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SPACECRAFT RELATIVE ON-OFF CONTROL VIA REINFORCEMENT LEARNING

The article investigates the task of spacecraft relative control using reactive actuators, the output of which has two states, “on” or “off”.
For cases where the resolution of the thrusters does not provide an accurate approximation of linear control laws using a pulse-width
thrust modulator, the possibility of applying reinforcement learning methods for direct finding of control laws that map the state vector
and the on-off thruster commands has been investigated. To implement such an approach, a model of controlled relative motion of two
satellites in the form of a Markov decision process was obtained. The intelligent agent is presented in the form of “actor” and “critic”
neural networks, and the architecture of these modules is defined. It is proposed to use a cost function with variable weights of control
actions, which allows for optimizing the number of thruster firings explicitly. To improve the control performance, it is proposed to use
an extended input vector for the “actor” and “critic” neural networks of the intelligent agent, which, in addition to the state vector,
also includes information about the control action on the previous control step and the control step number. 1o reduce the training
time, the agent was pre-trained on the data obtained using conventional control algorithms. Numerical results demonstrate that the
reinforcement learning methodology allows the agent to outperform the results provided by the linear controller with the pulse-width
modulator in terms of control accuracy, response time, and number of thruster firings.
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1. INTRODUCTION ject (SO), solving the tasks of relative guidance and
control [13]. Thrusters (TH) are usually used to con-

Recently, on-orbit servicing missions [19] have at- | trol the SSC relative motion. Unlike other actuators,

tracted significant attention in the space community.
For example, such missions can be used to replace or
repair faulty spacecraft components, refuel in orbit,
and remove space debris [1, 9]. To implement such
operations, the service spacecraft (SSC) needs to per-
form maneuvers in close proximity to a servicing ob-

such as reaction wheels, the output of a TH has two
values: on or off. This mode of operation is explained
by the fact that precise adjustment of thrust is diffi-
cult to implement, mainly because of dirt particles,
which prevent the small valve from being completely
closed. This, in turn, leads to leakage of the propellant
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and the engagements of the THs, pointed in opposite
directions. A TH operating in this mode is a signifi-
cantly nonlinear actuator, which complicates the di-
rect synthesis of control laws [3, 16].

Some of the first control algorithms using on-off
actuators [25] were based on the Lyapunov stability
theory, where the TH firing is selected by minimizing
the derivative of the Lyapunov function. However,
such control algorithms do not minimize a practi-
cally meaningful performance criterion, such as pro-
pellant consumption and control error.

To overcome the issue, it is often necessary to syn-
thesize a linear control law that minimizes a selected
performance criterion. After that, modulators are
used to approximate the linear control by generating
a sequence of thrust pulses with the required width,
as mentioned in references [2, 17]. For this task,
pulse-width (PWM) and pulse-width pulse-frequen-
cy (PWFM) modulators are used [28]. The control
system design is easier with PWM than with PWFM
since the first one only introduces additional damp-
ing, and the second one changes the bandwidth and
phase characteristics of the system closed-loop.

Control performance within the PWM approach
largely depends on the approximation accuracy of
the linear control by the sequence of pulses after the
modulator. Ref. [11] investigates the optimal time
delay of the pulse, expressed as the error between the
output states without and with PWM. The results of
this work suggest to center the pulse within the sam-
ple period. In addition to pulse centering, the authors
of the article [5] suggest dividing the pulse into sev-
eral smaller pulses, which are uniformly distributed
over the sampling period. However, this gives only
a marginal improvement but requires THs with a
much longer operational lifetime. Such insignificant
improvements do not justify the qualification of the
THs for a significantly greater number of work cycles.

To provide precise control, it is recommended
that the PWM must have a resolution that is 50—100
times greater than the sampling period. If the mod-
ulator has an insufficient resolution, then control
performance degrades. In addition to the issue, the
above approach does not allow designers to explicitly
optimize the number of TH firings.

The impressive results obtained using deep learn-
ing (DL) techniques [4] recently boosted interest in

4

artificial intelligence methods [6] among researchers
and practitioners in the world. DL is rapidly develop-
ing and demonstrating promising capabilities in solv-
ing complex tasks and finding non-trivial solutions to
existing problems [27].

Machine learning is a subset of artificial intelli-
gence methods that are used to develop algorithms
capable of solving a problem based on the search
for regularities in various input data [20]. Machine
learning methods based on artificial neural networks
(NN5s) are called deep learning. Recent advances in
DL are largely achieved due to the development of
new NN architectures.

Not so long ago, these methods were begun to be
used to solve space-related tasks [12, 15]. In Ref.
[22], the policy for performing docking maneuvers
with six degrees of freedom was developed based on
reinforcement learning (RL) and implemented in
the form of the feedback control law. The simulation
results of the approach and docking maneuvers for
the Apollo mission demonstrate that the capabilities
of the resulting policy can be compared with the al-
gorithms obtained by conventional optimal control
methods.

The article [14] presents an approximation of the
optimal relative control for the underactuated space-
craft using the RL and the study of the influence of
various factors on the performance of such a solution.
This approach allows finding close to optimal control
algorithms as a result of the interaction of the control
system with the plant using the reinforcement signal
to estimate the performance of the control actions.

A new approach called deep guidance is investi-
gated in Ref. [10]. The authors use deep RL to learn
guidance policies instead of handcrafting them. The
results show that such a system can be fully simulated
and transferred into real-world conditions with an
acceptable loss of performance without any addition-
al tuning. Ref. [7] proposes a new adaptive guidance
system developed using meta-RL. The recurrent NN
allows the obtained algorithms to adapt in real time
to environmental disturbances acting on the SC. In
Ref. [8], an adaptive integrated guidance, navigation,
and control system was developed for maneuvering
in the proximity of asteroids with unknown environ-
mental dynamics, with initial conditions covering
large launch areas, and without knowing the model
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of the asteroid shape. The system is implemented as a
policy optimized using meta-RL.

Unfortunately, at present, there are no results dem-
onstrating the successful application of RL methods
for on-off SSC relative control. At the same time,
this approach may provide the following benefits:

1. A better control performance compared to the
conventional PWM-based approach.

2. To optimize the frequency of the TH firings.

Such an RL-based approach is investigated in this
article, for the implementation of which the follow-
ing tasks are solved:

1. To build a model of the plant dynamics in a form
that allows an RL-based algorithm to be applied.

2. To select the structure and parameters of the in-
telligent agent (Al).

3. To train the intelligent agent.

4. To analyze the performance of the RL-based
controller for SSC relative control.

2. MODEL OF SPACECRAFT RELATIVE DYNAMICS

An orbital reference frame (ORF) Oxyz is used for the
mathematical description of the SSC motion relative
to the SO. The origin of the ORF coincides with the
center of mass of the SSC. The axis Ox coincides with
the direction of the position vector, which determines
the SSC center of mass relative to the Earth center
of mass, the Oz axis coincides with the normal to the
plane passing through the axis Ox and the vector of the
SSC orbital velocity, and points towards the positive
values of the orbital angular momentum. The axis Oy
complements the reference frame to the right one.

The position of the SO relative to the ORF is de-
termined by the position vector L. The relative dy-
namics of the “SSC — SO” system can be described
using the following linearized system of equations
[29]:

d s
k—mzx—Zooj/—day—kxzf—’;—f—xs, (1)
m® m
d fs
j}—cozy+2035c+(bx+ky=m—yd—m—ys, (2)
d s
ot I o

m® m
where x, y, are the projections of the vector L on the
ORF axes; m*, m? are the mass of SSC and SO, re-

spectively; fj , f}‘f , fzd are the ORF projections of
the total force vector F¢, acting on the SO; f;, f; ,
f; are the ORF projections of the total vector F5,
acting on the SSC.

The total force vector F* includes control thrust
and external disturbances acting on the SSC. The
forces F¥ and F* may also include J2-disturbances,
the gravity of the Sun and the Moon, atmospheric
drag, and solar radiation pressure.

The parameters o, mand k in Eq. (1)—(3) are de-
termined as follows:

= %(l-l-SCOSV),
\JP
o=-2¢ f%sinv(1+8cosv)m,
p

p=a(l-g%),

n
k=1,
7’3

B a(1-¢?)
1+gcosv’

where p is the Earth’s gravitational constant, ¢ is the
orbit eccentricity, v is the true anomaly, a is the semi-
major axis, r is the orbital radius.

Equations (1) and (2) describe the dynamics of the
system in the orbital plane, and (3) describes its mo-
tion out of the orbital plane.

Neglecting the influence of external disturbances
and considering the state vectors

. .T T
Xil’l :[x’y’x’y:l s Xout = [Z’Z] )
and control .
Uin = |:ux’uy:| ’ Uout =u,,
model (1) can be represented in the state space form
as

Xin = AinXin +B,U;

. m-in? (4)
Xout = Aouthut + BoutUout ’
where
0 0 1 0
0 0 0 1
n ot 42k ® 0 220
-0 o'-k 20 0
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The magnitudes of various components of the state
vector are significantly different. This can complicate
the training of the NNs. To eliminate this issue, the
state vector is normalized as follows:

.. ... T
X, =[x/xm,y/ym, x/xm,y/ym] ,
. 6
Xy =[2/2,212,] .
where X, ¥,,52,,5 %5 Vs> Zm » ar€ the maximum val-
ues of the corresponding states. For the normalized
state vector, the dynamic model has the following
form: .
X"=A"X"+B"U, (6)
where
A"=NT'AN,
B"=N"'B,
N = diag(xm’ym’zm’)‘cm’ym’z.m) :
Since the modern controller of the spacecraft is
implemented as a discrete computer system, the fol-

lowing discrete form of the model (6) is used:

where A, =(I+A"T),B, =B"T,T is the sampling
time, k is the sample number.

We also assume that the full state vector is measur-
able and that these measurements are not corrupted
by noise.

3. DISCRETE LINEAR QUADRATIC
REGULATOR WITH PWM

For comparison reasons, we consider one of the con-
ventional approaches for spacecraft relative control,
namely the combination of a linear-quadratic regu-
lator (LQR) with PWM. Methods of synthesis of the
optimal linear-quadratic controller with discrete

6

time (DLQR) [26] are a widely used methodology
for designing control systems (SC). The goal of the
DLQR synthesis is to find a constant gain matrix K
for the full feedback law that minimizes the quadratic
cost function:

J=min} " (Q"X,Q+R'UR),  (8)
where O, R are the weight matrices that penalize sys-
tem states X, and control U,, respectively.

The impressive robust stability properties of
DLQR allow developers to use it for systems whose
real parameters differ significantly from the nominal
ones. DLQR implements the control law with full
feedback for SSC in the following form:

u, =K(X"-X,),
where X" is the reference value of the state vector,
which determines the necessary relative position be-
tween the SSC and SO.

The matrix of the optimal feedback gain is deter-
mined as follows

K=(R+B"PB)'B"PA,
where A, B are the matrices of the state space repre-
sentation of the dynamic model, P is a unique semi-
definite solution of the discrete-time Riccati equa-
tion
P=Q+ATPA—ATPB(R+B"PB)"VBTPA.

When the output of the actuators has only two
states, on and off, the DLQR is used in conjunc-
tion with PWM, which approximates the output of
DLQR by a sequence of pulses of variable width. The
pulse width on each sample period is determined as
follows:

tp="KT,1,<T,
u
f
where ufis the nominal thrust of a TH.

4. REINFORCEMENT LEARNING BASED CONTROL

The RL-based control setup assumes that the con-
trol system learns by analyzing the results of its ac-
tions [27]. These results are evaluated by a scalar
signal (reinforcement), which is received from the
plant with which the control system interacts. The
reinforcement signal can be interpreted as a criterion
allowing the intelligent control system to change its
control algorithms, taking into account the achieve-
ment of the long-term goal.
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A general RL algorithm includes the following
steps:

1) at a time 7,, the plant is in a state X}

2) in this state, the control system selects one of
the possible control actions U, ;

3) the control system applies this action, which
leads to the transition of the plant to a new state X, ,
and the control system receives the reinforcement
signal C, ;

4) the algorithm continues being applied from step
2, taking into account the received reinforcement, or
the algorithm stops if the new state is final.

We denote y as a set of states and A as a set of
control actions. Then, reinforcement C, is a conse-
quence of the action U, selected in the state X,. The
reinforcement signal is a function that depends on a
vector defined in the space y x A.

The control system selects actions in such a way
as to minimize the total cost, which is determined as
follows:

G = Ce +YCh +¥ g+ = Z,.onleﬂ' ’
0<y<l1.

The discount factor y determines the importance
of the predicted cost values during the selection of
the control actions.

One of the key elements of the RL is the value
function. Suppose that in each state X, the SC ap-
ply a control action according to a certain algorithm,
which is called a policy :

U =n(X;),
then the value function determines the total cost that
is paid by moving from the initial state X, selecting
control actions according to the policy r. This func-
tion can be represented as:

VT (Xk) - Z;ioykckﬂ‘ (Xk+i’Uk+i) =

= Ci (XU )+ 7V (X)) -

Reinforcement learning can be implemented us-
ing actor-critic architecture. In this case, the critic
provides predictions of the value function for each
state, and the actor maps the state vector to the con-
trol actions.

According to the methodology of deep RL, the ac-
tor and critic are implemented in the form of feed-
forward multilayer neural networks, which approxi-
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mate the control law and cost function, respectively:
Ve (Xk,d)),n(Xk,d)), where 0, ¢ are the vectors of
critic and actor parameters, respectively.

There are many different RL algorithms. In this
study, the Proximal policy optimization (PPO) algo-
rithm is used [26]. This algorithm is implemented as
follows:

1. To find the total cost of G,, which is the sum of
the cost for this time step and the discounted future
cost [21]

ts+m

G =), (yk_tCk)+byN_t+1V(XtS+N,6),
k=t

where bis 0if X, \ isthe final state and 1 otherwise.
That is, if X, , is not the final state, the discount-
ed future value includes a function of the discounted
state value calculated using the critic neural net V.

2. To find the advantage function D,

D, =G,-V(X,.0).
3. To update the critic parameters by minimizing

the loss function L for all received mini-batch
data

critic

M 2
Lyitic (6) = ﬁZ(Gi - V(Xi’e)) .
i=1
4. Update the actor parameters by minimizing the
actor loss function L of all received mini-batch
data as follows

Lactor(¢):
LS (min(s(6)- Do (8)- D, 74 (0.5,

i=1
B Tc(U,- |Xl.,¢)
7}(4’)— W(Ui |Xi’¢old) ’

o ((I)) = max(min(ri ((I)),1+8),1—8) ,

where D;and G, are the advantage and total cost func-
tion for the i-th element of the mini-batch, respec-
tively; n(U,- |X,-,¢) is the probability of performing
the action U, in the state X;, given the updated poli-
cy parameters ¢; n(Ul. | Xi,d)old) is the probability of
performing action U, in state X, given the previous
policy parameters ¢,,, before the current learning ep-
och; g is the clip factor; H; (O,Xi) is the loss entropy;
w is the loss entropy weight.
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The agent uses the following entropy value

PN
H(6,X,)==>n(Ur | X;,0)Inn(Uy | X,.0).
k=1
where PN is the number of possible discrete actions;
(Ui |Xi,(|)) is the probability of action U in state X;
according to the current policy.

We propose to use the following cost function:

C, =Q'X,Q+L,"R'UL,R. 9)

This function is similar to criterion (8), but the ad-
ditional variable weight L, allows us to optimize the
control law more flexibly, for example, to encourage
the agent to use wider pulses.

We studied four intellectual agents (IA), which use
different input information as follows:

1) IA-1 receives an ordinary state vector X, as an
input, the dimensions of the input vectors for the
in-plane and out-of-plane cases are n,, =4 and
Ny = 2, Tespectively;

2) In addition to the state vector X, , [A-2 also re-
ceives information about the control action on the
previous control step as follows

T
[Xk,uk_1] , n,=5,and n,, =3;

3) In addition to the state vector X, IA-3 also re-

ceives information about the normalized number 7 of

the TH pulses within the LQR sample period as fol-
lows

T
{Xk,;} ,n,=5,and n,, =3;

m

4) IA-4 receives the following input information

. T
i
{Xk’i_’”k_l} » My =6, and n,, =4.

m

Table 1. Structure of neural networks

Number of neurons
Layer actor critic

. . out-of- . . out-of-

in-plain plain in-plain plain
Inpl’n nin nout nin nom
1-st hidden 10nm 10n0m IOnin 10n0m
2-st hidden

J900m,, | \[300n,,,, | \/100n,, | \[100m,,,

3-st hidden 90 30 10 10
Output 9 3 1 1

8

The agent can apply three control actions
—Us ,0,u, | in each control channel, so the total
number of possible different states of the actuators is
32 =9 for the in-plane case and 3! = 3 for the out-of-
plane case. These values specify the number of out-
puts of the categorical actors, which determine the
relationship between the input vector and the corre-
sponding state of the actuators.

For z-channel, the outputs of the actor direct-
ly specify the probability of the following actions
—Ug ,0, u = For channels x and y, at first, the deci-
mal integer number corresponding to the state of the
actuators at the actor’s output is converted to its ter-
nary representation, and then, the control vector is
determined as follows

1
u u 1
u, Uy, 1

where uiy ,uﬁy , are the first and second digits of the ter-
nary representation of the actor’s output, respectively.
Actors and critics of these agents are implemented
in the form of NNs, the structure of which is shown
in Table 1. Almost all NN layers use the Relu activa-
tion function. The only actor’s output uses the Soft-

Max activation function.

5. NUMERICAL RESULTS

The following system data were used for the train-
ing and studying the intelligent agent: @ = 7017 km,
m® = 500 kg, m?= 1575 kg, T =200 sec, 7}= 10 sec,
U = 16 N, Q =0.001xdiag(0.01,0.01,0.01,1,L,1),
R'=50xdiag(111).

The state vector has the following maximum
component values: x,, = 800 m, y,, = 800 m, x,, =
=2m/s, ¥,, =2 m/s.

To speed up the learning process, all actors were
pre-trained using supervised learning at the first stage
on data obtained using DLQR with PWM.

The AI-1 and AI-2 are characterized by a signifi-
cant steady error (Fig. 1, a). The Al-1 uses a large
number of short pulses, and AI-2 uses a smaller num-
ber of long pulses (Fig. 1, ¢). The control accuracy of
AI-3 and Al-4 is similar to that of the DLQR with
PWM (Fig. 1, b, d), while it is assumed that the in-
formation about the control action on the previous
control step as part of the input vector will make it
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Normalized state
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0 200 400 600 800 0 200 400 600 800 1000
c Time, s d

Figure 1. Normalized in-plane relative position for the supervise-trained agents (¢ — [A-2, b — 1A-4) and TH thrust in

x-direction for the supervise-trained agents (¢ — 1A-2, d — IA-4)

Table2. Performance metrics for AI-2 in case of RL with constant action weights

N Error, 103
No L Number of TH firings Mon Total momentum, s

X y mean
0 PWM 27 61.6 1664 19 19 19
1 0.0009 10 377.6 3776 120 60 90
2 0.0006 17 256.0 4352 62 39 50.5
3 0.0003 12 304.0 3648 88 35 61.5
4 0.00001 76 89.6 6816 18 14 16

possible to optimize the frequency of the TH firings
using RL.

At the second stage the pre-trained agents were
trained using RL with the following hyperparam-
eters:

experience horizon —1500,

clip factor € = 0.015,

loss entropy weight w = 0.005,

mini batch size —1024,

discount factor y = 0.9994.

The learning rates of the actor and critic were le-4
and 5e-3, respectively.

We used both constant weighting coefficients of
actions L%c = L and variables ones formed as follows:
Lk2 =L, if u, #u,_, and Lk2 =L, ifu=u_,.

Fig. 2 show the dependence of the normalized in-
plane state vector and the TH thrust for AI-2 after
being trained using RL with constant action weights.
Performance metrics for these cases are presented in
Table 2. In these cases, Al-2 exhibits similar behavior
to the supervise-trained agent, namely a tendency to
use too long control pulses. This, in most cases, does
not allow AlI-2 to outperform a PWM controller in
terms of control accuracy. To estimate the agents’ ef-
ficiency in terms of the TH firing, we use the ratio of
the total momentum to the number of TH firings for
the episode. This metric is denoted as Mon.

Fig. 3 show the variations of the normalized in-
plane state vector and the TH thrust for Al-4 after
being RL-trained with constant action weights. Per-

ISSN 1561-8889. Kocmiuna nayka i mexunonoeia. 2024. T. 30. Ne 2 9
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Normalized state
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0 200 400 600 800 0 200 400 600 800 1000
c Time, s d

Figure 2. Normalized in-plane relative position for the RL-trained IA-2 (¢ — with L= 0.0009, » — with £ = 0.00001) and TH
thrust in y-direction for the RL-trained IA-2 (¢ — with L= 0.0009, d — with L= 0.00001)

1
" 0.02 cesvnsennerenses X
s PR~ —~ gy, W A | T B Y, T T S —
gos ;”
‘E 00 80 900 1000 00 S0 900 1000 .
S
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1 1 1 1 1 1 1 1 1 1
a b
2 L -
eSS Uj;wrm

L I —"l
- LI )
£ 0f .
<
= —1F L

—2 | | | | | | | | | |
0 200 400 600 800 0 200 400 600 800 1000
c Time, s d

Figure 3. Normalized in-plane relative position for the RL-trained IA-4 (¢ — with L= 0.0006, » — with = 0.0001) and TH
thrust in y-direction for the RL-trained IA-4 (¢ — with L= 0.0006, d — with L= 0.0001)
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3
g \
%05 y oo
;c_‘; % —0.02 1 1 L 1 = 1 ! Y
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a b
2 I U);zwrm
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. I I I
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Figure 4. Normalized in-plane relative position for the RL trained 1A-4 (a — Li 0.0009, L2: 0; b L =0.0001, L 0) and
TH thrust in y-direction for the RL-trained AI-4 (¢ — L, = 0.0009, L 0;d— L, =0.0001, L,=0)
Table 3. Performance metrics for AI-4 in case of RL with constant action weights
3 Numb Error, 103
No L umpber Mon Total momentum, s
of TH firings
X y mean
0 PWM 27 61.6 1664 19 19 19
1 0.0009 20 143.2 2864 17 19 18
2 0.0006 18 121.7 2192 15 7.6 11.3
3 0.0003 25 129.9 3248 13 12 12.5
4 0.0001 89 46.2 4112 6.7 4 5.35
5 0.00001 166 39.8 6608 9.8 2.5 6.15
Table 4. Performance metrics for AI-4 in case of RL with varying action weights
o Numb Error, 103
No L/L, ofT%Htlir?rrlgs Mon Total momentum, s
X y mean
0 PWM 27 61.6 1664 19 19 19
1 0.0009/0 17 186.3 3168 15 15 15
2 0.0006/0 21 155.4 3264 15 7.3 11.2
3 0.0003/0 18 183.1 3296 13 6.5 9.75
4 0.0001/0 53 73.3 3888 4.9 6.1 5.5
5 0.00001/0 134 42.0 5632 5.6 11 8.3
ISSN 1561-8889. Kocmiuna nayka i mexwonoeis. 2024. T. 30. Ne 2 11
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formance metrics for these cases are presented in
Table 3. These cases demonstrate that adding to the
state vector X, additional information about the con-
trol action on the previous control step and the con-
trol cycle number allows the agent to outperform the
PWM-based controller in terms of control accuracy
and the number of TH firings.

Fig. 4 show the variation of the normalized in-
plane state vector and the TH thrust for Al-4 after
being trained by RL with variable action weights. In
these cases, control actions are only penalized if a
new TH firing happens. This feature of the cost func-
tion encourages the agent to limit the number of TH
firings. Performance metrics for these cases are pre-
sented in Table 4. These cases demonstrate that the
variable action weights allow the agent to improve
control performance in terms of numbers of the TH
firing.

Comparing all four Als, we can conclude that ad-
ditional input information about sample ordering al-
lows the agent to improve control accuracy while the
information about the control actions on the previ-
ous control step in conjunction with the cost func-
tion with time-varying weights makes the agent more
efficient in terms of TH firings.

This section presents results only for in-plane
control because this case is more complex than out-
of-plane control. In the case of in-plane control, we
deal with a coupled multi-input — multi-output sys-
tem, but in out-of-plane case, we just have a single-
input — single-output system. Moreover, RL-trained
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'THCTHTYT TexHiuHOT MexaHiku HauioHanbHoT akagemii Hayk Ykpainu Ta JlepXaBHOro KOCMi4HOTO areHTCTBa YKpaiHu
ByJ1. Jlemko-Tlonens 15, Ininpo, Ykpaina, 49005

2 T1iBHIYHO-3aXiTHWIl NOMITEXHIYHUI YHIBEPCUTET

Cianp Lanbci, 710072, Kutait

PEJIEMHE KEPYBAHHS BIJHOCHUM PYXOM KOCMIYHUX ATTAPATIB
3 BUKOPUCTAHHAM HABYAHHA 3 INIAKPITIJIEHHAM

PosrnsimaeThcst 3amaua KepyBaHHS BiTHOCHUM PyXOM KOCMIYHMX aItapaTiB 3a JOTIOMOTOI0 PEaKTMBHUX YCTAHOBOK, BUXiI
SIKAX Ma€ JBa CTaHU: «yBIMKHEHO» Ta «BUMKHEHO». [IJIs1 BUIIaAKiB, KOJIW PO3MIilIbHA 3MaTHICTh PEaKTUBHUX ABUTYHIB HE
3a0e31evye SKiCHY anpoKCUMallilo JiHIMHUX 3aKOHIB KepyBaHHSI 3 BUKOPUCTAHHSIM ILIMPOTHO-IMITYJIbCHOIO MOAYJISITOpa
TSITU, AOCJIIIXKEHO MOXJIMBICTb 3aCTOCYBaHHSI HAaBYAHHS 3 MiAKPIrUIEHHSIM IS TIPSIMOTO TIOLIYKY 3aKOHIB KepyBaHHSI, 110
BCTaHOBJIIOIOTh 3B’S1I30K MiXX BEKTOPOM CTaHY i KOMaHIaMU BMUKAHHsI-BUMUKAHHSI PEaKTUBHMX OBUTYHiB. [Lis peanizauii
TAKOTO MiIXOIy OTPUMAaHO MOJIEJIb KEPOBAHOTO BiTHOCHOTO PYXY JABOX CYITYTHUKIB Y (pOopMi MapKiBChKOTO TIPOIIECY TPUITHSITTS
pileHb. [HTeNeKTyaTbHMIT areHT TIPEACTaBICHO Y BUIIISINI HEMPOMEPEKEBOTO «BUKOHABIIST» Ta «KPUTHKA» Ta BU3HAYCHO
apXiTEKTypU LIMX MOIYJiB. 3alpONIOHOBAHO BUKOPMCTOBYBATH (PYHKIIFO BApPTOCTi 3i 3MiHHMMHU BaroBUMM KoedilieHTaMu
KepiBHMX BIUIMBIB, 1110 JO3BOJISIE ONTHUMI3yBaTH KiIbKICTh YBIMKHEHb PEaKTUBHUX JIBUTYHIB SBHUM YMHOM. [IJ151 IiABUILEHHS
SIKOCTi KepyBaHHS 3allpONIOHOBAHO BUKOPUCTOBYBATH PO3IIMPEHUI BEKTOP BXOMY UISI HEIPOMEpPEexkeBOro BMKOHABLIS Ta
KPUTUKA iHTEJIEKTYaJIbHOTO areHTa, SIKiil KpiM BeKTopa CTaHy 1lie MiCTUTb iH(popMallito Ipo KepiBHY J1it0 HAa MOTNEPEIHbOMY
TaKTi KEpyBaHHS Ta HOMEP TaKTy KepyBaHHsI. /{151 3MeHIIIeHHST Yacy HaBYaHHST BUKOPUCTAHO TTOTIepeTHE HaBUaHHS areHTa
Ha JaHUX, OTPMMAHMUX 3a JOIMOMOTIOI0 TPAaIUIiHMX aJTOPUTMIB KepyBaHHS. YucenbHI pe3yabraTé JeMOHCTPYIOTh, IO
BUKOPUCTAHHS METOOJIOTii HABYAHHS 3 MTiAKPITIEHHSIM J03BOJISIE IEPEBEPILINTH PE3YJIBTaTH, 1110 3a0€3MeUY0ThCS JIIHIHHUM
KOHTPOJIEPOM i3 IIUPOTHO-IMITYJICHUM MOAYJISITOPOM, 3 TOUKU 30pY TOYHOCTI KEpYBaHHSI, IIBUAKO/i1 Ta KiJIbKOCTI BKIIOYEHb
peaKTUBHUX JIBUTYHIB.

Karouoei caosa: peneiine kepyBaHHS, HABUaHHS 3 MiIKPITUIEHHSM, BiITHOCHE KepyBaHHS KOCMIYHUM arapaToM, BUKOHABELLb,
KPUTHK, HEHPOHHA Mepeka, BKITIOUEHHST peaKTUBHOTO IBUTYHA.
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