastro-
phes, which can be predicted from the values of the
power exponent calculated at the early stages of for-
est infection development. It should also be consid-
ered that for all-natural systems with values <2,
the average value of infection clusters is limited by
the size of the forest. The distributions are truncated
at the tail of large values since the areas of infesta-
tion cannot be larger than the area of the entire for-
est area, see Fig. 3, b. This is a finite-size effect. The
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Figure 3. The result of identifying the distribution of infection clusters from a satellite
image, see Fig. 2: @ — histogram, » — cumulative functions F(x) of cluster distribution

by size x, a straight line on log-log scales
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divergence of the average cluster size is determined
from the relation (8). At a <2, further development
of the process will generate large values of the sizes of
infection clusters. All calculations are performed by a
computer program. This program models the process
according to the initial data on the areas of infection
clusters X received from Remote sensing (Fig. 2).
The size of a cluster is determined by its area, which
is measured in pixels (1 pixel = 100 m?). The values
of indicator o, are calculated by Eq. (6).

Calculating the average size of infection clusters in
a percolation forest model. The approximation of the
observed distribution by a power distribution is con-
trolled by statistical error 6. When calculating the
average value of clusters for a < 2, a specific large,
but not infinitely large, number will be obtained. Our
data set is not infinite, and the size of the controlled
forest area limits the cluster sizes. The size of the in-
fection cluster is determined by decoding the image
as the number of pixels of its components. Calcula-
ting the average value of clusters for any values of a. is
performed using the following algorithm.

The type of cluster is characterized by its size. Let
there be 1 =1, N types of clusters in the satellite im-
age, then: s; — size of clusters of type i, n; — number
of clusters of type i. Let p; be the fraction of infection
clusters of type 7 of size s;:

Si N

P = D> op=1, ©)

=5 |
dosn
i=1

then the average size of infection clusters will be
determined as a first-order moment

N
<s>=>'"p,s,. (10)
i=1

Table 1. Risk prediction levels

Comparing Calculated Values

Risk levels -
a, G, o, =2

2<oa—o0

or

the distribution that does not follow a
power law, see Eq. (5)
a—-oc<2<ato

atoc<2

R, — low

R, — medium
R;— high

a — the exponent, critical value o, =2, 6 — error

Risk assessments and recommendations for reducing
risk levels. Statistics on foci of forest infestation make
it possible to predict three different dynamics of tree
death and risk levels: 1) low, 2) medium, and 3) high.
The indicator for the prediction assessment is the
exponent of the power law o, Eq. (6), taking into
account an estimate of the expected statistical error
o, Eq. (7). The average size of infection clusters <s>
is calculated using Egs (9), (10) and characterize the
current state of the spread of infection in a forest area.
The controlling parameter is the size of the tree felling
area. The control parameter can change the prediction
estimate. Calculating the current state <s> allows you
to evaluate the effectiveness of the control action.

Sanitary measures change the observed structure
of infection clusters, requiring a new risk prediction.
This concept of risk management based on remote
sensing data is implemented by a computer program.
The risk prediction levels are carried out according to
the relationships given in Table 1.

Risk levels and recommendations: R, — planned
selective sanitary of tree felling should be carried
out, R, — new risks may emerge, and risks that were
previously addressed may become a problem again,
it is recommended to increase the frequency of ob-
servations and carry out selective sanitary cuttings of
weakened trees, R; — tree death is expected over a
large area; it is recommended to carry out clear sani-
tary cuttings of weakened trees.

4. TESTING OF A MODEL FOR PREDICTION AND RISK
MANAGEMENT OF DRYING OF THE PINE FOREST

The initial data for predicting the development of
foci of infestation of pine forests by the bark beetle
were obtained by processing satellite images of a
forest area in central Ukraine. The observation was
carried out for plantations Pinus sylvestris in the area
of the Tobolsk forestry (Volyn region, Ukraine). Trees
are 35 years old. The size of the square observation
plot is about 53.5 ha, see Fig. 2, a.

Table 2 summarizes the main results of predictions
and observations of the spread of pine forest dieback
in the test area. The drying out of the forest is caused
by the colonization of trees by stem pests. Observation
of the forest was carried out over 7 calendar years
(2015—2021), the dates of filming are presented in
the second column of the table. The observation area
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85(#,) = 534700 m? corresponds to the projections of
a 5347-pixel image of the terrain. The data in Table
2 were obtained as a result of space surveys from
Sentinel-2A, see Fig. 2, a, and further classification
of digital images by area: infection, felling, and
healthy forest, see Fig. 2, b. The calculation of the
predictive risk indicator a was performed based on the
distributions of infection clusters, Fig. 3, according to
model identification methods, see Section 2, and Egs.
(6), (7). The average size of infection clusters <s> was
calculated using the method described in Section 3,
Egs. (9), (10). The predicted risk level R is determined
according to Table 1. The remaining values in Table 2
are calculated according to the equations:

ASq (1) = S1(ti1) —S1(t;) (11)
S3(ti+1) =Sa(to) —Sa(ti+1) (12)
AS3(ti+1) = So(t;) — Sa(tj11) (13)

where i1 =0,6.

The data given in Table 2 allow you to test the
percolation model of risk prediction over observation
periods:

e j = 1 the average value of infection clusters is
small, <s(#,)> = 3.97 — the current condition is good,
the risk prediction indicator a(#)) predicts a low level
of risk R, for the next observation period, sanitary cut-
tings have not been carried out, AS/(z,) = 0;

* i =12 <s(ty)> = 15.75 — the current condition is
satisfactory (the prediction is correct), the risk pre-

diction indicator a(#,) predicts a high level of risk R,
for the next observation period, minor sanitary cut-
tings were carried out AS|(#,) = 8, (according to the
recommendations, in order for the prediction not to
be justified, it was necessary to carry out clear sani-
tary cuttings);

* i=3<s(t;)>=57.97 — the current state of infec-
tion clusters is characterized by large-scale infection
of the forest (the prediction is correct), prediction
estimates for the next period a(#;) and R; indicate
the death of trees over a large area next year, sanitary
cuttings were carried out only of dried trees AS (#;) =
= 136 (this does not correspond to the recommenda-
tions, see Table 1);

* i =4 <s(t,)> = 67.60, the current state — large-
scale forest infestation (the prediction is correct),
prediction estimates for the next period au(#,) and Ry —

trees are expected to die over a large area, clear sani-
tary cutting as have been carried out AS,(7,) = 498
(corresponds to the recommendations, see Table 1);

* i =15 <s(t5)> = 9.19, the current condition is
good due to compliance with the recommendations
of last year, the prediction did not come true, the risk
prediction indicator a(Zs) predicts a low level of risk
R, for the next year, sanitary cuttings AS,(#5) = 531
were carried out over a large area, which does not
correspond to the recommendations of the model
and is considered as an unreasonable loss of wood, it
is possible that part of the sanitary cuttings from the
previous period was transferred to the current period;

Table 2. Results of prediction and observations of pine forest drying

i 7; (observation period) <s> o R AS, S S, A\ AS;
0 1, (initial value) — — — 0 639 4708 639 —
1 1, (19.08.2015) 3.97 2.56(20") R, 639 4555 153 153
2 1, (13.07.2016) 15.75 1.85(11) R, 8 647 4327 381 228
3 13 (31.07.2017) 57.97 1.74(10) R, 136 783 3802 906 525
4 7, (10.08.2018) 67.60 1.68(9) R, 498 1281 3381 1327 421
5 15(12.08.2019) 9.19 2.22(13) R, 531 1812 3205 1503 176
6 16 (16.08.2020) 7.67 2.21(12) R, 215 2027 2989 1719 216
7 17 (03.09.2021) 6.17 2.19(12) R, 72 2099 2932 1776 57

*— the distribution does not obey the power law, i — number of the observation period, <s> — average area of dried forest
clusters, o — predictive risk indicator, R — predicted risk level, AS| — forest felling area for the period, S| — total area of forest
felling at the time of observation, §, — total area occupied by forest at the time of observation, §; — total area of forest loss at
the time of observation, AS; — forest loss over the period. All areas are given in the areas of projections of image pixels onto the

surface, (1 pixel = 100 m?).
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2015
17 2 .

Figure 4. Map of forest losses in the test area of the forestry for
the period 2015—2021: / — glades and areas of sanitary cut-
tings, 2 — healthy forests, 3 — clusters of withered trees

2021

Inx

Figure 5. lllustration of verification of the prediction of pine
forest infestation distribution: ¢ — map of total forest infesta-
tion over 6 years (2015—2020), » — cumulative functions F(x)
of cluster distribution by size x (intensity ranking diagrams).
The dots indicate the number of infestation clusters whose
size exceeds a given value of x, the linear form of the function
in logarithmic coordinates illustrates the implementation of
the power distribution law

* i =6 <s(t;)> = 7.67 — the current condition
is good (the prediction is correct), risk prediction
a(ts) predicts a low level of risk R, for the next year,
sanitary cuttings have been completed on the square
AS(tg) = 215;

e i =7 <s(t;)> = 6.17, the current condition is
good (the prediction is correct), risk prediction
al(t,) predicts a low level of risk R, for the next year,
sanitary cuttings have been completed on the square
AS(t;) = T72.

Analysis of forest loss in a test area, see Table 2,
shows that during the observation period 2015—2021,

the percentage of forest loss was (55(7,)/8,(,))100 =
= (1776/4708)100 ~ 38 %.

Figure 2 shows the distribution of sanitary felling
and forest drying in 2017. Figure 4 shows the results
of interpreting an image from the satellite Sentinel-
2A of a test area of the forest in 2015 and 2021.

The map of forest losses in 2021 shows how the ar-
eas of forest cutting prevent the formation of a perco-
lation cluster of infection and drying out of trees. The
cluster passes through a section of forest from left to
right. Figure 5, a illustrates the verification of the
process of formation of a percolation cluster of in-
fection spread on a site over 6 years. Statistics on the
spread of infections obey a power law, see Fig. 5, b.

Test model verification over 7 years demonstrated
the model’s ability to predict the risks of large out-
breaks of forest pest infestation. A timely prediction
makes the use of clear sanitary cuttings of healthy
trees in areas where percolation infection clusters
form justified. This will avoid significant financial
losses associated with a decrease in the commodity
value of wood damaged by pests.

5. CONCLUSION

The percolation model of prediction and risk manage-
ment of forest infections discussed in the article refers
to the formalization of the description and analysis
of one of the phenomena of self-organized critical-
ity. The universality of the concept of self-organized
criticality is manifested in the general patterns inher-
ent in many phenomena studied in various fields of
natural and socio-economic sciences. As first pro-
posed by P. Bak [4], some dynamical systems arrange
themselves so that they always sit at the “critical” point
of parametric space, no matter what state we start in.
One says that such systems self-organize to the critical
point or display self-organized criticality.

Such systems develop power-law distributions at par-
ticular “critical” points in their parameter space because
of the divergence of some characteristic scale [14], such
as the mean cluster size in the percolation model.

The value ofthe power distribution parameterserves
as a statistical indicator of a predictive assessment of
the risk of the appearance of undesirable large values
of the controlled quantity. This indicator is used in
the model to decide on the formation of management
impacts on the forest ecosystem.
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JlepxaBHa ycTaHOBa « HayKoBMit LIEHTP a€pOKOCMIYHUX JOCTiIKEHb 3eMITi
IHcTUTYyTY reosioriunux Hayk HaltionanbHoi akageMii HayK YkpaiHu»
ByJ1. Onecst [onuapa 55-6, KuiB, Ykpaina, 01054

MMPOIHO3YBAHHSA TA KEPYBAHHA PUSUKAMMUA ITOIIMPEHHA
3APAKEHb JIICY IKIAHUKAMU 3A JAHUMU 133

CTarTiO MPUCBSYEHO MPOTHO3YBAaHHIO PU3MKiB BUHMKHEHHSI BEJIMKMX BOTHMUIL 3apPa’kKeHHsI COCHOBOTO JIiCy XyKaMU-KOpPO-
imamu, rMaToreHHUMU rpubamMu Ta HemaTogaMu. JliJISTHKY 3apakeHHs, 110 CIOCTEPiraloThCsl Ha KOCMIYHUX 3HiIMKax, MatoTh
TISIMUCTY, KJIACTEPHY CTPYKTYPY BCOXJIOTO JIicy. BaXITMBOIO CTATUCTUIHOIO XapaKTePUCTUKOIO CTPYKTYPH 3apaskeHb € CTeTle-
HEBUIi 3aKOH PO3IOALTY KJIACTePiB 3apakeHb 3a po3MipaMu. HaBeneHi MeToau KOMIT'10TepHOI ineHTUdiKaIlil Ta aHami3y po3-
TOAITY KJIACTePiB A03BOJSIIOTH CHOPMYBATU CTATUCTUUYHY, MEPKOISILIHY MOJIETb TPOrHO3YBaHHS Ta KEPYBaHHSI pU3UKaAMU
3apaxkeHHs Jiicy 3a iHpopMallielo, oTpuMaHolo 3acodbamu J133. €1uHuM eeKTHUBHUM 3aCO000M 0OPOTHOU 3 KOPOIIOM € TpO-
BEJIEHHSI caHiTapHUX PYOOK Jiicy. [0l caHiTapHUX PYyOOK PO3IJISIIAIOTHCS Y MOJIEIi SIK KEPiBHUI MapameTp.

YV Mojesi BUKOPUCTOBYEThCS CITIOCTEPEXKEHHS 3a JIICOM Ha PEeLIiTii MiKceJliB KOCMIYHOTO 3HIMKY SIK Ha pelIiTii MepKo-
JIAUiAHOL cucTteMu. Y mpouecax 3i CTeeHeBUMU 3aKOHAMU PO3IOALUTIB 3HAYHY HMOBIPHICTh MalOTh BEJHMKi, KaTacTpodiyHi
noii.

VYHiBepcaJIbHICTh TEOPil MOSICHIOETLCS TUM, 1110 B Hill pO3MJISIAAETHCS B3aEMO/Iisl €JIEMEHTIB KJIaCTepiB 3apaXkKeHHs, SIKi 10~
0JIM3Y KPUTUYHOTO CTAHY JIiCOBOT €KOCUCTEMU IMiIMOPSIAKOBYIOTHCSI CTEIIEHEBOMY PO3ITOIiTY.

BenuunHa moka3zHUKa CTENEHEBOTO PO3MOJIily € iHAMKATOPOM BUHUKHEHHS BEJMKHUX KJIACTEpiB i BUKOPUCTOBYETHCS
Yy MOJeJli 11 MPOTHO3HUX OLIIHOK PU3UKY PO3BUTKY 3apakeHb. Y MOJENi Mill TPOrHO3yBaHHSIM PU3UKIB PO3YMI€ThCS CTa-
TUCTUYHA OLliHKA PU3UKY Y MAaOYyTHHOMY 3 ypaXyBaHHSIM 3MiH YMOB OTO TIPOSIBiB. 3MiHM BU3HAYAIOTHCS 3a pe3yJbraTaMu
3OMKHU 3 KOCMOCY i BPaXOBYIOTb €(DeKTUBHICTh CaHITApHUX PYOOK nepeB. HaBomuThCsl mpukiIan MPOrHO3yBaHHS PO3BUTKY
3apakeHHs (yCUXaHHs) JIicy 3a 3HIMKaMu 3 KOCMiYHMX amapartiB «Sentinel-2». Po3riasiHyTo Metonu ineHTudikalii Mmoaesi
Ta BUKOHAHO TECTOBY MepPeBipKy MOAEi. 3aCTOCYBaHHSI MacIITaOHO-iHBapiaHTHUX iHAMKATOPIB CTENEHEeBUX PO3IO/iJIIB 10-
3BOJIWJIO BiIMOBUTUCS BiJl BAKOPUCTAHHS 1IOPOTMX BUCOKOTOYHUX 3HIMKIB Ta 3aMiHUTHU iX 3HIMKAMU CepeHbO1 MPOCTOPOBOI
PO3pi3HEHHOCTI. PO3MISAHYTHIA y CTATTi MiaXiA 10 CUHTE3Y MOJEJi MPOTHO3YBAHHS Ta KEPYBaHHS PU3MKAMU Ha OCHOBI KOC-
MIYHUX 3HIMKIB I'PYHTYETbCSI HAa KOHLEMLI TeOpili caMOOpraHi3oBaHOI KpUTUYHOCTI. Mojelb JOCUTh YHiBepcaabHa i MOXe
BUKOPHUCTOBYBATHCH Y KOCMIUHUX Te0iH(POpMaIiifHMX TEXHOJIOTISIX IJIs1 OpraHizailii e(peKTUMBHOTO MPUPOIOKOPHCTYBaHHS.

Karouoei caosa: BcuxaHHSI COCHOBUX JIiCiB; CTOBOYPOBI IKiTHUKU, 1aHi IMCTAHIIHHOTO 30HIYBaHHSI, CTETIEHEBUI PO3MOIIT,
MPOrHO3YBaHHS PU3UKIB, KEPYBAHHS PU3MKAMU, TIEPKOJISLiiHA MOJIEIb.
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