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This study introduces an approach to detecting exocomet transits in the dataset of the Transiting Exoplanet Survey Satellite (TESS), 

specifically within its Sector 1. Given the limited number of exocomet transits detected in the observed light curves, creating a sufficient 

training sample for the machine learning method was challenging. We developed a unique training sample by encapsulating simulated 

asymmetric transit profiles into observed light curves, thereby creating realistic data for the model training. To analyze these light 

curves, we employed the TSFresh software, which was a tool for extracting key features that were then used to refine our Random 

Forest model training. 

Considering that cometary transits typically exhibit a small depth, less than 1 % of the star’s brightness, we chose to limit our sample 

to the CDPP parameter. Our study focused on two target samples: light curves with a CDPP of less than 40 ppm and light curves with 

a CDPP of up to 150 ppm. Each sample was accompanied by a corresponding training set. This methodology achieved an accuracy 

of approximately 96 %, with both precision and recall rates exceeding 95 % and a balanced F1-score of around 96 %. This level 

of accuracy was effective in distinguishing between ‘exocomet candidate’ and ‘non-candidate’ classifications for light curves with a 

CDPP of less than 40 ppm, and our model identified 12 potential exocomet candidates. However, when applying machine learning to 

less accurate light curves (CDPP up to 150 ppm), we noticed a significant increase in curves that could not be confidently classified, 

but even in this case, our model identified 20 potential exocomet candidates.

These promising results within Sector 1 motivate us to extend our analysis across all TESS sectors to detect and study comet-like 

activity in the extrasolar planetary systems.
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1. INTRODUCTION

More than 3700 exoplanets among the 5523 known

today have been discovered using the transit method

in photometric time series observations of stars con-

ducted by the Kepler, K2, and TESS space missions

[3, 12, 31]. The transit method involves detecting pe-

riodic decreases in a star’s brightness when a planet

crosses its disk, blocking part of the radiation in the

observer’s direction. Typically, exoplanet transits are

characterized by periodicity in time and the symmet-

ric dips in stars’ light curves.

In addition to the “classical” symmetric patterns 

of star dimming and subsequent return to normal 

brightness, typically caused by exoplanets, scientists 

have identified asymmetric patterns of brightness 

drops in some stars’ light curves. These phenomena 

have been attributed to the transits of comet-like ob-

jects across the stars’ disks [13, 17-18, 27, 29, 38, 40]. 

Such objects possess a central nucleus and an asym-

metric, elongated dust atmosphere. The asymmetric 

transits observed in the photometric light curves are 

consistent with unusual features previously noted in 

the absorption spectral lines of young A-class stars. 

This alignment provides solid evidence for the pres-

ence of small bodies in star systems that have debris 

disks, as discussed in [30].

The studies by [2] and [16] theoretically demon-

strate that the evaporation of exocomets, which 

contain volatile elements and are interspersed with 

metallic ions like Ca II and Fe II, leads to the cre-

ation of planetary atmospheres filled with submicron 

dust particles. An analysis of approximately 1000 

spectra from the star Beta Pictoris revealed around 

6000 unique features linked to the transit of comet-

like bodies across the star’s disk, as reported in [14]. 

Given that the orbital telescope TESS has already 

gathered high-precision photometric time series with 

a 2-minute cadence for over 200 000 stars and con-

tinues to do so, the task of identifying and studying 

comet-like activity within TESS’s extensive database 

is challenging.

The vast amount of data and its rapid accumula-

tion necessitate the use of automatic algorithms for 

detecting transits and classifying their morphology, 

primarily through advanced machine learning tech-

niques. Artificial intelligence methods were initially 

employed on data obtained with the Kepler orbital 

telescope to classify exoplanet signals and identify 

false positives, as described in [23]. Studies such as 

[8, 23, 24] introduced algorithms for verifying exo-

planet candidates in the Kepler database and clas-

sifying the morphology of star light curves utilizing 

the classic Random Forest method established in 

[4]. This strategy proved highly effective, leading to 

the widespread adoption of deep learning-based al-

gorithms for analyzing data from orbital telescopes, 

as seen in [1, 26, 33, 34]. A comprehensive review 

of machine learning applications, encompassing 

both classical algorithms and deep learning, for the 

verification of exoplanetary transits, planet classifi-

cation, and the morphological classification of star 

light curves in orbital telescope databases is available 

in works like [24, 32].

In an alternative approach, the authors of [13] de-

veloped an automated algorithm specifically designed 

to search for asymmetrical transits in the Kepler tele-

scope’s database. This innovation facilitated the con-

firmation of previously identified comet transits in 

the star systems KIC3542116 and KIC11084727 and 

also led to the discovery of a new transit in the light 

curves of KIC8027456.

In our study, we introduce an algorithm for de-

tecting exocometary transits in the database of the 

orbital telescope TESS, utilizing machine learning 

techniques. Such an approach enables the auto-

mated identification of asymmetric transits, thereby 

substantially decreasing the need for manual visual 

inspection and expediting the data analysis process. 

While some of the most sophisticated machine learn-

ing methods for planet detection, such as the deep 

learning approach proposed by Shallue et al. [33], 

have been successful, we use the classical machine 

learning method, specifically the Random Forest 

model. A notable distinction between classical meth-

ods and deep learning is that deep learning could 

autonomously identify features and parameters for 

sample description. In contrast, classical machine 

learning requires pre-calculated features as input for 

the model. It’s important to acknowledge that deep 

learning demands considerable computational re-

sources and does not always allow for the verification 

of feature significance in a given sample. Upon as-

sessing our available computing resources, we opted 

to employ classical machine learning methods. We 
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Figure 1. Workflow of our method, beginning with raw light curves and culminating in the performance of inference on the 

sample

have already presented the preliminary results of our 

project on detecting asymmetric transits in star light 

curves collected by TESS and stored in the MAST 

database using Python code developed by us [36]. 

This paper is structured into seven sections. Sec-

tion 2 describes the TESS data utilized in our study. 

Section 3 details the encapsulation process of simu-

lated asymmetric transit profiles into the observed 

light curves, thereby preparing the training sample. In 

Section 4, we introduce the methodology and library 

employed to extract features from the light curves for 

subsequent machine learning analysis. Section 5 dis-

cusses the machine learning methods applied and the 

accuracy metrics used for their evaluation. Section 6 

presents the outcomes of our research. Lastly, Sec-

tion 7 offers a concise conclusion of our results. The 

workflow is shown in Figure 1. More details are given 

in the following sections.

2. TESS DATA

We use a database that was created and is continuously 

updated based on observations from the TESS space 

observatory. All light curves observed are stored in 

the MAST (Mikulski Archive for Space Telescopes) 

and STScI (Space Telescope Science Institute) data 

archives. As input data, we use the light curves pre-

processed by the operations center team, which have 

already been corrected for dark current, detector 

nonlinearity, flat field, scattered background light, 

focus instability, and other instrumental errors that 

could lead to artifacts in the light curves [31]. 

In the archive, the light curves are grouped into 

sectors, with one sector covering a period of 27 days, 

during which continuous monitoring of a certain 

area of the sky is performed. For our study, we use the 

pre-processed 2-min PDC_SAP normalized light 

curves. It is worth noting that the short cadence al-

lows for the capture of high-frequency oscillations 

associated with the physical nature of the stars them-

selves (pulsations, passage of spots across the star’s 

disk), leading to morphological diversity in the light 

curves. On the other hand, the relatively large pixel 

scale (21ʹʹ per pixel) introduces a certain dependency 

of the measured aperture flux on neighboring stars, 

especially if they are brighter or more variable than 

the target object. 

Therefore, considering these factors, especially 

the fact that cometary transits have a small depth, 

less than 1 % of the star’s brightness, for this study, 

we decided to limit the sample by selecting light 

curves that do not exceed a certain predetermined 

precision. As a measure of precision, we use the met-

ric of Combined Differential Photometric precision 

(CDPP), which was developed by the data process-

ing operations center team of the Kepler space tele-

scope and later applied to TESS data processing [7]. 

CDPP is the signal-to-noise ratio after the smooth-

ing and  ‘whitening’ of light curves, measured in ppm 

(parts per million) [10, 35]. For example, if a light 

curve with a CDPP level of 20 ppm has a transit last-

ing 3 hours with a depth of 20 ppm (or 0.002 %), it is 

expected that this transit can be detected, as it corre-

sponds to a signal at the level of 1 sigma. This metric 

is very convenient for assessing the precision of light 

curves, and it is easy to calculateat every step of the 

data processing.

3. PREPARATION OF THE TRAINING SAMPLE

The machine learning approach suggests building a 

classifier, which is able to separate data into multiple 

classes. In order to predict possible transits with the 

asymmetric shapes in thelight curves, we use a binary 

classifier enabling the separation of light curves into 

two classes: ‘exocomet candidate’ and ‘non-candi-

date’. To train the machine learning model, we need 

to have the training sample containing light curves of 

both types: with asymmetric transits and “typical” 

light curves from the database. As there have beenfew 

exocomet transits detected so far in the observed light 

curves, to create the training sample with the “exo-
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Figure 3. Simulated transit profile for different impact param-

eters: a comet crosses the star disk through its center (180°) 

and at the star edge (90°)

Figure 4. Top panel:  transit profile (left)  and the light curve (right), both selected randomly;  bottom panel: 

the  segment of the light curve with the transit

comet candidates”, we use the simulated asymmetric 

transit profiles encapsulating them into the observed 

light curves. The approach to simulation of the asym-

metric transits is described in detail in the following 

papers [5, 27]. Figure 2 shows the simulated transits 

normalized to 1 for three different cases of morpho-

logically different cometary comae resembling the 

solar system comet C/2006 S3, which could cause 

asymmetric dips in the star brightness when crossing 

the star’s disk. The influence of an impact parameter 

Figure 2. Simulated transit profiles for three different cases of 

morphologically different cometary comae, which cause the 

exocomet transits
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on the transit shape  (the transit through the center 

and through the edge of the star disk) is depicted in 

Figure 3. It is seen that the morphology of the tran-

sit shapesis different, but all of them are asymmetri-

cal. We simulate about 300 such profiles to encapsu-

late them into the observed light curves from the first 

sector of the TESS data. We randomly select both the 

simulated transit profile and the light curve into which 

the transit is then inserted. Finally, the training sam-

ple contains 20 000 light curves: 10 000 of them are 

labeled as ‘0’ marking ‘non-candidate’, and 10 000 

have the label ‘1’, or ‘exocomet candidate’. In order 

to study the influence of the light curve precision on 

the transit prediction score, we prepared two target 

samples, selecting the light curves with the CDPP pa-

rameter less than 40 ppm and 150 ppm, respectively. 

Finally, we have two kinds of target samples: about 

2000 light curves whose CDPP is less than 40 ppm, 

and about 9000 light curves with the CDPP less than 

150 ppm. Each sample is provided with a correspond-

ing training sample prepared as it is described above. 

Figure 4 demonstrates the procedure of the transit 

injection in detail. The top panel shows the transit 

profile and the light curve both randomlyselected 

from the corresponding datasets, the bottom panel 

depicts thesegment of the light curve with the transit 

injected.

4. FEATURE EXTRACTION

After the training sample has been prepared, the next 

step is feature extraction, which accurately represents 

statistical information about the characteristics of 

each light curve. These features are used as the input 

data for the Random Forest model both for training 

and predictions. Typically, standard features include 

standard statistical information, such as minimum 

and maximum values in a certain interval, the 

number of the minimums in the light curve, the mean 

and standard deviation, the number of values that 

are higher and lower than the mean value, and other 

statistics. Features can be conventional, as already 

mentioned, or more unconventional, such as the 

p-value of the slope coefficient of the trend line in the 

current moving window. We use the TSFresh library

for Python for the feature extraction process. The

library provides more than 60 functions to calculate

different features, however, the process can be time-

consuming [6]. Additionally, not all features are 

useful, and an excessive number of the features can 

lead to overfitting. To optimize the parameters, the 

library provides tools for evaluating the significance 

of features for regression or classification tasks.

We used the efficient feature extraction settings 

of TSFresh, resulting in about 790 generalized time 

series features. We removed all irrelevant features to 

balance the informativeness of features and compu-

tational resource expenditure well. We select a subset 

of features from the full set that are typically most 

informative for time series analysis. Finally, about 

390 most significant features are used for training the 

classifier based on the Random Forest method.

5. RANDOM FOREST

The Random Forest method is very robust in process-

ing the spectro-phohtometry data as the tool for de-

tachment of various features of exoplanet light curves 

[22], exoplanetary atmospheres [9, 25], exoplanet 

prediction [39] and resonant Koiper Belt objects 

search [19, 20]. We deeply exploited it for galaxy mor-

phological classification [15, 37]. Our binary classifier 

model is designed to sort light curves into two primary 

classes: ‘exocomet candidate’ and ‘non-candidate’. 

For this purpose, we used the Random Forest (RF) 

model [28], an ensemble of Decision Trees trained on 

input data. Each tree in this ensemble functions as an 

independent classifier, and their collective outcomes 

are integrated to form a final prediction. Throughout 

its training phase, the Random Forest model under-

goes multiple iterations, learning from subsets of data 

and employing a random selection of features in each 

iteration. This approach makes the model resistant to 

overfitting and enhances its ability to generalize effec-

tively to new data. 

During the training process, we employed a 5-fold 

cross-validation technique. This involves dividing the 

training dataset into five equal segments, or ‘folds’. In 

each of the 5 training cycles, the model is trained using 

4 folds, while the fifth fold is reserved for validation. 

Each fold is used for validation exactly once. The final 

performance metric of the model is calculated as the 

average of the performance obtained at each valida-

tion stage. This method ensures that every data point 

is used for both training and validation, enhancing the 

robustness and reliability of our model.
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To evaluate the outcomes of our machine learning 

model, we employ the following metrics: 

 Accuracy: this metric represents the propor-

tion of correctly classified samples, encompassing 

both ‘exocomet candidates’ and ‘non-candidates’. It 

measures the overall correctness of the model in clas-

sification tasks.

 Precision: this is the ratio of predicted instances

identified as ‘exocomet candidates’ that are actually 

true exocomets. Precision focuses on the accuracy of 

the model’s positive predictions but doesn’t account 

for cases where true positives were missed. 

 Recall: this metric reflects the ratio of actual

exocomets correctly identified by the classifier as 

‘exocomet candidates’. Recall indicates the propor-

tion of actual positive cases that the model success-

fully detects. 

 F1-score: this is the harmonic mean of precision

and recall. It is a useful metric when you want to bal-

ance precision and recall, especially if there’s an un-

even class distribution or if false positives and false 

negatives have different costs.

As we previously noted, there are only a limited 

number of cases where exocomet transits have been 

successfully detected. Taking TESS mission data as 

an example, only about 3 % of all light curves contain 

potential indications of exoplanets [21]. Thus, the 

data on exocomets is even scarcer. This imbalance in 

the datasets means that the accuracy metric alone is 

not sufficiently informative for evaluating the effec-

tiveness of exocomet detection algorithms. In such 

disproportionate conditions, a classifier predict-

ing the ‘non-candidate’ category for all light curves 

could display an impressive accuracy of around 97 %, 

which can be misleading (like in work [21] about 

‘planet candidates’). Such high accuracy might not 

reflect the model’s ability to identify potential exo-

comet candidates, indicating the necessity of em-

ploying additional metrics for a more comprehensive 

performance assessment.

In assessing model accuracy, relying solely on pre-

cision can lead to missing many potential candidates. 

High precision implies that most identified ‘exocom-

et candidates’ are likely true candidates. However, the 

issue arises because high precision can be achieved by 

making only a few very confident predictions about 

the presence of ‘exocomet candidates’ and ensur-

ing their correctness. In searching for exocomets, we 

prefer a strategy tolerating more false positives rather 

than missing true planetary signals. Thus, recall be-

comes a much more critical metric in evaluating the 

effectiveness of our exocomet detection algorithm. It 

prioritizes capturing true signals over avoiding false 

alarms, which is essential in the exploratory phase of 

exocomet discovery.

Another crucial hyperparameter in classification 

models based on decision thresholds is the balance 

between precision and recall. This threshold deter-

mines at what predicted probability level a light curve 

is classified as an ‘exocomet candidate’. Setting a 

higher decision threshold leads to an increase in the 

model’s precision at the expense of recall, as the 

model becomes more conservative in its predictions. 

Conversely, lowering the threshold enhances recall 

but may reduce precision. Keeping this in mind, the 

hyperparameter can be adjusted to achieve an opti-

mal balance, particularly ensuring a high recall. In 

standard classification tasks, a threshold of 0.5 is 

commonly used, where light curves with a predicted 

probability above 50 % are classified as ‘exocomet 

candidates’.

6. RESULTS

To obtain the training outcome for the model, each 

training sample is divided into two: the training 

sample and the test sample. The primary difference 

is that the model “sees” the labels of the training 

sample but can not see the labels of the test sample, 

which challenges the model to make predictions for 

both. Figure 5 presents the training outcomes for 

models developed using training and test subsamples 

constructed from the 40 ppm or lower precision light 

curves. The figure illustrates how the accuracy of 

these predictions correlates with the depth of learn-

ing within the model. This ‘depth of learning’ is a 

parameter controlling the maximum depth of deci-

sion trees during the model training phase. The graph 

shows two lines: a dashed line for the training sam-

ple, showing a trend where accuracy improves as tree 

depth increases — this is typical, as more complex 

trees can capture the nuances of the training sample 

more effectively. In contrast, the solid line for the test 

sample highlights the need for precise tree depth cali-

bration to avoid overfitting — where the model be-
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Table 1. Classification reports on  the Random Forest classifier 
applied on the training sample for sector 1 with a CDPP of 
40 ppm, featuring 20 000 light curves (10 000 comet transits, 
10 000 – randomly selected light curves)

Precision Recall F1-score Support

0 0.9832 0.9537 0.9682 1600

1 0.9550 0.9837 0.9692 1600

Accuracy 0.9687 3200

Macro avg 0.9691 0.9687 0.9687 3200

Weighted avg  0.9691 0.9687 0.9687 3200

Precision Recall F1-score Support

0 0.7811 0.9690 0.8649 2000

1 0.9591 0.7285 0.8280 2000

Accuracy 0.8487 4000

Macro avg 0.8701 0.8487 0.8465 4000

Weighted avg 0.8701 0.8487 0.8465 4000

Figure 6. Accuracy of model predictions as a function 

of learning depth for the training sample constructed for a 

subset of light curves with CDPP ≤ 150 ppm: curve 1 — 

training data, 2 — test data 

Table 2. Classification reports on the Random Forest classifier 
applied on the training sample for sector 1 with a CDPP of 
150 ppm, featuring 20 000 light curves (10 000 comet 
transits, 10 000 — randomly selected light curves) 

Figure 5. Accuracy of model predictions as a function of 

learning depth for the training sample constructed for a subset 

of light curves with CDPP  40 ppm: curve 1 — training data, 

2 — test data 

comes too specialized for the training sample — and 

underfitting — where the model is too simplistic to 

grasp the data’s complexity. Table 1 presents the cor-

responding performance metrics.

Table 1 presents the classification report on the 

Random Forest classifier applied to the training 

sample with a CDPP threshold of 40 ppm for sector 

1, including 20 000 light curves (10 000 with comet 

transits and 10,000 randomly selected). The classi-

fier exhibits impressive precision and recall metrics 

across both classes (0 for ‘non-candidate’ and 1 

for ‘exocomet candidate’), with scores above 0.95. 

This high accuracy (0.9687) is noteworthy, indicat-

ing the model’s robust ability to identify exocomets 

transit correctly within light curves. The balanced 

F1-scores, hovering around 0.968, further confirm 

the model’s proficient classification capabilities, 

suggesting a finely-tuned algorithm that maintains a 

calibrated equilibrium between precision and recall. 

Such high-performance metrics underscore the po-

tential of the Random Forest approach in reliably de-

tecting exocometary transits in the sample provided.

As noted above, we prepared two samples depend-

ing on the light curves’ accuracy. Figure 6 shows the 

accuracy of predictions as a function of the model’s 

depth of learning, and it evidences a decline in classi-

fier performance upon escalating the CDPP thresh-

old to 150 ppm. The decrease in the predictive prob-

ability is also seen in Table 2, where the classification 

report for the same classifier but with a higher CDPP 

threshold of 150 ppm is listed. Notably, there is a sig-

nificant reduction in precision for ‘non-candidate’ 

curves (class 0), with a value of 0.7811, and a slight 

decrease in recall for ‘exocomet candidate’ curves 

(class 1) to 0.7285. These findings indicate a deterio-

ration in the classifier’s capacity to effectively discern 

transits, corroborated by an overall accuracy reduc-

tion to 0.8487.
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The macro and weighted averages of precision and 

recall present a similar picture, indicating a more 

challenged classifier at this threshold. This reduction 

in performance metrics, particularly in the recall of 

class 1, highlights the increased difficulty in detecting 

transits. The reason for the decrease in the predictive 

probability is due to 1) a decrease in the signal-to-

noise ratio of the input light curves and 2) a lower ac-

curacy threshold leads to expanding the input sample 

(about 9000 compared to 2000) and, as a result, in-

cluding light curves with amore diverse morphology. 

Figure 7 illustrates the classification outcomes 

for the training samplewhen subjected to a CDPP 

threshold of 40 ppm. The figure distinctly showca-

ses the model’s capacity for distinguishing between 

light curves with asymmetric transits (probability 

estimate is more than 0.6) and without asymmetric 

ones. Figure 8 provides an assessment of the classi-

fier’s performance on the target sample at the same 

CDPP threshold of 40 ppm. It reveals that, gener-

ally, the likelihood of detecting asymmetric transits 

is low across the sample (the probability estimate is 

less than 0.5 for most light curves). However, there 

are notable exceptions where 12 light curves demon-

strate high predictive probabilities. This suggests that 

despite a predominant low detection rate, the model 

has identified a subset of light curves with a strong 

likelihood of exhibiting exocomet transits, affirming 

the potential of the Random Forest approach in flag-

ging significant transit events amidst a vast data array.

Figure 9 shows the training sample with a CDPP 

threshold of 150 ppm, and we can see highlighting the 

challenges in differentiating light curves. The graphic 

shows a more blended distribution of light curves, 

suggesting that increasing the CDPP threshold to 

150 ppm reduces the classifier’s effectiveness. But 

still, it is clearly visible that the method selects those 

light curves in which there are asymmetric transits.

Figure 10 provides the histogram of the probabil-

ity estimates for the target sample at the same CDPP 

threshold of 150 ppm. You can see that the major-

ity of light curves cannot be confidently categorized, 

having probability estimates between 0.2 and 0.8, 

though 20 light curves exhibit high probabilities to 

have asymmetric transits. 

Our investigation into the detection of asymmetric 

exocomet transits (‘exocomet candidate’) within the 

Figure 7. Histogram of the Random Forest classifier’s out-

put probabilities for the training sample (CDPP threshold is 

40 ppm)

Figure 8. Histogram of the Random Forest classifier’s output 

probabilities for the 2000 light curves of the target sample 

(CDPP threshold is 40 ppm)

TESS database, utilizing the Random Forest method, 

reveals the impact of the CDPP threshold on classi-

fier performance. At the lower threshold of 40 ppm, 

the model demonstrates excellent capability in dis-

tinguishing light curves with potential asymmetric 

transits (‘exocomet candidate’), as substantiated by 

the precision and recall metrics that both exceed 0.95 

for ‘exocomet candidate’. The F1-score, harmonizing 

these metrics, corroborates the classifier’s adeptness, 

maintaining scores near 0.97 for both classes (‘exo-

comet candidate’ and ‘non-candidate’), suggesting a 

well-calibrated balance between precision and recall.

The CDPP threshold to 150 ppm, however, in-

troduces significant challenges. The classifier’s pre-
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cision for ‘non-candidate’ curves weakens, and the 

recall for ‘exocomet candidate’ curves suffers, indi-

cating a lessened ability to detect transits without in-

curring false negatives. This is particularly evident in 

the target sample analysis, where most curves reside 

within an indeterminate range, reflecting the classi-

fier’s struggle to make definitive classifications under 

this more conservative threshold.

The findings underscore the critical role of the 

CDPP threshold in the search for ‘exocomet candi-

date’. While a lower CDPP threshold enables more 

precise identification of potential asymmetric tran-

sits, enhancing the prospect of discovery, a higher 

threshold risks overlooking genuine asymmetric 

transit signals, although potentially reducing false 

positives. These insights provide a compelling case 

for the meticulous optimization of CDPP thresholds 

in the broader context of exoplanet and exocomet 

transit detection.

Our study demonstrates the potential of the Ran-

dom Forest method in efficiently screening large 

datasets for exocomet transits. The careful selection 

and optimization of CDPP thresholds are crucial to 

maximizing the effectiveness of these machine learn-

ing techniques. These insights provide a valuable 

framework for future explorations in exoplanet and 

exocomet transit detection using TESS data.

7. CONCLUSIONS

This study shows the effectiveness of machine learn-

ing, in particular the Random Forest algorithm, on 

detecting potential exocomet transits in the TESS 

Sector 1 data, which significantly reduced the need 

for manual inspection of light curves. Given the lim-

ited number of exocomet transits detected in the ob-

served light curves, creating a sufficient training sam-

ple for the machine learning method was challeng-

ing. To address this, we generated a realistic training 

sample by incorporating simulated asymmetric tran-

sit profiles into observed light curves. We then uti-

lized TSFresh software to extract key features from 

these curves.

Considering that cometary transits typically exhib-

it a small depth, less than 1 % of the star’s brightness, 

we chose to limit our sample to the CDPP param-

eter, which is a measure of the signal-to-noise ratio 

after smoothing and ‘whitening’ the light curves. Our 

study focused on two target samples: about 2000 light 

curves with a CDPP of less than 40 ppm and about 

9000 light curves with a CDPP of up to 150 ppm. 

Each sample was accompanied by a corresponding 

training set.

This methodology achieved an accuracy of ap-

proximately 96 %, with both precision and recall 

rates exceeding 95 % and a balanced F1-score of 

around 96 %. This level of accuracy was effective in 

distinguishing between ‘exocomet candidate’ and 

‘non-candidate’ classifications for light curves with 

a CDPP of less than 40 ppm. From the sample of 

about 2000 light curves, our model identified 12 po-

Figure 10. Histogram of the Random Forest classifier’s output 

probabilities for the 9000 light curves of the target sample 

(CDPP threshold is 150 ppm)

Figure 9. Histogram of the Random Forest classifier’s output 

probabilities on the training sample, applying a CDPP 

threshold of 150 ppm
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tential exocomet candidates (with a CDPP of less 

than 40 ppm) and 20 from the larger sample of ap-

proximately 9000 light curves (with a CDPP of up to 

150 ppm). However, when applying machine learn-

ing to less accurate light curves (up to 150 ppm), we 

noticed a significant increase in curves that could not 

be confidently classified. This was due to the larger 

sample size (about 9000 compared to 2000) and the 

increased diversity in light curve morphology.

For the further effective application of machine 

learning for TESS data, we need to implement an ef-

fective technique that does not require large comput-

ing resources, cleaning the brightness variations from 

fluctuations associated with the star itself. These 

promising results from Sector 1 serve as a signifi-

cant motivation for us to extend our analysis across 

all TESS sectors, thereby broadening the scope and 

potential impact of our research in the realm of as-

tronomical studies.
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ПОШУК ТРАНЗИТІВ ЕКЗОКОМЕТ У БАЗІ ДАНИХ TESS ЗА ДОПОМОГОЮ МЕТОДУ ВИПАДКОВОГО ЛІСУ

В даному дослідженні представлено ефективний підхід до виявлення екзокометних транзитів у даних першого 

сектору космічного телескопу Transiting Exoplanet Survey Satellite (TESS). Враховуючи обмежену кількість наявних 

екзокометних транзиців, що виявлені у спостережуваних кривих блиску, створення репрезентативної тренувальної 

вибірки для машинного навчання є великою складністю. Ми розробили унікальну тренувальну вибірку шляхом 

інкапсуляції змодельованих асиметричних профілів транзиту в спостережувані криві блиску, таким чином створюючи 

реалістичні дані для навчання моделі. Щоб проаналізувати ці криві блиску, ми використали програмний пакет TS-

Fresh, який служив інструментом для виявлення ключових ознак, які потім використовувалися для вдосконалення 

нашої моделі Випадковий ліс при навчанні.

Враховуючи, що кометні транзити зазвичай мають невелику глибину, менше ніж 1 % яскравості зірки, ми вирі-

шили обмежити вибірку параметром CDPP. Наше дослідження було зосереджено на двох цільових вибірках: криві 

блиску з CDPP менше 40 ppm та криві блиску з CDPP до 150 ppm. Кожана вибірка супроводжувався відповідною 

тренувальною вибіркою. Наш метод продемонстрував високу точність, досягнувши показника біля 96 %, в поєднанні 

з високими показниками влучності (Precision) та повноти (Recall) для обох, які перевищують 95 %, а також збалан-

сованими показниками F1-міри на рівні 96 %. Цей рівень точності відповідає ефективному розпізнаванню транзитів 

‘кандидат на екзокомету’ та ‘не кандидат’ для кривих блиску з CDPP менше 40 ppm, при цьому наша модель іден-

тифікувала 12 потенційних екзокомет-кандидатів. Однак, застосовуючи машинне навчання до менш точних кривих 

блиску в яких CDPP до 150 ppm, ми помітили значне збільшення кривих, які не можна було впевнено класифікувати, 

але навіть у цьому випадку наша модель ідентифікувала 20 потенційних екзокомет-кандидатів.

Ці багатообіцяючі результати в першому секторі спонукають нас розширити наш аналіз на всі сектори TESS для 

виявлення та вивчення кометоподібної активності в позасонячних планетарних системах.

Ключові слова: комети, планетні системи, малі планети; затемнення, транзити, планети та супутники.




