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PREDICTION AND RISK MANAGEMENT OF SPREADING 
FOREST PEST INFESTATIONS USING SATELLITE DATA

The article is devoted to predicting the risk of occurrence of large foci of infection in a pine forest with bark beetles, pathogenic fungi, 

and nematodes. The areas of disease observed on satellite images have a spotted, clustered structure of drying forest. An important 

statistical characteristic of the infestation structure is the power law of distribution of infestation clusters in size. Large, catastrophic 

events have a significant probability in processes with power laws of distributions. The given methods of computer identification and 

analysis of cluster distributions make it possible to form a statistical percolation model of prediction an d risk management of forest 

infestation based on information captured (read out) from space images. 

The only effective means of combating the bark beetle is sanitary felling of the forest. The sanitary cuttings area is considered 

a control parameter in the model. The model uses forest observation on a lattice of satellite image pixels, similar to the lattice of a 

percolation system. The universality of the theory is explained by the fact that it considers the interaction of elements of infection 

clusters, which, near the critical state of a forest ecosystem, obey a power-law distribution.

The value of the power-law indicator indicates the formation of large clusters and is used in the model for the risk prediction of 

infestation development. In the model, risk prediction is understood as a statistical assessment of risk in the future, taking into account 

changes in the conditions for its manifestation. Changes are determined based on the results of satellite imagery, and the effectiveness 

of sanitary tree cuttings is considered.

An example of a prediction of the development of forest infestations (drying) using images from the Sent inel-2 satellites is presented. 

Model identification methods are c onsidered, and a test verification of the model is performed. Using scale-invariant indicators of 

power-law distributions made it possible to abandon expensive high-precision images and replace them with images of average spatial 

resolution. The approach to synthesizing a prediction and risk management model from space images discussed in the article is based 

on the theory of self-organized criticality. The model is quite universal and can be used in space geoinformation technologies to orga-

nize effective environmental management.

Keywords: drying of pine forests; stem pests, remote sensing data, power-law distributions, risk prediction, risk management,  percola-

tion model

Цитування: Artiushenko M. V., Khyzhniak A. V., Tomchenko O. V. Prediction and risk management of spreading forest 

pest infestations using satellite data. Space Science and Technology. 2024. 30, No. 3 (148). P. 61—70. https://doi.org/10.15407/

knit2024.03.061

© Publisher PH «Akademperiodyka» of the NAS of Ukraine, 2024. This is an open access article under the CC BY-NC-ND 

license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Дослідження Землі з космосу
Study of the Earth from Space



62 ISSN 1561-8889. Космічна наука і технологія. 2024. Т. 30. № 3

M. V. Artiushenko, A. V. Khyzhniak, O. V. Tomchenko

1. INTRODUCTION

The degradation and death of pine forests in vast ar-

eas of several European states and other countries 

worldwide is a serious public concern [15]. This 

trend, which has emerged in Ukraine over the last 

decade, has now taken on catastrophic proportions. 

Data from recent years show that the most common 

pest species in pine forests in Ukraine, the stem pests 

Ips acuminatus and Ips sexdentatus, are rapidly in-

creasing in number. Previously nonaggressive bark 

beetle Ips acuminatus is now considered among the 

most serious pests of pine forests in Ukraine and oth-

er European countries Fig 1. The bark beetle is a car-

rier of pathogenic fungi and nematodes.

Among serious forest pests in Ukraine, xylophages 

(stem pests) were taking the dominant position 

gradually, making up 23 % of the area of all pests 

in 2018 and increasing the area of its outbreak for 

4 years by 7.7 times [5]. Most experts acknowledge 

that the main factor for the mass infestation of for-

est pests is the critical state of forest ecosystems in 

the regions under consideration. The pine bark bee-

tle invades weakened trees, which completely dry up 

within a short period of a few weeks. The observed 

mass weakening and desiccation of forests reflect the 

general critical state of forest ecosystems [8]. 

The only effective means of bark beetle control are 

timely identification of infested areas, sanitary fell-

ing, and rapid disposal of infested wood [13]. The 

number of bark beetles caught in pheromone traps is 

counted to determine the distribution level quickly. 

In [12], an algorithm for expert prediction of Ips acu-

minatus spread risk depending on environmental fac-

tors was proposed.

Remote sensing data proved to be an effective tool 

for detecting and monitoring areas infected with bark 

beetles, as they provide global, spatially continuous, 

and periodic data on vegetation status. [11]. In addi-

tion, there are now many freely available satellite data 

sources with worldwide coverage and high temporal 

resolution (e.g., Landsat and Sentinel programs). 

These are a cost-effective alternative to costly terres-

trial forest field surveys [18]. Remote sensing opens 

possibilities for detecting and mapping bark beetle in-

festations based on spectral features of the vegetation. 

Spectral features are related to various functional and 

structural characteristics of plants, such as pigment 

amount, leaf structure, moisture content, nitrogen 

concentration, leaf surface area index, and other spe-

cific indexes. In the current study, the influence o f 

pests is known to be reflected in plants’ biophysical 

and biochemical properties and consequently affects 

spectral signatures [1]. An analysis of the dynamics 

of the spread of infestations observed from satellite 

images reveals the formation of infestation patches. 

Infestation patches have a coherent (clustered) struc-

ture consisting of individual elements (pixels, cells) 

with at least one side in common. The emergence of 

such a spatial structure of infestations cannot be de-

scribed using regular dynamics methods. A statistical 

model of percolation theory is used to describe the 

formation of the cluster structure of forest infesta-

tions based on satellite images [3]. 

The percolation model in our research is based 

on one of the first works by S.R. Broadbent and 

J. M. Hammerslay on percolation processes [6], 

which discusses the propagation of liquid (fluid) in 

inhomogeneous media. A model of spreading an in-

fectious epidemic in a garden on a square grid is con-

sidered among the examples. The authors showed 

that there is a critical value for the probability of 

infection spreading across the grid cells. Below this 

value, an epidemic cannot occur, and above a criti-

cal value, the spread of large infections (epidemics) 

occurs with a high probability. Subsequent studies 

revealed [16, 19] that in a regime close to the critical 

value, a large percolation cluster of fluid (infection) 

appears, a power law distribution of infection clus-

ters by size takes place [14], and the percolation clus-

Figure 1. Forestry territory (June 2019) inhabited by xylophag-

es: Ips sexdentatus, Ips acuminatus, Blastophagus minor (from 

left to right)
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ter has a fractal structure [9]. In our work, we retain 

the terminology of the first percolation model [6] 

— “contagion”. Tree infestations are observed from 

spacecraft as clusters of dead and fresh dead trees of a 

pine forest populated by xylophages.

If the statistical analysis of the distribution of for-

est infestation clusters follows a power law [2, 14], 

then the dynamics of the process may show synergis-

tic (cooperative) properties of env ironmental factors, 

which are emergent [4]. The prediction behaviour of 

systems and processes with such systemic properties 

cannot be made by studying and subsequently gene-

ralizing the effects of individual factors. The occur-

rence of large outbreaks of pests depends on many 

factors, including ongoing sanitary measures (tree 

felling), the initial area of pest outbreaks, air temper-

ature, groundwater levels, soil conditions, tree age, 

forest stand structure, and others. It is impossible to 

accurately account for and mathematically describe 

the impact of even the significant factors influencing 

the spread of infestations, and a statistical distribu-

tion of clusters models their generalizing effect. 

A feature of the power law of distribution, also 

called Zipf law, Pareto distribution, is the slow de-

creasing probability of large values of a random vari-

able. The power law is one of the indicators of di-

sasters in the natural, technical, and socio-economic 

spheres [4]. In the case of non-power statistics, the 

area of large values of a quantity is characterized by 

a small probability. In systems with a power-law dis-

tribution, large events are not rare enough to neglect 

their probability. The power-law distribution of forest 

infestation clusters indicates the possible occurrence 

of large-scale infestation foci. This is because the 

evolution of the forest ecosystem has accumulated a 

large amount of a resource (weakened trees), and a 

favourable combination of environmental factors has 

occurred that can synergistically affect the deploy-

ment of large clusters of infestation foci. This results 

in the process moving into the high-risk category of 

large-area tree mortality. 

Events that give rise to dangers and risks can be 

described in statistical language. However, statistics 

is subject to well-defined deterministic laws. Conse-

quently, risks can be predicted and assessed if process 

statistics are considered. Risks can be managed by 

influencing control parameters promptly.

Risk management is the process of identifying, as-

sessing, and taking steps to reduce risk to an accept-

able level [17]. 

The study’s objectives are to substantiate and devel-

op a statistical method and models for risk predicting 

and managing the drying of a pine forest caused by the 

colonization of trees by stem pests. This will avoid sig-

nificant financ ial losses associated with a decrease in 

the commodity value of wood damaged by pests. The 

source data for the statistical method are the remote 

sensing data over studied areas of the forest.

2. IDENTIFICATION OF A RISK PREDICTION MODEL

The synthesis of a statistical risk model is carried out 

using forest remote sensing data from spacecraft. 

The synthesis includes the stages of structural and 

parametric identification.

The decryption of images. To monit or changes in 

the composition of the controlled area of the pine 

forest, optical data from the MSI (Multispectral In-

strument) Sentinel-2A, -2B scanner were used. Im-

age interpretation was performed using a pixel-based 

approach and artificial neural networks [18]. The 

classification method with learning involved the fol-

lowing steps:

1) creation of a “region of interest” to pre-define 

3 classes of objects,

2) histogram analysis and creation of training sam-

ples,

3) image classification by artificial neural network 

method. 

This method confidently segments the images 

into 3 classes: glades and areas of sanitary cutti ngs, 

healthy coniferous forests, and areas with completely 

and partially dried trees. The spatial resolution of the 

classification result is 10 m/pixel.

Structural identification. By classifying an image 

of a forest area from a spacecraft, the formation of a 

cluster structure of infection is established. The size 

of each cluster in pixels is determined in Fig. 2.

A comparative statistical analysis of the sizes of in-

fection clusters is carried out to identify the model’s 

structure.

Let ( )u x dx  be the fraction of clusters with size be-

tween x  and x + dx . Distributions of the form (1) are 

said to follow a power law:

 ( )u x Cx , 0  .  (1)
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The constant C in Eq. (1) is given by the normali-

zation requirement.

The histogram is a straight line on log-log scales, 

 
ln ( ) lnu x x c   ,  (2)

where  and c are constants and lnc C . The con-

stant  is called the exponent of the po wer law.

In the case of power distributions, huge sample 

sizes are needed to construct good-quality histo-

grams, which are empirical analogues of probabili-

ty densities. In most cases, just making a histogram 

(Fig. 3, a) and plotting it on log scales to see if it looks 

straight is a poor way to proceed. The right-hand end 

of the distribution is noisy because of sampling er-

rors. In practice, the rank method identifies power 

distributions, which reduces the requirement for a 

large volume of statistical data and avoids the early 

appearance of statistical noise [2, 14]. In order to 

process the observation dat a using the rank method, 

it is necessary to order the sequence of values of varia-

ble x in descending order and assign an ordinal num-

ber to each element of the sequence, starting from 

the highest value. Elements with the same value get 

different numbers in the descending sequence. Each 

sampled value has a rank equal to the highest element 

number with that value. The ranks of values are the 

cumulative frequencies of the distribution, and the 

maximum value of the cumulative frequency (the 

total frequency) is equal to the number of items N 

in the sample. The frequency with which values of a 

random variable occur, expressed relative to N units, 

is treated as a statistical probability. Identification of 

a power rank distribution is done by constructing a 

probability cumulative function )(xF : 

 

( ) ( ) ( )
i

i
x x

F x U X x U X x


    , (3)

where X — is a random variable and x — is the current 

value of the variable. The notation below the sum 

signs in (3) indicates that the summation applies to 

all values that are greater than or equal to the current 

value. The probability cumulative function of a pow-

er distribution has a maximum value equal to one if 

minX x , min( ) 1F x  . The function ( )F x  is defined 

for both discrete and continuous values. For a con-

tinuous value x, the function ( )F x  is related to the 

density function ( )u x  by the integral relation, which 

takes into account the fact that the power distribu-

tion (1) diverges for small values of x,

( ) ( ) ( )
x x

F x u x dx C x dx
 

      
 

 

( 1) ( 1)
11

C x C x    


. (4)

Power laws with exponents less than one cannot be 

normalized and are not usually found in nature [13].

Comparison of relations (1) and (4) shows that the 

 cumul  ative function )(xF  of a power distribution is 

also a power function with a value of the exponent 

one less than that a of the function )(xu  and is ex-

pressed in bi-logarithmic coordinates as a linear re-

lationship:

 1ln ln ( 1)lnF C x   . (5)

In practice, it is possible to construct rank dia-

grams in natural rather than relative units. Determi-

nation of the coefficient of the direct 1  of the 

cumulative function in the notation (5) is usually 

performed using many values of x  and )(xF  by the 

least squares method. The method of graphing cu-

mulative functions in bi-logarithmic coordinates is 

the most obvious method for structurally identifying 

power-law distributions since the functions’ graphs 

should well approximate straight lines.

Based on the graph of the cumulative function 

(Fig. 3, b), it follows (we can conclude) that the struc-

ture of distributions of infection clusters (Fig. 2, b) 

obeys a power law.

Parametric model identification. However, it is 

known that the least squares method of approximat-

Figure 2. Classification of the image of a test forest area, 2017: 

a — Fragment of the image of a pine forest from the Sentinel-

2A spacecraft, the study area is marked with a square in the 

image for the 2017 year, b — Result of image fragment classi-

fication: 1 — glades and areas of sanitary cuttings, 2 — healthy 

forests, 3 — clusters of withered trees
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 ing a power function gives a systematic error in de-

termining  [10, 14]. In [14], the derivation of the 

maximum likelihood method is recommended to 

determine the exponent and estimate the statistical 

error . Considering that the value of the power-law 

index is an important indicator for predicting the oc-

currence of large infection forest foci, we use these 

recommendations and the formulas of the maximum 

likelihood method: 

 

1

1 min

1 ln
n

i

i

xn
x





 
    

 
 , (6)

 

1

1 min

1ln
n

i

i

xn
x n





  
   

 
 , (7)

where ix  — the quantities 1,i n  are the measured 

values of x and minx  is the minimum value of x, 

minx  — the minimum value of the quantity x, at 

which the power law is satisfied,  — the exponent 

of the power law,  — an estimate of the expected 

statistical error. 

For the example under consid eration (see Fig. 2), 

exponent values  were calculated using the maxi-

mum likelihood method of Eq. (6), statistical error 

 — Eq. (7):  = 1.74,  = 0.09,  = 1.74 ± 0.09, 

 = 1.74(9). Numbers in parentheses give the err or 

on the trailing figures. The distribution follows a 

power law, see Eq. (1). The constant C is mostly un-

interesting.

3. THE DIVERGENCE OF THE AVERAGE 
CLUSTER SIZE AS AN INDICATOR OF RISK

Consider the probability density function )(xu of a 

random continuous variable X with values x, in the 

notation of Eq. (1). The first-order moment M
1
 de-

termines the mean x  and expected value:

 

min min

min

1
1

2

( )

[ ] .
2

x x

x

M x xu x dx C x dx

C x

 


 

   




 
 (8)

At 2  , the mean value of the power-law distri-

bution 1M , the first-order moment diverges, 

but at 2 , the mean value is completely deter-

mined. From this, we can conclude that the average 

value of infection clusters tends to be tremendous 

for  the values of the exponent 2   calculated by 

Eqs. (6), (7). Critical value 
cr 

= 2. Consequently, 

significant losses will be associated with catastro-

phes, whic h can be predicted from t he values of the 

power exponent calculated at the early stages of for-

est infection development. It should also be consid-

ered that for all-natural systems with values 2  , 

the ave rage value of infection clusters is limited by 

the size of the forest. The distributions are truncated 

at the tail of large values since the areas of infesta-

tion cannot be larger than the area of the entire for-

est area, see Fig. 3, b. This is a finite-size effect. The 

Figure 3. The result of identifying the distribution of infection clusters from a satellite 

image, see Fig. 2: a — histogram, b — cumulative functions F(x) of cluster distribution 

by size x, a straight line on log-log scales
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divergence of the average cluster size is determined 

from the relation (8). At 2  , further development 

of the process will generate large values of the sizes of 

infection clusters. All calculations are performed by a 

computer program. This program models the process 

according to the initial data on the areas of infection 

clusters x  received from Remote sensing (Fig. 2). 

The size of a cluster is determined by its area, which 

is measured in pixels (1 pixel = 100 m2). The values 

of indicator  are calculated by Eq. (6).

Calculating the average size of infection clusters in 
a percolation forest model. The approximation of the 

observed distribution by a power distribution is con-

trolled by statistical error . When calculating the 

average value of clusters for  2, a specific large, 

but not infinitely large, number will be obtained. Our 

data set is not infinite, and the size of the controlled 

forest area limits the cluster sizes. The size of the in-

fection cluster is determined by decoding the image 

as the number of pixels of its components. Calcula-

ting the average value of clusters for any values of  is 

performed using the following algorithm.

The type of cluster is characterized by its size. Let 

there be 1,i N  types of clusters in the satellite im-

age, then: s i — size of clusters of type i, ni  — number 

of clusters of type i. Let pi be the fraction of infection 

clusters of type i of size si: 

 1

i i
i N

i i
i

s np
s n






,  

1
1

N

i
i

p


 , (9)

then the average size of infection clusters will be 

determined as a first-order moment 

 1

N

i i
i

s p s


  . (10)

Risk assessments and recommendations for reducing 
risk levels. Statistics on foci of forest infestation make 

it possible to predict three different dynamics of tree 

death and risk levels: 1) low, 2) medium, and 3) high. 

The indicator for the prediction assessment is the 

exponent of the power law , Eq. ( 6), taking into 

account an estimate of the expected statistical error 

, Eq. (7). The average size of infection clusters <s> 

is calculated using Eqs (9), (10) and characterize the 

current state of the spread of infection in a forest area. 

The controlling parameter is the size of the tree felling 

area. The control parameter can change the prediction 

estimate. Calculating the current state <s> allows you 

to evaluate the effectiveness of the control action.

Sanita ry measures change the observed structure 

of infection clusters, requiring a new risk prediction. 

This concept of risk management based on remote 

sensing data is implemented by a computer program. 

The risk prediction levels are carried out according to 

the relationships given in Table 1.

Risk levels and recommendations: R
1
 — planned 

selective sanitary of tree felling should be carried 

out, R
2
 — new risks may emerge, and risks that were 

previously addressed may become a problem again, 

it is recommended to increase the frequency of ob-

servations and carry out selective sanitary cuttings of 

weakened trees, R
3
 — tree death is expected over a 

large area; it is recommended to carry out clear sani-

tary cuttings of weakened trees.

4. TESTI NG OF A MODEL FOR PREDICTION AND RISK 
MANAGEMENT OF DRYING OF THE PINE FOREST

The initial data for predicting the development of 

foci of infestation of pine forests by the bark beetle 

were obtained by processing satellite images of a 

forest area in central Ukraine. The observation was 

carried out for plantations Pinus sylvestris in the area 

of the Tobolsk fores try (Volyn region, Ukraine). Trees 

are 35 years old. The size of the square observation 

plot is about 53.5 ha, see Fig. 2, a.

Table 2 summarizes the main results of predictions 

and observations of the spread of pine forest dieback 

in the test area. The drying out of the forest is caused 

by the colonization of trees by stem pests. Observation 

of the forest was carried out over 7 calendar years 

(2015—2021), the dates of filming are presented in 

the second column of the table. The observation area 

Table 1. Risk prediction levels

Risk levels
Comparing Calculated Values

, , cr = 2 

R
1 

— low 2 <  – 
or

the distribution that does not follow a 

power law, see Eq. (5)

R
2 

— medium  – + 
R

3 
— high  + 

 — the exponent, critical value cr = 2 ,  — error
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S
2
(t

0
) = 534700 m2 corresponds to the projections of 

a 5347-pixel image of the terrain. T he data in Table 

2 were obtained as a result of space surveys from 

Sentinel-2A, see Fig. 2, a, and further classification 

of digital images by area: infection, felling, and 

healthy forest, see Fig. 2, b. T he calculation of the 

predictive risk indicator a was performed based on the 

distributions of infection clusters, Fig. 3, according to 

model identification methods, see Section 2, and Eqs. 

(6), (7). The average size of infection clusters <s> was 

calculated using the method described in Section 3, 

Eqs. (9), (10). T he predicted risk level R is determined 

according to Table 1. The remaining values in Table 2 

are calculated according to the equations:

 
)()()( 11111 iii tStStS   , (11)

 
)()()( 120213   ii tStStS , (12)

 
)()()( 12213   iii tStStS , (13)

where 
____
0,6i  .

The data given in Table 2 allow you to test the 

percolation model of risk prediction over observation 

periods:

  i = 1 the average value of infection clusters is 

small, <s(t
1
)> = 3.97 — the current condition is good, 

the risk prediction indicator a(t
1
) predicts a low level 

of risk R
1
 for the next observation period, sanitary cut-

tings have not been carried out, S
1
(t

1
) = 0;

  i = 2 <s(t
2
)> = 15.75 — the current condition is 

satisfactory (the prediction is correct), the risk pre-

diction indicator (t
2
) predicts a high level of risk R

3
 

for the next observation period, minor sanitary cut-

tings were carried out S
1
(t

2
) = 8, (according to the 

recommendations, in order for the prediction not to 

be justified, it was necessary to carry out clear sani-

tary cuttings);

  i = 3 <s(t
3
)> = 57.97 — the current state of infec-

tion clusters is characterized by large-scale infection 

of the forest (the prediction is correct), prediction 

estimates for the next period (t
3
) and R

3
 indicate 

the death of trees over a large area next year, sanitary 

cuttings were carried out only of dried trees S
1
(t

3
) = 

= 136 (this does not correspond to the recommenda-

tions, see Table 1);

  i = 4  <s(t
4
)> = 67.60, the curr ent state — large-

scale forest infestation (the prediction is correct), 

prediction estimates for the next period (t
4
) and R

3
 —

 trees are expected to die over a large area, clear sani-

tary cutting as have been carried out S
1
(t

4
) = 498 

(corresponds to the recommendations, see Table 1);

  i = 5  <s(t
5
)> = 9.19, the current condition is 

good due to compliance with the recommendations 

of last year, the prediction did not come true, the risk 

prediction indicator (t
5
) predicts a low level of risk 

R
1
 for the next year, sanitary cuttings S

1
(t

5
) = 531 

were carried out over a large area, which does not 

correspond to the recommendations of the model 

and is considered as an unreasonable loss of wood, it 

is possible that part of the sanitary cuttings from the 

previous period was transferred to the current period;

Table 2. Results of prediction and observations of pine forest drying

i ti (observation period) <s>  R S
1

S
1

S
2

S
3

S
3 

0 t
0
 (initial value) — — — 0 639 4708 639 —

1 t
1 

(19.08.2015) 3.97 2.56(20*) R
1

0 639 4555 153 153

2 t
2 

(13.07.2016) 15.75 1.85(11) R
3

8 647 4327 381 228

3 t
3
 (31.07.2017) 57.97 1.74(10) R

3
136 783 3802 906 525

4 t
4
 (10.08.2018) 67.60 1.68(9) R

3
498 1281 3381 1327 421

5 t
5 

(12.08.2019) 9.19 2.22(13) R
1

531 1812 3205 1503 176 

6 t
6 

(16.08.2020) 7.67 2.21(12) R
1

215 2027 2989 1719 216

7 t
7
 (03.09.2021) 6.17 2.19(12) R

1
72 2099 2932 1776 57

*— the distribution does not obey the power law, i — number of the observation period, <s> — average area of dried forest 

clusters,  — predictive risk indicator, R — predicted risk level, S
1 

— forest felling area for the period, S
1 

— total area of forest 

felling at the time of observation, S
2 

— total area occupied by forest at the time of observation, S
3 

— total area of forest loss at 

the time of observation, S
3 

— forest loss over the period. All areas are given in the areas of projections of image pixels onto the 

surface, (1 pixel = 100 m2). 
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Figure 5. Illustration of verification of the prediction of pine 

forest infestation distribution: a — map of total forest infesta-

tion over 6 years (2015—2020), b — cumulative functions F(x) 

of cluster distribution by size x (intensity ranking diagrams). 

The dots indicate the number of infestation clusters whose 

size exceeds a given value of x, the linear form of the function 

in logarithmic coordinates illustrates the implementation of 

the power distribution law

  i = 6 <s(t
6
)> = 7.67 — the current condition 

is good (the prediction is correct), risk prediction 

(t
6
) predicts a low level of risk R

1
 for the next year, 

sanitary cuttings have been completed on the square 

S(t
6
) = 215;

  i = 7 <s(t
7
)> = 6.17, the current condition is 

good (the prediction is correct), risk prediction 

(t
7
) predicts a low level of risk R

1
 for the next year, 

sanitary cuttings have been completed on the square 

S(t
7
) = 72.

Analysis of forest loss in a test area, see Table 2, 

shows that during the observation period 2015—2021, 

the percentage of forest loss was (S
3
(t

7
)/S

2
(t

0
))100 = 

= (1776/4708)100  38 %.

Figure 2 shows the distribution of sanitary felling 

and forest drying in 2017. Figure 4 shows the results 

of interpreting an image from the satellite Sentinel-

2A of a test area of the forest in 2015 and 2021.

The map of forest losses in 2021 shows how the ar-

eas of forest cutting prevent the formation of a perco-

lation cluster of infection and drying out of trees. The 

cluster passes through a section of forest from left to 

right. Figure 5, a illustrates the verification of the 

process of formation of a percolation cluster of in-

fection spread on a site over 6 years. Statistics on the 

spread of infections obey a power law, see Fig. 5, b.

Test model verification over 7 years demonstrated 

the model’s ability to predict the risks of large out-

breaks of forest pest infestation. A timely prediction 

makes the use of clear sanitary cuttings of healthy 

trees in areas where percolation infection clusters 

form justified. This will avoid significant financial 

losses associated with a decrease in the commodity 

value of wood damaged by pests.

5. CONCLUSION

The percolation model of prediction and risk manage-

ment of forest infections discussed in the article refers 

to the formalization of the description and analysis 

of one of the phenomena of self-organized critical-

ity. The universality of the concept of self-organized 

criticality is manifested in the general patterns inher-

ent in many phenomena studied in various fields of 

natural and socio-economic sciences. As first pro-

posed by P. Bak [4], some dynamical systems arrange 

themselves so that they always sit at the “critical” point 

of parametric space, no matter what state we start in. 

One says that such systems self-organize to the critical 

point or display self-organized criticality.

Such systems develop power-law distributions at par-

ticular “critical” points in their parameter space because 

of the divergence of some characteristic scale [14], such 

as the mean cluster size in the percolation model.

The value of the power distribution parameter serves 

as a statistical indicator of a predictive assessment of 

the risk of the appearance of undesirable large values 

of the controlled quantity. This indicator is used in 

the model to decide on the formation of management 

impacts on the forest ecosystem.

Figure 4. Map of forest losses in the test area of the forestry for 

the period 2015—2021: 1 — glades and areas of sanitary cut-

tings, 2 — healthy forests, 3 — clusters of withered trees
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ПРОГНОЗУВАННЯ ТА КЕРУВАННЯ РИЗИКАМИ ПОШИРЕННЯ 

ЗАРАЖЕНЬ ЛІСУ ШКІДНИКАМИ ЗА ДАНИМИ ДЗЗ

Статтю присвячено прогнозуванню ризиків виникнення великих вогнищ зараження соснового лісу жуками-коро-

їдами, патогенними грибами та нематодами. Ділянки зараження, що спостерігаються на космічних знімках, мають 

плямисту, кластерну структуру всохлого лісу. Важливою статистичною характеристикою структури заражень є степе-

невий закон розподілу кластерів заражень за розмірами. Наведені методи комп’ютерної ідентифікації та аналізу роз-

поділу кластерів дозволяють сформувати статистичну, перколяційну модель прогнозування та керування ризиками 

зараження лісу за інформацією, отриманою засобами ДЗЗ. Єдиним ефективним засобом боротьби з короїдом є про-

ведення санітарних рубок лісу. Площі санітарних рубок розглядаються у моделі як керівний параметр.

У моделі використовується спостереження за лісом на решітці пікселів космічного знімку як на решітці перко-

ляційної системи. У процесах зі степеневими законами розподілів значну ймовірність мають великі, катастрофічні 

події.

Універсальність теорії пояснюється тим, що в ній розглядається взаємодія елементів кластерів зараження, які по-

близу критичного стану лісової екосистеми підпорядковуються степеневому розподілу.

Величина показника степеневого розподілу є індикатором виникнення великих кластерів і використовується 

у моделі для прогнозних оцінок ризику розвитку заражень. У моделі під прогнозуванням ризиків розуміється ста-

тистична оцінка ризику у майбутньому з урахуванням змін умов його проявів. Зміни визначаються за результатами 

зйомки з космосу і враховують ефективність санітарних рубок дерев. Наводиться приклад прогнозування розвитку 

зараження (усихання) лісу за знімками з космічних апаратів «Sentinel-2». Розглянуто методи ідентифікації моделі 

та виконано тестову перевірку моделі. Застосування масштабно-інваріантних індикаторів степеневих розподілів до-

зволило відмовитися від використання дорогих високоточних знімків та замінити їх знімками середньої просторової 

розрізненності. Розглянутий у статті підхід до синтезу моделі прогнозування та керування ризиками на основі кос-

мічних знімків ґрунтується на концепції теорії самоорганізованої критичності. Модель досить універсальна і може 

використовуватись у космічних геоінформаційних технологіях для організації ефективного природокористування.

Ключові слова: всихання соснових лісів; стовбурові шкідники, дані дистанційного зондування, степеневий розподіл, 

прогнозування ризиків, керування ризиками, перколяційна модель.


