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MACHINE LEARNING TECHNIQUE FOR MORPHOLOGICAL
CLASSIFICATION OF GALAXIES FROM THE SDSS.
III. THE CNN IMAGE-BASED INFERENCE OF DETAILED FEATURES

This paper follows a series of our works on the applicability of various machine learning methods to morphological galaxy classification
(Vavilova et al., 2021, 2022). We exploited the sample of ~315800 low-redshift SDSS DR9 galaxies with absolute stellar magnitudes
of =24" <M, <—19.4" at 0.003 < z < 0.1 redshifis as a target data set for the CNN classifier. Because it is tightly overlapped with the
Galaxy Zoo 2 (GZ2) sample, we use these annotated data as the training data set to classify galaxies into 34 detailed features.

In the presence of a pronounced difference in visual parameters between galaxies from the GZ2 training data set and galaxies with-
out known morphological parameters, we applied novel procedures, which allowed us for the first time to get rid of this difference for
smaller and fainter SDSS galaxies with m. < 17.7. We describe in detail the adversarial validation technique as well as how we man-

HutyBanusg: Khramtsov V., Vavilova I. B., Dobrycheva D. V., Vasylenko M. Yu., Melnyk O. V., Elyiv A. A., Akhmetov V. S.,
Dmytrenko A. M. Machine learning technique for morphological classification of galaxies from the SDSS. I11. The CNN image-
based inference of detailed features. Space Science and Technology. 2022. 28, Ne 5 (138). P. 27—55. https://doi.org/10.15407/
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aged the optimal train-test split of galaxies from the training data set to verify our CNN model based on the Dense Net-201 realistically.
We have also found optimal galaxy image transformations, which help increase the classifier’s generalization ability.

We demonstrate for the first time that implication of the CNN model with a train-test split of data sets and size-changing function
simulating a decrease in magnitude and size (data augmentation) significantly improves the classification of smaller and fainter SDSS
galaxies. It can be considered as another way to improve the human bias for those galaxy images that had a poor vote classification in
the GZ project. Such an approach, like autoimmunization, when the CNN classifier, trained on very good galaxy images, is able to re-
train bad images from the same homogeneous sample, can be considered co-planar to other methods of combating such a human bias.

The most promising result is related to the CNN prediction probability in the classification of detailed features. The accuracy of the
CNN classifier is in the range of 83.3—99.4 % depending on 32 features (exception is for “disturbed” (68.55 %) and “arms winding
medium” (77.39 %) features). As a result, for the first time, we assigned the detailed morphological classification for more than 140000
low-redshift galaxies, especially at the fainter end. A visual inspection of the samples of galaxies with certain morphological features
allowed us to reveal typical problem points of galaxy image classification by shape and features from the astronomical point of view.

The morphological catalogs of low-redshift SDSS galaxies with the most interesting features are available through the UkrVO web-
site (http.//ukr-vo.org/galaxies/) and VizieR.

Keywords: galaxies: galaxies, morphological classification, methods: data analysis, Convolutional Neural Network, image processing.

1. INTRODUCTION

Convolutional neural network (CNN) as a machine
learning (ML) technique is becoming more and more
applicable for astronomical tasks. Its success has been
proven sufficiently for big data observational sky sur-
veys: galaxy classification by various properties, pat-
tern recognition image description, celestial body pe-
culiarities’ identification, anomalies, transient object
detection, etc. The CNNs are very helpful for finding
and discovering previously unknown gravitationally
lensed quasars [1—3], identifying gravitational lenses
[4—7], galaxy-galaxy strong gravitational lenses [§]
including in the Dark Energy Survey (DES) imag-
ing data [9] and weak gravitational lensing analysis
to create galaxy images as input [10]. The distance
moduli estimates benefit from the CNNs utilization
in the big data sets, which provide a wide number of
galaxy features for learning (see review by Salvato et
al. [11]). Bonnett et al. [12] adopted multiple ML
methods for determining photometric redshifts with
implications for weak lensing from the DES catalog.
Amaro et al. [13] compared ANNz2 [14], Bayesian
photometric redshift method, and METAPHOR
(Machine-learning Estimation Tool for Accurate
PHOtometric Redshifts) for KiDS-ESO-DR3 and
GAMA DR?2 surveys. Similarly, Pasquet et al. [15]
used deep learning (DL) for classifying, detecting,
and predicting photometric redshifts of quasars in
the SDSS. ML and generative adversarial networks
(GAN) were used to assign and predict photomet-
ric/spectroscopic redshifts within large-scale galaxy
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surveys with good accuracy [9, 11, 16—20]. The ML
approach serves as a basis for restoring galaxy distri-
bution in the Zone of Avoidance and cosmic web as a
whole [21—29] and generating dark matter structures
in cosmological models [30—32], for extraction of
information from noisy maps [33] and image recon-
struction of celestial bodies in the whole [34—38], for
the task of deblending overlaps between foreground
and background galaxies with GAN as CNN tech-
nique [39—40] (see, also, scalable ML algorithms
and frameworks in [41]). The review of recent trends
of ML applicability in cosmology and gravitational
wave astronomy can be found in the work by Burgazli
et al. [42].

The CNN models have expanded the “optical”
range of applications becoming useful for multi-
wavelength sky surveys. Among recent studies are as
follows: search for blazar candidates in the Fermi-
LAT Clean Sample [43]; boosted decision tree for
detecting the faint y-ray sources with future Cheren-
kov Telescope Array [44—45]; infrared colour selec-
tion of Wolf-Rayet candidates in our Galaxy using
the Spitzer GLIMPSE catalog [46]; cosmic string
searches in 21-cm temperature CMB maps [47];
neural network-based Faranoff-Riley classifications
of radio galaxies from the Very Large Array archive
[48] and DL classification of compact and extended
radio source from Radio Galaxy Zoo [49]; CNN for
morphological assignment to radio-detected galaxies
with active nuclei [50]. Scaife et al. [51] presented
the first application of group-equivariant CNNs to
radio galaxy classification and explored their poten-
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tial for reducing intra-class variability by preserving
equivariance for the Euclidean group on image trans-
lations, rotations, and reflections.

The merging galaxies are among the objects to
be misclassified. Finding comprehensive samples of
such galaxies in different merger stages is significant
for studying these long-term processes. In this con-
text, the adversarial training with Domain Adversar-
ial Neural Networks (DANNSs) altogether with the
Maximum Mean Discrepancy (MMD) method was
proposed by Ciprijanovic et al. [52]. Such adaptation
techniques allowed these authors to demonstrate a
great promise to classify galaxy mergers across do-
mains. As well, to identify peculiar galaxies, an ML
system needs to identify forms of galaxies that are
not present in the dataset. For such identification of
outlier galaxies, the unsupervised ML is proposed by
Shamir et al. [53].

Our work follows the previous study [54] (Paper I
below), where the photometry-based approach for
a binary morphological classification was applied to
the SDSS DRO set of low-redshift ~315800 galaxies.
Using various galaxy classification techniques (hu-
man labeling, multi-photometry diagrams, and five
supervised ML methods), we found that the Support
Vector Machine and Random Forest give the highest
accuracy (more than 96 % for early and late types).
Determining the ability of each method to predict
the galaxy morphological type, we verified various
dependencies of the method’s accuracy on redshifts,
celestial coordinates, human labeling bias, the over-
lap of different morphological features, etc.

This paper aims to obtain the CNN image-based
morphological feature classification of 315 782 gal-
axies with absolute stellar magnitudes of —24” <
<M, < -19.4™at 0.003 < z < 0.1 redshifts (with ve-
locities correction on the velocity of Local Group,
Vi g > 1500 km/s). For this, we exploited the anno-
tated data of the Galaxy Zoo 2 (GZ2) project with
their crowd-sourcing strategy for volunteers to clas-
sify images by answering a series of questions. The
sample of the GZ2 galaxies, which overlap with the
studied galaxies, served as the training data set for the
CNN classifier.

As compared to the paper [55] (Paper 1I below),
this work investigates the problem of differences in
the data sets in detail and suggests ways to overcome
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adversarial validation. We describe in detail a neural
network to predict some structural morphological
features that can help to classify galaxies with ware
used by Walmsley et al. [56]. We analyze the obtained
samples of galaxies with different morphological fea-
tures to obtain their quantitative/qualitative proper-
ties and to estimate the efficiency of the CNN clas-
sifier.

We describe briefly the target, training, and infer-
ence galaxy data sets in Section 2. Methodology con-
sisting of the data preparation, adversarial validation,
and CNN morphological classification with the in-
telligent train-test split via adversarial scores is given
in Section 3 (see also Paper II). The general results
and discussion are in Section 4, and the conclusion is
presented in Section 5.

2. GALAXY DATA SETS

2.1. Target data set. One of the most crucial princi-
ples of ML is comprehending the data you are work-
ing with. These design principles are most important
at the stage when the data are fed into the chosen
algorithms (see, for example, [57]). That is why we
used a representative data set of the 315 782 SDSS
DR9 galaxies at z < 0.1 with the absolute stellar mag-
nitudes 24" < M, < —13", which we name as the
target data set (see, in detail, Paper II [55]). We stud-
ied it practically as “galaxy by galaxy” in previous
works for various tasks [58—68], including the ML
photometry-based approach for binary galaxy mor-
phological classification [54] and the catalog of their
morphological types [69] obtained with the Support
Vector Machine and Random Forest methods. Paper
II [55] describes a general methodology for the CNN
morphological classification, and a morphologi-
cal catalog of galaxies classified into five classes ac-
cording to the GZ2 labeling annotation is published
through VizieR [70].

2.2. Training and inference data sets. To provide
the image-based approach for morphological classi-
fication of galaxies from the target data set, we used
the GZ2 annotated data. To train the neural network,
we should have a large number of labeled galaxies im-
ages. The target data set of the SDSS galaxies is tight-
ly overlapped with the data from GZ2 [71]. For this
reason, we divided our target data set into two data
sets. Hereafter, we determine the data set of 143 410
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Figure 1. Histograms of the stellar magnitude and Petrosian radius (90 % of the flux) distributions in r-band for the training

(green) and inference (brown) SDSS galaxy data sets at z < 0.1

galaxies, which do not match the GZ2 galaxies, as the
“inference” data set. The data set of 172 372 galax-
ies, which match the GZ2 galaxies, is the “training”
data set. The sample from GZ2 contains all the well-
resolved galaxies essentially in DR9 with N = 11923
galaxies from the Stripe 82 (11.6 <m,<17.7,0.003 <
<z<0.09), where about of 6800 are at 0.07 < < 0.09.
We consider galaxies only in normal-depth SDSS
imaging and with DR9 spectroscopic redshifts.

We consider two types of morphological clas-
sification. The first type is the classification, which
includes clearly separable five classes: completely
rounded, rounded in-between, cigar-shaped, edge-
on, and spiral galaxies. This classification is based
on the combinations of precisely labeled GZ2 pa-
rameters and, obviously, includes only some part of
the training data set. Unlike the first type, the second
type of classification works with the 37 galaxy mor-
phological features from the GZ2 and covers all gal-
axies presented in the training data set.

To form the first type of classification, we used
specific criteria which allow us to separate different
morphological classes of galaxies [71]. These crite-
ria were listed in Paper 11. Besides, we removed seven
galaxies that fit in two or more criteria. So, we ex-

ploited only those galaxies for training for which the
most votes of GZ volunteers were collected. Such
constraints are not all-inclusive. The more complete
and severe criteria could be used to determine the
morphological type of a galaxy as clearly as possible.
However, as we discussed in Paper I, the criteria in
use are good enough to provide reliable image-based
classification.

To form the second type of classification (classifi-
cation by the morphological features, lower panel in
Fig. 3), we used at least one of 37 features of galaxies
from the training data set, which are described in the
first column of Table 2 and Table 3. Also, we removed
three very sparse classes from the consideration
(“bulge prominence dominant”, “odd feature lens or
arc”, and “bulge shape boxy”) each containing < 10
galaxies. In total, we obtained the training data set
of 160 471 galaxies (lower panel, Fig. 3). To test the
accuracy of the detailed morphological classification
on the faint magnitude end, we also used 16 626 gal-
axies from the DECaLS (see subsection 3.5).

There is a principal difference between galaxy im-
ages in our inference data set and training data set
matching the GZ2 catalog. One can see in Fig. 1,
that the inference data set is much shallower than
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Figure 2. Histograms of the redshifts (a) and u — r colour indices () distributions for the training (green) and inference (brown)

SDSS galaxy data sets at z < 0.1

the training one. This occurred because the gal-
axies from the target data set were pre-selected via
m, < 17.7 limitation by stellar magnitude in r-band.
This limitation is related to the 90 % Petrosian flux
parameter [72—74]. So, the galaxies, which do not
match the GZ2 catalog from the target data set, are,
on average, fainter and smaller than galaxies from the
training GZ2 data set. In total, 24 547 galaxies from
the inference data set have m, < 17.7 (Fig. 1, a). The
CNN classifier knows nothing that it will work with
the inference data set, where galaxies are fainter and
smaller than in the training data set. So, it gives us
an additional case to study the performance of the
image-based classification by providing some addi-
tional steps.

Namely, to understand how crucial the shift be-
tween training and inference data sets is for the CNN
classifier, we use additional test data set. It is based
on the image morphological classification of 314 000
galaxies from DECaLS and includes revealed fine
morphological features, which are not seen with the
SDSS images [74]. With this additional test data set,
we identified 16 626 galaxies in our inference data
set, which further are used for the approach testing.
We note that the morphological classification scheme

for the DECaLS is slightly different from that for
the GZ2, namely, it is biased towards increasing the
detection of bars, measuring bulge size, and distin-
guishing types of merging galaxies. To align the GZ2
classification used in our study and the DECaLS
morphological classification, we removed 15 classes
from this data set because the DECaLS morphologi-
cal classification does not contain some of the GZ2
classes (see Table 2 and Table 3). After this data prep-
aration, we obtained 28 GZ2 feature labels in our ad-
ditional test data set. Hereafter in the paper, we refer
to it as the “deep” test data set.

Other relevant observational parameters are bet-
ter overlapped among two data sets, see, for example,
Fig. 2 with distributions by redshift and (u-r) color
indices.

2.3. Images of galaxies. Images of the training and
inference galaxies were requested from the SDSS
cutout server. We have retrieved 315 782 RGB images
(in PNG format) composed of gri bands according
to [75] color scaling, each of 100x100x3 pixels. Un-
fortunately, some of the images were not retrieved for
technical reasons (including dead pixels), slightly re-
ducing the training and inference data sets to 172 251
and 136 342, respectively.
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We note that scientific image format (like FITS)
may be preferable in our task due to the higher ampli-
tude ranges compared to 256 values per band in the
simple PNG image. But such a flux sampling is more
required for detailed image analyses, for example,
gravitational lens modeling, while most of the deep-
learning models are working on images with 8-bit am-
plitudes (see, for example, [76]). Additionally, FITS
files from the SDSS may be composed into 5-band
images, expanding spectral information, while PNG
files are restricted to have three bands only (gri in our
case). Investigation of this issue is out of scope for our
paper, and we used the standard approach of utilizing
the SDSS image cutouts for galaxy morphological
classification [71].

2.4. Implementation. All the deep-learning models
were implemented using PyTorch! and pytorch-im-
age-models? libraries. To train the models, we used
GPU GeForce GTX 1080Ti.

3. METHODOLOGY, THE CNN
IMAGE-BASED GALAXY CLASSIFIER

We exploited CNNs to reveal the morphological
classification of galaxies by their images. With this
technique, we solve two different classification
problems and handle a shift between training and
inference data sets.

Usually, CNN consists of layers represented by
a sequence of convolutional operations, activation
functions, and pooling operations. The principal
aim of the CNN is to find such convolutional ker-
nels that are the result of applying the whole CNN
to the image finalized in some target value3. In our
case, the morphological classes and features of gal-
axies are target values. The CNN architectures use
the fully connected layers (instead of convolutional
blocks) at the tail. This tail corresponds to the neural
network classifier, which transforms the output of the
convolutional part into the dense layer, the number
of neurons, which is equal to the number of classes.

' https://github.com/pytorch/pytorch

2 https://github.com/rwightman/pytorch-image-models

3 A good practical overview can be accessed through http://
cs231n.stanford.edu/. We address readers also to works
[34, 77—79], where the feature extraction power of CNNs
was illustrated in numerical experiments for improving the
classification performance, including astronomical image
reconstruction.
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3.1. General approach. The scheme of our ap-
proach is shown in Fig. 3. First, we divide the studied
data set into the training and inference parts (Sec-
tion 2). Since the inference data set is enormously
different from the training one, we have to apply
some necessary procedure with a final classification,
namely, the adversarial validation®. It allowed us not
only to probe the difference between the galaxy im-
ages in training and inference data sets (middle panel
in Fig. 3) but to derive the most suitable method of
testing the CNN classifier, which will produce a rep-
resentative estimation of the quality of the inference
data set. This procedure is also significant in our ap-
proach for two reasons: the labeled galaxy data sets
are biased in stellar magnitude distribution for the
training data set (Fig. 1, @); such a difference could
lead to bias in the final prediction of galaxy classifica-
tion in the inference data set.

At the second stage of the pipeline, we use CNN
to solve the five-class problem described in Section
2. We test our model with the data set defined by the
adversarial validation.

Finally, we train a second model to predict the
detailed morphological features (e.g., bar, bulge,
merging, ring, etc.), which is tested with the adver-
sarial validation and deep test data sets. As a result
of a pipeline, we get five morphological classes and
34 detailed morphological parameters for galaxies
from the inference data set (third and fourth panels
in Fig. 3).

3.2. Data preparation and augmentation. Stable
CNN learning presumes the right scaling or normal-
ization of the input data [81]. We scaled each image
I (pixels of which contain values between 0 and 255:
II.J e {0, 255}) to the range [-0.5, 0.5] using the scal-
ing equation as follows:

- I,-1275

[,=" "=
M55 %

Also, we defined many affine transformations for
applying to images of galaxies during the CNN learn-
ing (so-called image augmentation). In our case, the
augmentation helps to introduce the variative nature
of galaxies to the CNN methods (because the stan-

4 This method is commonly used in data science competi-
tions, see, e.g., http://fastml.com/adversarial-validation-
part-one/ [80].
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dard CNNs are not fully invariant to any transfor-
mation of the images and have a strong ability to
over-fitting). In most cases, this trick improves the
generalization ability of CNN producing a less over-
fitted model on the training data set (see, e.g. [82]).
As augmentations, we used random rotation (0°, 90°,
180°, or 270°), random zoom (varying at 100...120
pixels on each axis) with further random cropping of
the 100 x 100 region, and random vertical/horizontal
flipping of the images of galaxies. This process was
applied randomly to each image of a galaxy so that
each image of a certain galaxy was put in the CNN as
a “new” one reducing the sensitivity of CNN to any
galaxy orientation.

These augmentation steps were exploited during
the adversarial validation with the CNN classifica-
tion. We note in advance that after the adversarial
validation was produced, we conducted additional
data augmentation procedures that helped to learn
the CNN classifier better (Section 3.3).

3.3. Adversarial validation. Having the training
and inference data sets (Section 2), we can investi-
gate how the images of galaxies “vary” between these
data sets. We trained the CNN on all of these images,
passing the class “0” for the inference data set and
class “1” for the training one (second panel, Fig. 3).

In this case, the CNN classifier tried to distin-
guish the training images from images of galaxies
from the inference data set, returning the “adver-
sarial score” — the probability of the galaxy being in
the training data set. If such a classification accuracy
is close to random guessing, one could assume the
similarity of the training galaxy images with the infer-
ence ones. Moreover, vice versa, when the adversarial
classification accuracy largely differs from random
guessing (tends to 100 %), one has to investigate the
difference between the training data set and the infer-
ence one to predict the classes of inference objects
correctly. The adversarial score is a measure of how
an individual galaxy is similar to the training data set
(larger scores correspond to larger similarities with
galaxies from the training data set). The effect of
dissimilarity is due to the different observed param-
eters of galaxies from the training and inference data
sets. We used the full GZ2 data set as a training data
set (comprising 172 372 galaxies) with adversarial
class “1”.

'd N\
o Training dataset Inference dataset
=
<]
Galaxy Zoo 2
A 17330 R 143 410 gals
\ <
' N
Training dataset Inference dataset
® =
25
< =
23 Class =1 Class =0
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Figure 3. Scheme of the image-based approach for morpho-
logical classification of galaxies. The methodology consists of
the data preparation of GZ2 training and SDSS DR9 infer-
ence data sets, image augmentation, adversarial validation,
five-class CNN classification with intelligent train-test split
via adversarial scores, CNN detailed morphology by 34 im-
age galaxy features with DECaLS deep test. The algorithm has
resulted in the classification of the inference galaxy data set
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We employed ResNet-101 [83] as a model, where
the convolutional part was completed by the two lay-
ers of neurons with 128 and 2 neurons in each layer
respectively. After the first layer of neurons, we put
on the Leaky Rectified Linear Unit activation func-
tion. The last layer that returns the probabilities of
being in the training or inference dataset was supple-
mented by the “softmax” activation function. As an
optimizer, we used Adam with an initial learning rate
of 5x1073; the optimizer minimized the categorical
“crossentropy loss function”. In this way, we tried a
single ResNet-101 model as a baseline approach and
obtained a good accuracy for GZ2 vs inference clas-
sification. We did not vary models because the aim
is not to have a performance as higher as possible.
The trained model is just a key-performance indica-
tor for each galaxy, and its outputs were used as the
proxy metric to understand the similarity between
the target (not GZ) data set and each galaxy or its
augmented version.

The whole input set consisted of ~170 000 galax-
ies from the GZ2 training data set and 136 000 gal-
axies from the inference one. We have trained the
model on 75 % of the input data and validated it on
the rest part of the galaxies. We applied standard data
augmentation procedures to the training images de-
scribed in Section 3.2. The model was learned dur-
ing 12 epochs. If the overall classification accuracy of
galaxy images from the validation data set did not in-
crease during three epochs, we decreased the learn-
ing rate by a factor of 0.1. Finally, we used the model
that provided the best overall accuracy (91.28 % on
the validation data and 91.67 % on the training one).

For our task, we obtained the accuracy of adver-
sarial classification above 90 %. So, the inference da-
taset contains galaxies with morphological properties
which are not inherited from the training set. One
can see in Fig. 4, a that the adversarial score is rela-
tively high for a few galaxies only from the inference
data set. This agrees with our observation that infer-
ence galaxies are fainter (Fig. 1, a and smaller (Fig. 1,
b) than galaxies from the training data set.

We highlight that the resulting adversarial classi-
fication accuracy is not a result of over-fitting. Spe-
cifically, we randomly split the GZ2 training plus
inference data sets into two parts. One of which was
used to train the adversarial CNN and another to

validate it. The CNN scored the same adversarial ac-
curacy for these subsets (91 %). So, according to the
adversarial result, we can conclude that our training
data set contains galaxies, properties of which are not
common with the inference one. This means that
any validation of the morphological classifier has to
be done with the galaxies from the training data set,
which have a low adversarial score.

There is a typical danger case of over-fitting when
an ML model is well performed on the training data
set but is not able to generalize to new, previously un-
seen data. This effect may be controlled through the
train-test splitting. In such a way, a portion of the data
(called the test data) is set aside to be used only to as-
sess the performance of the trained model and is not
included in the training data set. To do so, we ran-
domly choose 9 000 galaxies with an adversarial score
higher than 0.7 from the training data set of 72 738
galaxies (comprising five different morphological
classes). We picked up the best threshold 0.7 with a
simple search taking into account the largest accuracy
(see Fig. 4, a); other thresholds result in lower separa-
tion quality. Within this train-test split, the test part
of training galaxies (9 000) was used to validate the
morphological CNN classifier, and the rest part of the
galaxies (63 738) to train CNN classifier (third panel,
Fig. 3). It allows to understand the CNN ability to
generalize on data it has never seen before, namely on
the galaxies, which are similar to the inference dataset
according to their adversarial score.

To train the CNN classifier for the prediction of
the classes of fainter and smaller galaxies, we have
added the following transformations of images to the
defined data augmentation procedures (see subsec-
tion 3.2 and Eq. 1):

P ka(I,.,j,m)—127.5

& 255 ’ 2
where S(/ 'L m) is a function changing the size of the
image by m times, and k is an intensity-scaling coeffi-
cient. We implemented the size-changing function as
simple zooming out of the image (into the new image
with axes (100 x m) x (100 x m) pixels, where 0 < m
< 1), followed by mirror reflection of the image to fill
up the missing 100 x (1 — m) pixels along the borders.
In turn, the intensity of pixels for each image was re-

duced by a factor of 0 < k < 1 (Eq. 2).
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Figure 4. Histograms of adversarial score distributions (a). The inference galaxy data set (brown) and for elliptical and spiral
galaxies from the GZ2 training data set. Adversarial score is close to 1 if the galaxy is similar to the galaxy from GZ2 training
data set (b). A random subset of 3000 images from the training data set revealed from original SDSS images (green) and images
with modified sizes and intensities of galaxies as k = 0.8, m = 0.7 from Eq. 2 (brown)

The augmentation procedures we implemented
allow us to transform the image of the galaxy, sim-
ulating a decrease in magnitude and size as well as
veiling it as the galaxy image from the inference da-
taset. For example, applying these transformations
(k=0.8, m=0.7) to the 3 000 random images from
the training data set with the adversarial score > 0.7,
we observed the shift of the adversarial score distribu-
tion towards zero value (see Fig. 4, b). The histogram
of the adversarial score distribution, especially for
lower values, gives direct confirmation in the support
of such transformations. This trick with image trans-
formations improves the accuracy of the result emu-
lating the training galaxies to be more similar to the
galaxies from the inference data set according to the
adversarial scores. In this way, we do not investigate
effects caused by different “modalities” (training /
inference); instead, we built a technique to prevent
prediction biases. In other words, we solved the do-
main adaptation problem but with manually in-built
heuristics (changing angular sizes and intensity of
images of training galaxies).

3.4. CNN five-class morphological classifier. The
next step of our pipeline was the morphological clas-
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sification with CNN on training galaxy images (third
panel, Fig. 3). The principal difference between our
approach and the existing ones (see, for example, re-
cent works [56, 84—86]) is the usage of

1) the pre-defined training-test split through ad-
versarial validation of the classification accuracy on
the inference-like test set, and

2) the specific data augmentation, which allowed
us to decrease the difference in galaxy images related
to the stellar magnitudes between the GZ2 and infer-
ence data sets.

The procedure of training the CNN with the
overall accuracy of 89.3 % on the test data set of
9 000 galaxies is described in Paper II. As for the
data augmentation procedures, we used the stan-
dard techniques described in Section 3.2 and the
intensity and size reduction of the galaxy images
described in the previous subsection. For each gal-
axy from the training data set, we randomly sampled
k and m from the uniform distribution within (0.6,
1.0) and (0.5, 1.0) ranges (Eq. 2), respectively. Data
augmentation was applied to the training data set
only. The confusion matrix of the distribution of
prediction probabilities of all the classes is in Ta-
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ble 1 of Paper II. One can see that accuracy is not
dominated by scores for morphological classes with
higher numbers of galaxies.

Table 1. Accuracy scores of backbone models
for the five-classes of CNN morphological
classification on the validation data

Architecture References Accuracy
ResNet-50 [83] 0.821
ResNet-101 [83] 0.832
ResNet-152 [83] 0.826
InceptionV3 [88] 0.937
InceptionResNetV2 [89] 0.962
DenseNet-121 [87] 0.960
DenseNet-169 [87] 0.959
DenseNet-201 [87] 0.966
NASNetLarge [90] 0.929
VGG16 [91] 0.909
Xception [92] 0.956

Similar to the model for the adversarial validation,
the tail of CNN models was completed by the two
dense layers of neurons (with the number of neurons
equal to 128 and 5, respectively) followed after the
global max-pooling. The activation functions at the
tail of the CNN model were the same as in adver-
sarial validation. As an optimizer, we also used the
Adam with an initial learning rate of 10~%; the opti-
mizer minimized the categorical “crossentropy loss
function”.

CNN models were trained during 40 epochs.
Moreover, during the learning, we decreased the
learning rate value if the loss on the validation da-
taset was not decreased after four epochs. The even-
tual classification accuracy of the validation data set
for all models is shown in Table 1. As the result of
a comparison between these models, we decided to
use DenseNet-201 [87], which shows the highest ac-
curacy on the “unseen” validation (96.6 %) and test
(89.3 %) data sets.

Table 2. Quality of inference morphological feature on the test data sets of galaxies (see, description in the text of this paper)

Parameter ROCG,s | ROCY, ROC; ROCED | ROCH S ROCZ;P “| Threshold ]21’;1?;1 ]\fj’;:; f
Smooth 89.25 % 88.59% | —0.66 % 86.06 % 86.84 % 0.78 % 0.1 107657 | 51911
Features or disk 92.54 % 91.88% | —0.66 % 85.63 % 85.43 % —-0.20 % 0.3 138207 | 58796
Star or artifact 95.36 % 97.63 % 2.28 % 57.70 % 51.43 % —6.27 % 0.05 220 73
Edgeo yes 98.81 % 98.65% | —0.16 % 87.35% 88.26 % 091 % 0.05 34420 14489
Edgeon no 97.21 % 96.82% | —0.39 % 75.53 % 76.41 % 0.88 % 0.25 72843 19088
Bar 93.99 % 9241% | —1.57% 57.54 % 57.54 % 0.00 % 0.05 29892 6276
No bar 90.69 % 89.80% | —0.90 % 68.82 % 68.61 % -0.21% 0.2 86836 27861
Spiral 93.40 % 92.88% | —0.52% 78.97 % 79.48 % 0.51% 0.15 65709 17741
No spiral 86.30 % 84.78% | —1.52% — — — 0.05 69303 20603
No bulge 98.36% | 98.35% | —0.01% | 65.09% | 69.03% | 3.94% 0.05 6970 | 4046
Bulge just notice- | 90.89% | 89.75% | —1.14% — — — 0.05 39627 | 14926
able
Bulge obvious 90.55% | 89.07% | —1.49% | 62.45% 64.31% 1.86 % 0.05 27115 10018
Bulge dominant — — — — — — — — —
Odd yes 94.78 % 93.37% | —1.41% — — — 0.05 41334 17601
Odd no 84.62 % 83.51% | —1.11% — — — 0.45 170898 | 79134
Completely round | 96.17% | 95.60% | —0.58% | 93.09% | 93.51% | 0.43% 0.15 | 75844 | 35669
Roundedinbe- | 92.31% | 91.46% | —0.85% | 82.73% | 82.84% | 0.11% 0.2 | 125734 | 70389
tween
Cigar shaped 97.96 % 97.73% | —0.23% 97.24 % 97.46 % 0.22 % 0.1 60395 30351
Ring 96.97 % 96.43 % | —0.54 % — — — 0.05 13882 1346
Lens or arc — — — — — — — — —
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3.5. Detailed galaxy morphology classification. We
used another CNN model to predict 34 detailed mor-
phological parameters of galaxies from the inference
data set. This model exploited DenseNet-201 [87]
as the backbone model with the included fully con-
nected layers at the top (namely, global max-pooling,
fully-connected layer with 512 neurons, and classi-
fication fully-connected layers with 34 outputs). We
put Rectified Linear Unit activation after the first
fully-connected layer and sigmoid activation after
the last classification of fully-connected layers. The
model was trained with the Adam optimizer, which
minimized the “binary crossentropy loss” function.
We solved a multi-label classification problem: one
object may have a few features. So, we did not use the
“softmax” activation function after the classification
layer; instead, we treated each class separately and
solved binary-classification for each label. This con-

figuration looks suitable for solving the multi-label
problem when we do not need to predict probability
distribution over all classes to infer the single class for
a single sample (fourth panel, Fig. 3).

We provide below in Table 2 and Table 3 two re-
sulting accuracy scores measured with the ROC
AUC classification quality metric [93] to predict 34
morphological features of galaxies. The names of fea-
tures are in the first column. The next columns cor-
respond to the quality metrics (ROC AUC), ROCt-
est for GZ2 test data set, and ROCdeep test for the
DECaLS. We provided three scores for each data set:
with and without adversarial augmentation and the
difference between both scores. The last three col-
umns: threshold; a number of galaxies matching this
criterion from all the target data set and the inference
data set, respectively. Empty cells correspond to the
missed features. The sum numbers in columns 9 or

Table 3. (continue). Quality of inference morphological feature on the test data sets of galaxies

(see, description in the text of this paper)

Parameter | ROCia,q | ROCi, | ROC | ROCELS | ROCKL®™ | ROCK™ | Threshold | @l | M inf
Disturbed 72.27% | 68.55% | —3.72% — — — 0.15 0 0
Irregular 96.74 % | 96.94 % 0.20 % — — — 0.05 9432 6369
Other 9593% | 89.20% | —6.74 % — — — 0.05 1442 624
Merger 91.79% | 88.89% | —2.90 % — — — 0.05 2575 738
Dust lane 99.39% | 99.40 % 0.02 % — — — 0.05 588 67
Bulge shape 96.73% | 96.27% | —0.47 % 67.18 % 67.26 % 0.08 % 0.05 32280 12835
rounded
Bulge shape boxy — — — — — — — — —
Bulge shape no 98.65% | 98.52% | —0.13% 71.61 % 71.46 % —0.16 % 0.05 19570 10867
bulge
Arms winding 89.45% | 88.60% | —0.85% 72.25 % 72.29 % 0.04 % 0.05 22180 5414
tight
Arms winding 7533% | 77.59% | 2.26 % 69.91 % 71.57 % 1.66 % 0.05 304 86
medium
Armswinding | 94.95% | 94.41% | —0.54% | 69.03% | 69.95% | 0.92% 0.05 8411 | 3269
loose
Arms number 1 85.56 % | 83.30% | —2.26 % 60.22 % 61.83 % 1.61 % 0.05 445 188
Arms number 2 90.55% | 89.99% | —0.56 % 76.33 % 76.62 % 0.30 % 0.05 69229 | 22061
Arms number 3 93.54% | 93.47% | —0.07 % 70.14 % 68.55 % —1.58 % 0.05 889 78
Arms number 4 93.84% | 8545% | —8.39% 54.95 % 56.96 % 2.01 % 0.05 82 3
Arms number 97.79% | 97.51% | —0.27 % — — — 0.05 55 4
more than 4
Arms number 86.13% | 86.07% | —0.06 % — — — 0.05 7683 1329
cannot tell
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10 may not be equal to the total number of galaxies:
one galaxy can have features in several classes, and it
is also possible that there are galaxies that do not fit
any criterion.

These tables allow comparing this score for the
model trained with adversarial augmentations (Sec-
tion 3.2) and for the model trained without these
augmentations. Such a comparison should be useful
to understand the degree of influence of image aug-
mentations on the classification quality of the trained
model. Scores are given for two test data sets: 1) for
the data set of 9000 galaxies and 2) for the DECaLS
galaxy data set. As one can see in these Tables, for the
case of the GZ2 test data set, the scores, in general,
are lower on tests for the model, trained with “flux
weakening” and “size reduction” augmentations.
This effect is explained by the similarity of the train
and test data sets because due to the object selection
in the GZ2 project, we are not able to sample a satis-
factory amount of faint and small galaxies to test on.
And thus, our adversarial augmentations shifts the
training data set distribution with respect to the test
data set.

At the same time, we note the improvement in the
classification of the DECaLS galaxies. The scores
overall are much lower than in the case of our GZ2
test data set. It may be explained by the revealing fin-
er structure of morphology with DECaLS: galaxies,
which have some class in the GZ2, may be classified
in another class with the DECaLS. But applying a
model trained with adversarial augmentations leads
to increasing the classification quality (except star or
artifact class).

4. GENERAL RESULTS
AND DISCUSSION

There are many classifiers for sorting galaxies by
morphological type and features, but each has its own
drawbacks. For example, spectroscopy classification
requires different methods to define simultaneously
similar spectra for quiescent/starburst and star-
forming galaxies [94, 95] or emission-line galaxies
[96]. As well, a photometry-based approach gives
an error when trying to classify red spirals and blue
ellipticals [64, 67, 97—100], i.e., galaxies with a high
content of old stars or interacting galaxies which
affect the photometric characteristics of each other
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[101—104]. Analyzing our obtained results and data
products let us discuss several issues related to the
CNN image-based galaxy classification.

4.1. Accuracy. We applied CNN classifier to the
studied low-redshifts SDSS galaxies and seized two
sets of parameters: predictions of beings in one of five
classes and to have one of 34 detailed morphologi-
cal features using the GZ2 labeling. We remind that
the five GZ morphological classes are relevant to cer-
tain galaxy morphological types, e.g., T-types by de
Vaucouleurs. Also, the human bias, which is caused
by the GZ volunteers’ answers in the decision tree,
affects the classification accuracy. It is discussed by
many authors in different aspects (see, if interesting,
“Astronomy Blog. Galaxy Zoo and human bias” 3.
We refer to the paper by Cabrera et al. [105], where
the metric for human labeling measuring in the case
of low-redshift spiral/elliptical galaxies is proposed
in the frame of label’s comparison between experts,
GZ volunteers, and ML models. Hart et al. [106] de-
veloped a reliable method for defining spiral galax-
ies, which eliminates the redshift-dependent bias in
the GZ2 volunteer’s answers. It was taken into ac-
count “by modeling the vote fraction distributions as
a function of redshift, and correcting the higher red-
shift vote distributions to be as similar as possible to
equivalent vote distributions at low redshift.”

We exploited the GZ2 annotated data as by Willett
et al. [71], which can possess a worse bias for, as an
example, the late-type galaxies (spiral) as compared
with the data by Hart et al. [106]. Of course, the ex-
ploiting more and more unbiased data for training
should improve the accuracy of the CNN classifier,
see, for example, Tarsitano et al. [107], where this
debiasing technique is applied for “disk and smooth”
galaxies. Nevertheless, in general, our method is on
par with the most contemporary level of morpho-
logical classification performance, attaining the ac-
curacy of 83.3...99.4 % in depending on the morpho-
logical galaxy feature (Table 2 and Table 3). Such an
overall value of the accuracy is in a good agreement
with the one obtained in work by Walmsley et al. [56],
who used Bayesian CNN to study Galaxy Zoo volun-
teer responses and achieved coverage errors of 11.8 %
within a vote fraction deviation of 0.2.

5 https://www.strudel.org.uk/blog/astro/000758.shtml
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If consider the attained accuracy for certain mor-
phological types of galaxies, we note the work by
Gauthier et al. [108], who applied both supervised and
unsupervised methods to study the Galaxy Zoo data
set of 61 578 pre-classified spiral, elliptical, round,
and disk galaxies. They attained 94 % accuracy for
galaxies to be associated with each of these four classes
and noted the correlation of variation of galaxy im-
ages with brightness and eccentricity. Among other
relevant works, we note one by Barchi et al. [109],
who used DL and traditional ML techniques for bi-
nary distinguishing of elliptical/spiral galaxies and
created a morphological catalog of 670 560 galaxies at
7<0.1, where the input data were taken from the SDSS
DR?7 (Petrosian magnitude in -band < 17.78). They
developed a non-parametric galaxy morphology sys-
tem (CyMorph). The Decision Tree, Support Vector
Machine, and Multilayer Perceptron produced 98 %
of overall accuracy. The CNN method (GoogLeNet
Inception) with the imbalanced data sets and twenty-
two-layer network resulted in 98.7 % overall accuracy
for this binary morphological classification. Mitta et
al. [110] introduced the data augmentation-based
MOrphological Classifier Galaxy using CNN (daM-
COGCNN) and obtained a testing accuracy of 98 %
on the data sets of 4 614 images from the SDSS, Gal-
axy Zoo challenge, and Hubble Image Gallery.

4.2. Train-test split. Transformation of images by
intensity and size. Adversarial validation. We revealed
that adversarial validation is very helpful when the la-
beled data sets are biased in magnitude distribution
for the training data set, and such a difference could
bias the final prediction of the classifier on the in-
ference data. So, we apply the adversarial validation
method to analyze the homogeneity of the two data
sets (inference and training). As a result, the galax-
ies were selected from the training data set that most
closely coincided with the inference data set, and the
images were normalized to be similar.

The principal difference of our approach is the
pre-defined training-test split through adversarial
validation of the classification accuracy on the infer-
ence-like test data set (Fig. 3). The deal with testing
classification quality on different distributions (e.g.,
between training and target datasets) has a few im-
plementations for galaxy morphology classifications
(|86, 111—113]). Below we note several of them.

Gauci et al. ([114]) used decision tree algorithms
trained on gri photometric information (color indi-
ces, shape parameters) to distinguish between spiral
and elliptical galaxies or star/ unknown galactic ob-
jects from SDSS DR7 following the GZ annotated
data. They revealed that the incorrectly classified spi-
ral and elliptical samples are very faint in magnitude.
Our approach with adversarial augmentation and
revealing differences between training and inference
datasets allows us to avoid this problem.

The transfer learning approach to fine-tune the
CNN on a dataset, different from the training one,
has been recently acted by Ghosh et al. [112] in their
CNN classifier for bulge- and disk-dominated galax-
ies of the SDSS and Cosmic Assembly Near-Infrared
Deep Extragalactic Legacy Survey (CANDELS).
The inclusion of this procedure allowed them to
overcome the problem of non-accurate predictions
on the unseen datasets by fine-tuning the network on
the target dataset. Dominguez-Sanchez et al. [115]
created a morphological catalog for ~670 000 SDSS-
galaxies in two options (T-type, related to the Hubble
sequence, and GZ2 types). They obtained the high-
est accuracy (>97 %) when applying the same pa-
rameters to a test data set as those used for the train-
ing data set.

But the labeled data from the target distribution is
an essential condition to conduct the transfer learn-
ing. We handled this limitation simply by imposing
the required transformations into the training data-
set, preventing the need to label the target galaxies.

Linetal. [116] used the Vision Transformer model,
which operates better at classifying smaller-sized and
fainter galaxies (in comparison to the CNN). This
improvement is caused, probably, by the architecture
change from the CNN to the attention-based mod-
el — because transformers usually work better with
a training dataset increasing, and, at the same time,
these challenging types of galaxies were dominated in
their training dataset. The results related to the faint-
er have a special interest when compiling the samples
of low surface brightness galaxies [117—120]. Lin et
al. applied thresholds on a series of voting GZ2 ques-
tions [71] but considered eight classes: round ellip-
tical, in-between elliptical, cigar-shaped elliptical,
edge-on, barred spiral, unbarred spiral, irregular, and
merger on the data set of 155 951 images of galax-
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Figure 5. A set of the inference galaxies (3—7 columns) with their two nearest neighbours from the GZ2 training data set (1—2
columns). Each row represents the morphological class, which is intrinsic to the galaxy from the training data set. A value of the
probability of being this galaxy in a given class is pointed in the left upper corner of each image

ies [116]. These authors attained the accuracy (with
equal class weights) from 68.7 % to 90.7 % in depen-
dence on the class, excepting irregular (41.3 %) and
mergers (53.1 %). Dieleman et al. used similar to our
data augmentation when provided the GZ decision
tree model to predict probabilities for each of 34 an-
swers of the GZ volunteers for the evaluation set of
79 975 SDSS galaxy images [82]. They selected the
subset of images for which at least 50 % of volunteers
answered the question. Exploiting translational and
rotational invariation of galaxy images via data aug-
mentation and keeping the center of the galaxy as the
most informative part, they also used random rescal-
ing, flipping, and brightness adjustment. For images
with high agreement among the GZ participants,
their model provides an accuracy of more than 99 %
for most questions.

The aforementioned results show the success of a
standard data augmentation technique, while sophis-
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ticated augmentations — to adapt the training set to
the inference one — are also effective, as we demon-
strate in this paper.

4.3. CNN classification by five morphological class-
es of galaxies. Assuming that a galaxy is in a certain
class if the probability is the highest one, we have
found (Paper II) that the inference data set compris-
es 27 378 completely round (with the probability of
83%), 59 194 round in-between (93 %), 18 862 cigar-
shaped (75 %), 7 831 edge-on (93 %), and 23 119
spiral (96 %) galaxies (see, examples, in Fig. 5, simi-
larity search). The Catalog of 315 776 SDSS DR9
galaxies at z < 0.1 with image-based morphological
classification by five classes is available through the
UkrVO website ® and VizieR [70] to be supplemented
with Paper 11 [55]. It contains the CNN morphologi-

6 http://ukr-vo.org/starcats/galaxies/gal_ SDSSDR9 z
to_ 0.1 _morph_5 classes.csv
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cal classification of 72738 galaxies from the training
GZ2 data set, 143410 galaxies from the inference
data set (the faintest galaxies of the studied sample),
99528 galaxies from the GZ2 sample that did not pass
the selection according to the criteria of the most
votes of GZ2 volunteers and for which their morpho-
logical class was reassigned by the CNN classifier.

In this way, we have shown for the first time that
implication of the CNN model with adversarial vali-
dation and size-changing function simulating a de-
crease in magnitude and size (data augmentation)
significantly improves the classification of smaller
and fainter SDSS galaxies with m.< 17.7 in r-band
(Fig. 4, a). One can see in Fig. 1, a that the fainter
end of distribution of the target data set by magni-
tude is occupied by galaxies from the inference data
set only. As well, we demonstrated another way to
improve the human bias for those galaxy images
that had a poor vote classification in the GZ project.
Such an approach, like autoimmunization, when the
CNN classifier trained on very good images is able to
retrain bad images from the same homogeneous sam-
ple, can be considered co-planar to other methods
on improving human bias, e.g., the method proposed
by Hart et al. [106].

It is relevant to compare our results with work by
Zhu et al. [121], in which the ResNet model was
exploited to classify galaxies into five classes anno-
tated by GZ2 and CNN classifier was compared with
Dieleman et al. [82], AlexNet, VGG, and Inception
networks. The samples were pre-selected in a specific
morphology category with their appropriate thresh-
olds [71] in dependence on the number of volunteers’
votes. These authors attained overall classification
accuracy of 95.21 % and the accuracy of each class
type of 96.68 % for completely round, 94.42 % for
round in-between, 58.62 % for cigar-shaped, 94.36 %
for edge-on, and 97.70 % for spiral. We had a compa-
rable classification performance with a worse output
for completely round and a better output for cigar-
shaped classes. Gupta et al. [86] provided a classifi-
cation of GZ2 galaxy images on five morphological
classes as in our work. They trained Neural ordinary
differential equations with Adaptive Checkpoint Ad-
joint and compared them against the ResNet CNN
model: an accuracy of 91...95 % depending on the
image class is in agreement with our results.
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Figure 6. Distribution of galaxies classified by CNN as belong-
ing to the round in-between morphological class in the sky

Yet one point of the discussion is related to the dis-
tribution of galaxies in the sky and by redshift. For
example, Dhar and Shamir [122] demonstrated that
the training of a deep CNN is sensitive to the context
of the training data, such as the location of the objects
in the sky. They found statistically significant bias in
the form of cosmological-scale anisotropy in the dis-
tribution of elliptical and spiral galaxies, which affect
the deep CNN model. They experimented with Pan-
STARRS and SDSS data and noted that such unbal-
ancing is linked to the training and test samples of
galaxies, which were imaged in different parts of the
sky. We analyzed the distribution of galaxies in our
catalogs and have not found that galaxies of a certain
morphological class (or morphological feature) have
a preferential distribution in their location in the sky
(see as an example, Fig. 6 for the most numerous
round-in between class and Fig. 2, a for the training
and inference data sets. There are no differences be-
tween classes in distribution by redshift (Fig. 7).

To compare photometry-based and image-based
approaches to the same data set of low-redshift gal-
axies, we collected the classification output of four
methods in Table 4. There are results of classifica-
tions by the CNN model into five morphological
classes [55]; photometry multi-parametric diagram
(MPD) into elliptical, spiral, and irregular galaxies
[58, 60]; machine learning with Random Forest (RF)
and Support Vector Machine (SVM) into early and
late morphological types [54]. We inserted the num-
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Figure 7. Distribution of galaxies classified by CNN into five
morphological classes by redshift

ber of only those galaxies that have the maximum
probability of belonging to one or another morpho-
logical class [70]. One can see that three photome-
try-based methods have comparable overall accuracy
with an intrinsic error of less than 0.3 % between
RF and SVM [54] as well as less than 4 % between
MPD (here, late type is Sp+1Irr) and machine learn-
ing methods. The latter error is explained mostly by
the effect of blue elliptical and red spiral galaxies
[58]. There is a general agreement between the early
type of galaxies classified by photometry methods
and “round-in-between + completely round” types
of galaxies as well as between late-type galaxies and
“spiral + round in-between”.

We matched the galaxies of late morphological
types classified by Support Vector Machine (SVM)

and Random Forest (RF) [69] and the galaxies clas-
sified in this work by CNN as edge-on and spiral as
the most relevant morphological types. Namely, we
selected ~50 000 galaxies with a CNN probability of
being spiral from 0.77 to 0.99 (Table 2 and Table 3).
Their labeling obtained by SVM and RF methods says
that 10.5 %, and 8.8 % among them, respectively, are
of early morphological type (elliptical). We inspected
these misclassified galaxies and found that they are
mostly large nearest spiral galaxies with a massive red
center region.

We also selected ~12 000 edge-on galaxies with the
same CNN probability: also having a redder color and
larger redshifts. The comparison in Table 4 shows sig-
nificant segregation of galaxies classified by five GZ2
morphological classes between the adopted morpho-
logical types. This complicates the work of the CNN
classifier to reveal the real morphology of galaxies.
The statistical comparison of these results with the
results of the CNN detailed morphology of the same
five classes (Table 2) is impossible because a feature-
classified galaxy can have multiple features, while a
class-classified galaxy belongs to only one class.

In our opinion, it is more efficient to use the exist-
ing catalogs of galaxies (for example, elliptical, spiral,
irregular, flat, gravitational lenses, mergers, etc.) as
training ones to determine the morphological types
of galaxies. Binning these catalogs by redshift, we can
sequentially create new morphological catalogs at

Table 4. Comparison of classifications of the studied SDSS DRY galaxies by the CNN model into five morphological
classes [54] and by three photometry-based methods: multi-parametric diagram (MPD) into elliptical, spiral,

and irregular galaxies [58, 60]; machine learning with Random Forest (RF) and Support Vector machine (SVM) into
early and late morphological types [55, 70]. The number of only those galaxies, N gal, that have the best threshold
probability of belonging to one or another morphological class is pointed out

Image-based, CNN, classes
Photometry- N oal T

based &a ype Completely Round Ci haped Ed Spiral
round in between lgar-shape ge-on pira
MPD, 138947 E 35389 65839 14360 12067 11292
N = 308466 110454 Sp 13645 41047 12803 6065 36894
59065 Irr 7627 20658 4224 2108 24448
RF, 131663 Early 36424 66043 12268 8549 8379
N =1308466 176803 Late 20237 61501 19119 11691 64255
SVM, 131099 Early 36135 65646 12477 8790 8051
N =1308466 177367 Late 20526 61898 18910 11450 64583
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arms number two
0.97

merger
0.95

arms winding tight
0.78

dust lane
0.85

irreqular
0.70

star or artifact
0.82

Figure 8. The examples of galaxies with some morphological features (bar, ring, irregular, merger, dust lane, arms winding tight,
arms number 2, and star or artifact) from the inference SDSS data set with their two nearest neighbors from the GZ2 training

data set

higher redshifts and, after a thorough check, to use
new catalogs as training, etc. The emergence of new
data on galaxy images for more in-depth samples by
future observatories will provide such an algorithm
by the data for CNN models. Meanwhile, it is useful
to use both photometry- and image-based methods.
Our approach to transferring the annotated classifi-
cation of galaxies to fainter and smaller galaxies using
adversarial validation with train-test splitting and im-
age sizing is in favor of the correct applicability of the
CNN classifier and the efficiency of the algorithm.
4.4. CNN classification by the detailed galaxy mor-
phological features. The quality of inference morpho-
logical features from the test data sets of galaxies is
summarized in Table 2 and Table 3. Our CNN mod-
el for the classification of galaxies by their detailed
structural morphology gives accuracy in the range of
83.3...99.4 % depending on 32 features (exception is
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for “disturbed” (68.55 %) and “arms winding medi-
um” (77.39 %), the number of galaxies with the given
feature in the inference data set, the galaxy image
quality (Table 2 and Table 3). To reach it, we calcu-
lated the number of galaxies that passed the selected
threshold for the acceptance of detailed morphologi-
cal features. The examples of classification on infer-
ence galaxy data set are given in Fig. 8. As a result, for
the first time, we assigned the detailed morphological
classification for more than 140 000 low-redshift gal-
axies with m, < 17.7 from the SDSS DR9, which has
the highest adversarial score by the CNN classifier.
Using the adversarial validation technique, we
managed the optimal train-test split of galaxies from
the training data set to verify our CNN model based
onthe DenseNet-201 realistically. We have also found
optimal galaxy image transformations, which help
to increase the classifier’s generalization ability as it
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Dust_lane

-

85 % 80 % 70 % 61 % 55 %
Ra 233.6886 Ra 228.7714 Ra 226.2117 Ra 160.1819 Ra 215.0795
DEC 5.8294 DEC 42.2094 DEC 42.7345 DEC 39.7964 DEC 48.6472
20.05309332 20.008326376 20.02821386 z0.04284802 20.07376836
50 % 40 % 30 % 20 % 10 %
Ra 149.0402 Ra 131.7955 Ra 154.5210 Ra 118.1880 Ra 140.0552
DEC 16.4845 DEC 20.1336 DEC 60.3467 DEC 34.5495 DEC 8.7928
20.0680497 20.06278295 20.02704565 20.07106556 2 0.0282857

Figure 9: Examples of galaxies labeled as “dust lane”. In the caption below each image: CNN probability to have this feature,

RA and DEC, redshift

was tested with a specifically created test data set. We
can compare our results with the work by Dieleman
et al. [82]. Namely, a level of agreement and model
confidence presented in Fig. 9 of their paper dem-
onstrates that classification overall accuracy for the
analyzed examples is in the range of 82.52...96.04 %
in dependence on the galaxy feature (the exception
is for “no of arms”, “arm tightness”, “odd”, and
“bulge”, where accuracy is less than 80 %). Exploit-
ing similar augmentation procedures for the SDSS
galaxy images, our approach was slightly different: in
the choice of image data as the PNG files restricted
for three gri bands as well as performing a multi-label
task for detailed morphological classification, when
the galaxy can be attributed with several features (for,
example, labeling as “spiral”, the galaxy can be also
with “bar”, “bulge” or “ring” and be characterized
by a certain number of “arms”).

Good train-test sampling mobility for the CNN
classifier resulted in the catalogs of low-redshift gal-
axies with morphological features, which are supple-
ments to this paper. The highest score (97...99 %) was
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attained for such features as a ring, irregular shape,
bulge, star or artifact, edge-on, and dust lane.

So, we can underline that the train/test split has
very important consequences because with its use,
the CNN’s applicability to the future LSST, WFIRST,
and Euclid big data surveys will not depend on the
need for a large training set of real data.

In general, this allows us to make a quick selection
of galaxies with certain features for their subsequent
analysis (see Table 2 and Table 3). Using the SDSS
Navigate, we performed a preliminary visual inspec-
tion of samples of galaxies with such features as “dust
lane, irregular, edge-on yes, ring, bar, merger, star or
artifact” in order to reveal CNN efficiency to classify
images from an astronomical point of view.

All the inspected galaxies labeled as “dust lane”,
“irregular”, and “edge-on yes” demonstrate the
perfect annotation. All these galaxies possess these
features even having a lower probability by the CNN
classifier (see examples in Fig. 9—11: “dust lane” in
all range of probabilities, “irregular” till 30 %, “edge-
on yes” till 60 %.
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Irregular

70 % 66 % 61 % 55 % 50 %
Ra 229.6300 Ra 206.3590 Ra 226.1306 Ra 309.2261 Ra 159.4768
DEC 4.6773 DEC 7.6097 DEC47.9716 DEC —6.4121 DEC 19.4685
20.03570288 20.01540814 20.03681444 20.02072448 20.02693182
45 % 40 % 35% 31% 30 %
Ra 144.2494 Ra 173.5102 Ra 167.7218 Ra 178.2262 Ra 160.0173
DEC4.5199 DEC 49.7371 DEC 25.6641 DEC —0.2356 DEC 12.3565
20.022976 20.009640814 2 0.040606 20.02638165 20.02648529

Figure 10: Examples of galaxies labeled as “irregular”. In the caption below each image: CNN probability to have this
feature, RA and DEC, redshift

Edgeon_yes

98 % 95 % 90 % 85 % 80 %
Ra 121.5729 Ra 128.8982 Ra 214.0563 Ra 202.2676 Ra 152.2694
DEC9.0014 DEC 54.5446 DEC 26.6209 DEC 12.2377 DEC 13.1109
20.04724373 20.03123671 2 0.03540097 20.02419279 20.0517478

75 % 70 % 65 % 61 % 60 %
Ra 125.4451 Ra 238.7671 Ra 175.3116 Ra 204.5564 Ra 172.8965
DEC 29.8508 DEC 28.5759 DEC42.5118 DEC 6.4655 DEC 59.0609
20.04935625 20.07938786 20.09768353 20.02382745 20.01735549

Figure 11. Examples of galaxies labeled as “edge-on yes”. In the caption below each image: CNN probability to have
this feature, RA and DEC, redshift
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4.5. Notes on problem points of CNN image-based
galaxy classification by their features. The evolution-
ary galaxy properties can affect ML methods’ accu-
racy based on galaxies’ photometry/image features.
Among these misclassified types are the bluer HI-
rich galaxies of early type and the redder HI-poor
spiral galaxies; edge-on and galaxies seen face-on,
especially with a pronounced bulge; the bulge-less
(ultra-flat) galaxies with inclination 87°...90° for seen
edge-on and 10°...0° for seen face-on. The face-on
bulge-less galaxies can be considered counterparts to
the edge-on disk galaxies giving additional informa-
tion on their physical parameters, including photom-
etry [54, 123]. So, their correct classification is very
useful when compiling catalogs with a bulge to super-
thin galaxies [124, 125] or studying the influence of
the environment on the morphology and quench-
ing of galaxies in dense environments (for example,
[126] for the Hydra cluster). In such cases, where
the surface brightness profile, color, and concentra-
tion indexes are needed, the ML algorithms trained
over SDSS photometric parameters are less biased
than when trained using GZ visual morphology (see,
amongst others [54, 82, 115, 120, 127]).

At the same time, the results of applying the deep
CNN to the images of our studied set [65, 66] with
the aim of binary morphological classification (late
and early types) have shown limitations. Namely,
DL methods can classify rounded galaxy images as
ellipticals. Still, it cannot catch the SED properties
of galaxies more clearly than the Support Vector Ma-
chine trained on the photometric features of galax-
ies. To avoid several of these misclassifications, Lin-
gard et al. [128] developed a novel method, Galaxy
Zoo Builder, working well with face-on galaxy image
modeling based on the four-component photometric
decomposition of spiral galaxies. Earlier, Schawinski
et al. [129] exploited the SDSS, GALEX, and GZ
data to substantiate the transformation from disk to
elliptical morphology of low-redshift galaxies.

Our visual inspection revealed a few more typical
nuances about misclassified galaxy images.

As related to the galaxies with the “ring” feature,
we note that such galaxies were correctly labeled in
all the range of probabilities. But there are misclas-
sified images, mostly at the higher redshifts, which
are a) the disk galaxies with a bright bulge, b) galaxies
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with complicated contrast gradient of brightness (see
Fig. 12, two last images) as well as c) elliptical galax-
ies with a bright core, in which the brightness is not
distributed smoothly towards the periphery, d) merg-
ing galaxies with a bright core and outer component
distinctly differed in brightness, as a result, the neural
network considers the outer component to be a ring.

The creation of the representative catalog of gal-
axies with ring(s) could be very useful ([130, 131]).
For example, Smirnov and Reshetnikov [131] col-
lected the samples of polar- and collision- ring galax-
ies from all the published data in several deep fields.
Doing this painstaking preliminary search, they
constructed the luminosity function for the ringed
galaxies and confirmed the increase in their volume
density with redshift: up to z ~1 their density grows as
(1+2z)™ where m>5. As related to the problem point
of elliptical galaxies with the bright core, we link to
the paper by Tarsitano et al. [107], who developed a
promising CNN approach based on the training of
elliptical isophotes in the light distribution.

The galaxy images labeled with “bar” have typical
misclassifications. It has been happening when a) a
central part of spiral arms of the edge-on galaxy is
classified as a bar, b) the nuclei of merging galaxies
are visually located near one another, then the CNN
matches this as a bar. The samples of misclassified
images with the “bar” feature are in Fig. 13. Bham-
bra et al. [85] proposed the explainable artificial in-
telligence (XAI) techniques to measure galactic bar
lengths and bulge-to-disk ratio. They used the Hoyle
bar length catalog [132] vs. GZ annotated data and
demonstrated that XAI works more successfully in
predictions of a bar feature. Also, taking into account
the class of “smooth” galaxies (no bar, spiral arms, or
other structure presents), these authors demonstrate
the difficulties in reconciling differences between the
ML model predictions and the GZ consensus. We
agree with their conclusion that the citizen science
method of classifying galaxies is less easily explained
than ML methods.

We will not analyze the galaxy samples related to
the “spiral arms number” features. This task is per-
fectly studied by Hart et al. [106]. Their method
allowed them to overcome where the rarer many-
armed samples were incomplete, and the two-armed
category suffered from sample contamination. They
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Ring

95 % 80 % 70 % 60 % 50 %
Ra 215.0675 Ra 208.9969 Ra 247.0227 Ra 177.8443 Ra 217.1302
DEC 30.2846 DEC 20.1161 DEC 24.8416 DEC0.1173 DEC 17.2496
20.06747353 20.07229991 z0.09129305 20.04731261 z0.05374094

40 % 30 % 20 % 35% 32%
Ra 204.6297 Ra 125.7213 Ra 227.1427 Ra 185.7920 Ra 176.4398
DEC 33.0376 DEC 20.7839 DEC —1.3651 DEC 32.1501 DEC 10.8245
20.06142892 z0.09213011 20.09046185 20.06177998 z0.01001283

Figure 12: Examples of galaxies labeled as a “ring”. In the caption below each image: CNN probability to have this
feature, RA and DEC, redshift

Not merger
70 % 32% 22 % 15 % 10 %
Ra 120.7886 Ra 173.0118 Ra 191.6357 Ra 134.6054 Ra 200.5829
DEC 51.6910 DEC 32.8629 DEC 20.6292 DEC 63.2764 DEC 21.7912
z0.08243728 z0.03980059 20.07356232 20.08995695 z20.0311677
Not bar
-
-
88 % 80 % 78 % 76 % 25 %
Ra 184.7850 Ra 168.4640 Ra 226.0435 Ra 238.6139 Ra 185.0591
DEC 27.7623 DEC 25.8255 DEC 24.3146 DEC 13.4258 DEC 50.6482
2 0.026442325 z0.0486986 2 0.05312403 z0.03402152 z0.04706747

Figure 13: Examples of misclassified images of galaxies: with “merger” and “bar” features. In the caption below each
image: CNN probability to have this feature, RA and DEC, redshift
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created a sample of about 18000 SDSS DR7 galaxies
at 0.03 <z<0.08 with M < -21, which was sorted by
arm multiplicity and further studied for star-forming
activity.

All the galaxy images with the “star or artifacts”
have these features. All of them contain galaxies that
are classified. Bright stars and/or artifacts that ob-
scure the image of a galaxy lead to misclassification
of galaxies in most cases.

The sample of “merger” galaxies also has false im-
ages, when a) galaxies are the optical pair, b) the star
falls into the image background near a spiral galaxy,
then the CNN considers the star as an elliptical gal-
axy and keeps it as merging, c) spiral galaxies without
interaction, but their arms are untwisted (see, ex-
amples, in Fig. 13). It is interesting to compare our
results on merging galaxies with work by Reza [133],
who also used the SDSS data and obtained that Ex-
tralrees classifier outperforms Neural Network for
this distinct type of objects. It was noted that merg-
ers are easily confused with both ellipticals and spi-
rals when image-based classification is conducted.
Our results are useful when compiling the catalogs of
merging galaxies [104, 134—137].

As one can see, the CNN confident model pre-
dictions are highly accurate and allow us to filter big
data collections of galaxy images with various mor-
phological features. We expertized our obtained data
and described several challenging images. When we
develop the classification model, the aim is not only
the state-of-the-art accuracy values but also defining
problem points of the CNN model in working with
galaxy images and training it to classify large surveys
of galaxies no worse than an expert for small samples.

5. CONCLUSIONS

The image-based CNN classifier was exploited by us
to create a morphological catalog of 315776 SDSS
DR9 low-redshift galaxies (z < 0.1) following our pre-
vious works ([54, 55, 69]). This target data set of the
SDSS galaxies is tightly overlapped with the annotat-
ed data from GZ2 [71]. For this reason, we divided it
into two data sets: “inference”, which does not match
the GZ2 galaxies, and “training”, which matches the
GZ2 galaxies. In the presence of a pronounced dif-
ference of visual parameters between galaxies from
the GZ2 training data set and galaxies without known
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morphological parameters, we applied novel proce-
dures, which allowed us to get rid of this difference,
especially for smaller and fainter SDSS galaxies with
m, < 17.7 from the inference data set. We describe in
this paper how we applied the adversarial validation
technique and managed the optimal train-test split of
galaxies from the training data set to verify our CNN
model based on the DenseNet-201 realistically. We
have also found optimal galaxy image transforma-
tions, which help increase the classifier’s generaliza-
tion ability in similarity search, as is provided with a
specifically created test data set.

We demonstrate for the first time that implication
of the CNN model with the train-test split of data sets
and size-changing function simulating a decrease in
magnitude and size (data augmentation) significant-
ly improves the classification of smaller and fainter
SDSS galaxies. It can be considered as another way
to improve the human bias for those galaxy images
that had a poor vote classification in the GZ project.
Such an approach, like autoimmunization, when the
CNN classifier trained on very good images is able
to retrain bad images from the same homogeneous
sample, can be considered co-planar to other meth-
ods of combating such a human bias.

The most interesting data products with this ap-
proach were obtained for galaxy classification by 34
detailed morphology features. The accuracy of the
CNN classifier is in the range of 83.3...99.4 % de-
pending on 32 features (exception is for “disturbed”
(68.55 %) and “arms winding medium” (77.39 %)
features), the number of galaxies with the given fea-
ture in the inference data set, and the galaxy image
quality (Table 2 and Table 3). To reach it, we cal-
culated the number of galaxies that passed the best
threshold for the acceptance of detailed morphologi-
cal features. As a result, for the first time, we assigned
the detailed morphological classification for more
than 140000 low-redshift galaxies with m, < 17.7
from the SDSS DRY (inference data set), which has
the highest adversarial score by the CNN classifier.
The morphological catalogs of low-redshift SDSS
galaxies with the most interesting features are avail-
able through the UkrVO website http://ukr-vo.org/
starcats/galaxies/ and will be supplemented to this
paper through VizieR, as well as the catalog of galax-
ies with top five detailed morphological features (to
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wit, with a maximal prediction probability to possess
such a feature).

A visual inspection of the samples of galaxies with
certain morphological features allowed us to reveal
typical problem points of galaxy image classification
by shape and features from the astronomical point
of view. We analyzed them in the discussion section,
where we also compare machine learning photom-
etry- and image- based approaches testifying that the
best results are being performed with all of the galaxy
data types (photometry, image, spectroscopy). We
believe our results and notes on problem points will
be useful to strengthen the CNN applicability and
help in the morphological classification of galaxies
within the current and forthcoming deep sky surveys
at the petabyte scale.
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U HAT acTpoHowmii, XapkiBchbKuil HallioHanbHUit yHiBepcuTeT im. B. H. Kapasina
ByJ1. Cymcbka 35, XapkiB, Ykpaina, 61022

2 TonnoBHa acTpoHOMiuHa o6cepBatopist HAH Vkpainu

ByJI. AKkanemika 3abosotHoro 27, Kui, Ykpaina, 03143

MAIIMHHE HABYAHHSA AJI9 MOP®OJIOTTYHOI KITACUDIKALII TATAKTHUK 13 OLJIAA4Y SDSS.
1. IETAIbHI XAPAKTEPUCTUKU 3A OBPOBKOIO 30B5PAXKEHD Y 3rOPTKOBIM HEMPOHHIN MEPEXI

CTarTs € NMPOMOBXKEHHSIM HAlIMX POOIT i3 3aCTOCYBaHHS Pi3HUX METOMiB MalIMHHOTO HaBYaHHS A0 MOP(OJIOTiYHOI KIacu-
(dikanii ranaktuk (Vavilova et al., 2021, 2022). Mu nocnimxysaiu BuGipky ~315 800 SDSS DRY ranakTuk i3 aGcontoTHUMKU
30psiHUMU BemurHamu —24" < M, < —19.4" na yepBonux smimenHax 0.003 < z < 0.1 gk uinboBy BuOipKy nanux s CNN
kinacudikaropa. OcKiIbKM LiTbOBa BUOipKa TicHO nepeTuHa€eThes i3 Galaxy Zoo 2 (GZ2), MU BUKOPUCTOBYEMO 11i aHOTOBaHi
JlaHi SIK HaBYaJIbHY BUOIpKY MUIsl Kiacudikallii raTakTvK 3a 34 netaibHUMU MOPGhOJIOTIYHMMU XapaKTepUCTUKaMu. 3a HasIB-
HOCTIi BUpakeHOI Pi3HULIi y SICKpPaBOCTI i po3Mipax MiX raJJakTHKaMi 3 HaBYaJIbHOI BUOIpKH i rajjakTMKamMu 0e3 BiTOMUX MOP-
(ostoriyHMX MapamMeTpiB MU 3aCTOCYBaJIM HOBI METOIMKM, SIKi TO3BOJMJIM HaM BIepiiie MO30yTUCS 1€l Pi3HULL 1T MEHILIUX
i ciabkinmx ranaktuk SDSS i3 m, < 17.7.Y cTaTTi IeTaibHO OMMCAHO 1i METOM 3MarajibHOI IIEPEBIPKU, a TAKOXK MPOLEAYPH
ONTUMAJIEHOTO PO3MOIiTy TAIAKTHK i3 TpeHyBasibHOI BUOipku 11t epeBipku CNN-Momeni Ha ocHOBi DenseNet-201. Mu
TaKOX 3HAWIIUIM ONTUMAJIbHI TpaHchopMallii 300paXkeHb raJlakTHUK (3MiHa ICKpaBOCTi, TOBOPOTH, IMiATOHKA PO3MipiB TOIIIO),
sIKi JoromMararoTh mokpamuTu epexktuBHicTh CNN-KitacudikaTopa y Molryky moaioHOCTi 300paXkeHb.

Lle MoxHa po3rsiaaTH sK 111e OJMH CIOCIO MOKpaIlUTA TOYHICTh MOPGOJIOTiUHOI IeTani3alii 300paxeHb rajlakTuK, JUIst
SIKMX BOHA OyJ1a CTAaTUCTUYHO HU3bKOIO B IpoekTi GZ. Takuii miaxin, momidoHo g0 ayroimyHizailii, ko CNN-ki1acudikatop,
HaBYEHUIA Ha J1y>Ke XOPOIIMX 300paKeHHSIX, 30aTHUI MepeHaBUYUTH MOraHi 300pakeHHs 3 Tiel caMOi OHOPIAHOI BUOIpKH,
MO>Ha BBaXkaTy aHAJIOTIYHMM iHIITMM MeToaM MoKpalleHHs Oatieca. Haiibinbiin 6araToo0isgounii pe3yasraT o0 HMoBip-
HicTi CNN-TIporHO3YBaHHSI OTPUMAHO TSI TAKUX MOP(OJIOTIYHUX XapaKTepUCTUK TaTaKTUK SIK KiJblisl, 6ap, 0anmkK, O3HaKK1
B3aEMO/I1, ippery/IsipHOCTI TOIIIO, — TOYHICTb CTAHOBUTH Bifl 83.3 10 99.4 % 3a BUHSTKOM XapaKTePUCTUK «ITOPYIIEHA CTPYK-
Typa» (68.55 %) i «cepemHst 3aKpyTKa CIipaJbHUX pyKaBiB» (77.39 %).

'V pesyabrarti MM BIieplile BUSHAUWIN JeTaibHy MopdoJioriyHy kiacudikauito mist oinbia Hix 140 000 ranaktuk Ha 2 < 0.1, ne-
peBaXkHa OUTBLIICTD SIKUX Ma€ HU3bKY SICKpaBicTh. BidyajibHa nepeBipKa BUOIPOK raakTUK 3 IEBHUMU MOP(MOIOTIYHUMU O3HA-
KaMU J03BOJIMJIA BUSIBUTY TUTIOBI TIpo6sieMHi Touku CNN-kiacudikallii 300paxkeHb raJakTHK 3 aCTPOHOMIYHOI TOUKH 30DY.

Mopdomoriuni kaTanoru ragaktTuk SDSS i3 HaiinikaBimmMu MOphOIOTiYHUMU OCOOJIMBOCTSIMU JTOCTYITHI Ha BeO-caiTi
VYkpBO (http://ukr-vo.org/galaxies/) Ta VizieR.

Karouoei caoea: ranaxktuku, MmopdosoriyHa kKiaacudikallisi, METOIM: aHaJli3 JaHuX, 3ropTKoBa HeiipoHHa mepexa (CNN), 00-
pobKa 300pakeHb.
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