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MACHINE LEARNING TECHNIQUE FOR MORPHOLOGICAL 
CLASSIFICATION OF GALAXIES FROM THE SDSS. 
III. THE CNN IMAGE-BASED INFERENCE OF DETAILED FEATURES

This paper follows a series of our works on the applicability of various machine learning methods to morphological galaxy classification 

(Vavilova et al., 2021, 2022). We exploited the sample of ~315800 low-redshift SDSS DR9 galaxies with absolute stellar magnitudes 

of −24m < Mr < −19.4m at 0.003 < z < 0.1 redshifts as a target data set for the CNN classifier. Because it is tightly overlapped with the 

Galaxy Zoo 2 (GZ2) sample, we use these annotated data as the training data set to classify galaxies into 34 detailed features. 

In the presence of a pronounced difference in visual parameters between galaxies from the GZ2 training data set and galaxies with-

out known morphological parameters, we applied novel procedures, which allowed us for the first time to get rid of this difference for 

smaller and fainter SDSS galaxies with mr < 17.7. We describe in detail the adversarial validation technique as well as how we man-
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1. INTRODUCTION

Convolutional neural network (CNN) as a machine 

learning (ML) technique is becoming more and more 

applicable for astronomical tasks. Its success has been 

proven sufficiently for big data observational sky sur-

veys: galaxy classification by various properties, pat-

tern recognition image description, celestial body pe-

culiarities’ identification, anomalies, transient object 

detection, etc. The CNNs are very helpful for finding 

and discovering previously unknown gravitationally 

lensed quasars [1—3], identifying gravitational lenses 

[4—7], galaxy-galaxy strong gravitational lenses [8] 

including in the Dark Energy Survey (DES) imag-

ing data [9] and weak gravitational lensing analysis 

to create galaxy images as input [10]. The distance 

moduli estimates benefit from the CNNs utilization 

in the big data sets, which provide a wide number of 

galaxy features for learning (see review by Salvato et 

al. [11]). Bonnett et al. [12] adopted multiple ML 

methods for determining photometric redshifts with 

implications for weak lensing from the DES catalog. 

Amaro et al. [13] compared ANNz2 [14], Bayesian 

photometric redshift method, and METAPHOR 

(Machine-learning Estimation Tool for Accurate 

PHOtometric Redshifts) for KiDS-ESO-DR3 and 

GAMA DR2 surveys. Similarly, Pasquet et al. [15] 

used deep learning (DL) for classifying, detecting, 

and predicting photometric redshifts of quasars in 

the SDSS. ML and generative adversarial networks 

(GAN) were used to assign and predict photomet-

ric/spectroscopic redshifts within large-scale galaxy 

surveys with good accuracy [9, 11, 16—20]. The ML 

approach serves as a basis for restoring galaxy distri-

bution in the Zone of Avoidance and cosmic web as a 

whole [21—29] and generating dark matter structures 

in cosmological models [30—32], for extraction of 

information from noisy maps [33] and image recon-

struction of celestial bodies in the whole [34—38], for 

the task of deblending overlaps between foreground 

and background galaxies with GAN as CNN tech-

nique [39—40] (see, also, scalable ML algorithms 

and frameworks in [41]). The review of recent trends 

of ML applicability in cosmology and gravitational 

wave astronomy can be found in the work by Burgazli 

et al. [42].

The CNN models have expanded the “optical” 

range of applications becoming useful for multi-

wavelength sky surveys. Among recent studies are as 

follows: search for blazar candidates in the Fermi-

LAT Clean Sample [43]; boosted decision tree for 

detecting the faint γ-ray sources with future Cheren-

kov Telescope Array [44—45]; infrared colour selec-

tion of Wolf-Rayet candidates in our Galaxy using 

the Spitzer GLIMPSE catalog [46]; cosmic string 

searches in 21-cm temperature CMB maps [47]; 

neural network-based Faranoff-Riley classifications 

of radio galaxies from the Very Large Array archive 

[48] and DL classification of compact and extended 

radio source from Radio Galaxy Zoo [49]; CNN for 

morphological assignment to radio-detected galaxies 

with active nuclei [50]. Scaife et al. [51] presented 

the first application of group-equivariant CNNs to 

radio galaxy classification and explored their poten-

aged the optimal train-test split of galaxies from the training data set to verify our CNN model based on the DenseNet-201 realistically. 

We have also found optimal galaxy image transformations, which help increase the classifier’s generalization ability. 

We demonstrate for the first time that implication of the CNN model with a train-test split of data sets and size-changing function 

simulating a decrease in magnitude and size (data augmentation) significantly improves the classification of smaller and fainter SDSS 

galaxies. It can be considered as another way to improve the human bias for those galaxy images that had a poor vote classification in 

the GZ project. Such an approach, like autoimmunization, when the CNN classifier, trained on very good galaxy images, is able to re-

train bad images from the same homogeneous sample, can be considered co-planar to other methods of combating such a  human bias.

The most promising result is related to the CNN prediction probability in the classification of detailed features. The accuracy of the 

CNN classifier is in the range of 83.3—99.4 % depending on 32 features (exception is for “disturbed” (68.55 %) and “arms winding 

medium” (77.39 %) features). As a result, for the first time, we assigned the detailed morphological classification for more than 140000 

low-redshift galaxies, especially at the fainter end. A visual inspection of the samples of galaxies with certain morphological features 

allowed us to reveal typical problem points of galaxy image classification by shape and features from the astronomical point of view.

The morphological catalogs of low-redshift SDSS galaxies with the most interesting features are available through the UkrVO web-

site (http://ukr-vo.org/galaxies/) and VizieR.

Keywords: galaxies: galaxies, morphological classification, methods: data analysis, Convolutional Neural Network, image processing.
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tial for reducing intra-class variability by preserving 

equivariance for the Euclidean group on image trans-

lations, rotations, and reflections.

The merging galaxies are among the objects to 

be misclassified. Finding comprehensive samples of 

such galaxies in different merger stages is significant 

for studying these long-term processes. In this con-

text, the adversarial training with Domain Adversar-

ial Neural Networks (DANNs) altogether with the 

Maximum Mean Discrepancy (MMD) method was 

proposed by Ciprijanovic et al. [52]. Such adaptation 

techniques allowed these authors to demonstrate a 

great promise to classify galaxy mergers across do-

mains. As well, to identify peculiar galaxies, an ML 

system needs to identify forms of galaxies that are 

not present in the dataset. For such identification of 

outlier galaxies, the unsupervised ML is proposed by 

Shamir et al. [53].

Our work follows the previous study [54] (Paper I 

below), where the photometry-based approach for 

a binary morphological classification was applied to 

the SDSS DR9 set of low-redshift ~315800 galaxies. 

Using various galaxy classification techniques (hu-

man labeling, multi-photometry diagrams, and five 

supervised ML methods), we found that the Support 

Vector Machine and Random Forest give the highest 

accuracy (more than 96 % for early and late types). 

Determining the ability of each method to predict 

the galaxy morphological type, we verified various 

dependencies of the method’s accuracy on redshifts, 

celestial coordinates, human labeling bias, the over-

lap of different morphological features, etc.

This paper aims to obtain the CNN image-based 

morphological feature classification of 315 782 gal-

axies with absolute stellar magnitudes of 24m < 

< Mr < 19.4m at 0.003 < z < 0.1 redshifts (with ve-

locities correction on the velocity of Local Group, 

V
LG

 > 1500 km/s). For this, we exploited the anno-

tated data of the Galaxy Zoo 2 (GZ2) project with 

their crowd-sourcing strategy for volunteers to clas-

sify images by answering a series of questions. The 

sample of the GZ2 galaxies, which overlap with the 

studied galaxies, served as the training data set for the 

CNN classifier.

As compared to the paper [55] (Paper II below), 

this work investigates the problem of differences in 

the data sets in detail and suggests ways to overcome 

adversarial validation. We describe in detail a neural 

network to predict some structural morphological 

features that can help to classify galaxies with ware 

used by Walmsley et al. [56]. We analyze the obtained 

samples of galaxies with different morphological fea-

tures to obtain their quantitative/qualitative proper-

ties and to estimate the efficiency of the CNN clas-

sifier.

We describe briefly the target, training, and infer-

ence galaxy data sets in Section 2. Methodology con-

sisting of the data preparation, adversarial validation, 

and CNN morphological classification with the in-

telligent train-test split via adversarial scores is given 

in Section 3 (see also Paper II). The general results 

and discussion are in Section 4, and the conclusion is 

presented in Section 5.

2. GALAXY DATA SETS

2.1. Target data set. One of the most crucial princi-

ples of ML is comprehending the data you are work-

ing with. These design principles are most important 

at the stage when the data are fed into the chosen 

algorithms (see, for example, [57]). That is why we 

used a representative data set of the 315 782 SDSS 

DR9 galaxies at z < 0.1 with the absolute stellar mag-

nitudes −24m < Mr < −13m, which we name as the 

target data set (see, in detail, Paper II [55]). We stud-

ied it practically as “galaxy by galaxy” in previous 

works for various tasks [58—68], including the ML 

photometry-based approach for binary galaxy mor-

phological classification [54] and the catalog of their 

morphological types [69] obtained with the Support 

Vector Machine and Random Forest methods. Paper 

II [55] describes a general methodology for the CNN 

morphological classification, and a morphologi-

cal catalog of galaxies classified into five classes ac-

cording to the GZ2 labeling annotation is published 

through VizieR [70].

2.2. Training and inference data sets. To provide 

the image-based approach for morphological classi-

fication of galaxies from the target data set, we used 

the GZ2 annotated data. To train the neural network, 

we should have a large number of labeled galaxies im-

ages. The target data set of the SDSS galaxies is tight-

ly overlapped with the data from GZ2 [71]. For this 

reason, we divided our target data set into two data 

sets. Hereafter, we determine the data set of 143 410 
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galaxies, which do not match the GZ2 galaxies, as the 

“inference” data set. The data set of 172 372 galax-

ies, which match the GZ2 galaxies, is the “training” 

data set. The sample from GZ2 contains all the well-

resolved galaxies essentially in DR9 with N = 11923 

galaxies from the Stripe 82 (11.6  mr  17.7, 0.003 < 

< z < 0.09), where about of 6800 are at 0.07 < z < 0.09. 

We consider galaxies only in normal-depth SDSS 

imaging and with DR9 spectroscopic redshifts.

We consider two types of morphological clas-

sification. The first type is the classification, which 

includes clearly separable five classes: completely 

rounded, rounded in-between, cigar-shaped, edge-

on, and spiral galaxies. This classification is based 

on the combinations of precisely labeled GZ2 pa-

rameters and, obviously, includes only some part of 

the training data set. Unlike the first type, the second 

type of classification works with the 37 galaxy mor-

phological features from the GZ2 and covers all gal-

axies presented in the training data set.

To form the first type of classification, we used 

specific criteria which allow us to separate different 

morphological classes of galaxies [71]. These crite-

ria were listed in Paper II. Besides, we removed seven 

galaxies that fit in two or more criteria. So, we ex-

Figure 1. Histograms of the stellar magnitude and Petrosian radius (90 % of the flux) distributions in r-band for the training 

(green) and inference (brown) SDSS galaxy data sets at z < 0.1

ploited only those galaxies for training for which the 

most votes of GZ volunteers were collected. Such 

constraints are not all-inclusive. The more complete 

and severe criteria could be used to determine the 

morphological type of a galaxy as clearly as possible. 

However, as we discussed in Paper II, the criteria in 

use are good enough to provide reliable image-based 

classification.

To form the second type of classification (classifi-

cation by the morphological features, lower panel in 

Fig. 3), we used at least one of 37 features of galaxies 

from the training data set, which are described in the 

first column of Table 2 and Table 3. Also, we removed 

three very sparse classes from the consideration 

(“bulge prominence dominant”, “odd feature lens or 

arc”, and “bulge shape boxy”) each containing < 10 

galaxies. In total, we obtained the training data set 

of 160 471 galaxies (lower panel, Fig. 3). To test the 

accuracy of the detailed morphological classification 

on the faint magnitude end, we also used 16 626 gal-

axies from the DECaLS (see subsection 3.5).

There is a principal difference between galaxy im-

ages in our inference data set and training data set 

matching the GZ2 catalog. One can see in Fig. 1, 

that the inference data set is much shallower than 
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the training one. This occurred because the gal-

axies from the target data set were pre-selected via 

m
r
 < 17.7 limitation by stellar magnitude in r-band. 

This limitation is related to the 90 % Petrosian flux 

parameter [72—74]. So, the galaxies, which do not 

match the GZ2 catalog from the target data set, are, 

on average, fainter and smaller than galaxies from the 

training GZ2 data set. In total, 24 547 galaxies from 

the inference data set have mr < 17.7 (Fig. 1, a). The 

CNN classifier knows nothing that it will work with 

the inference data set, where galaxies are fainter and 

smaller than in the training data set. So, it gives us 

an additional case to study the performance of the 

image-based classification by providing some addi-

tional steps.

Namely, to understand how crucial the shift be-

tween training and inference data sets is for the CNN 

classifier, we use additional test data set. It is based 

on the image morphological classification of 314 000 

galaxies from DECaLS and includes revealed fine 

morphological features, which are not seen with the 

SDSS images [74]. With this additional test data set, 

we identified 16 626 galaxies in our inference data 

set, which further are used for the approach testing. 

We note that the morphological classification scheme 

for the DECaLS is slightly different from that for 

the GZ2, namely, it is biased towards increasing the 

detection of bars, measuring bulge size, and distin-

guishing types of merging galaxies. To align the GZ2 

classification used in our study and the DECaLS 

morphological classification, we removed 15 classes 

from this data set because the DECaLS morphologi-

cal classification does not contain some of the GZ2 

classes (see Table 2 and Table 3). After this data prep-

aration, we obtained 28 GZ2 feature labels in our ad-

ditional test data set. Hereafter in the paper, we refer 

to it as the “deep” test data set.

Other relevant observational parameters are bet-

ter overlapped among two data sets, see, for example, 

Fig. 2 with distributions by redshift and (u-r) color 

indices.

2.3. Images of galaxies. Images of the training and 

inference galaxies were requested from the SDSS 

cutout server. We have retrieved 315 782 RGB images 

(in PNG format) composed of gri bands according 

to [75] color scaling, each of 1001003 pixels. Un-

fortunately, some of the images were not retrieved for 

technical reasons (including dead pixels), slightly re-

ducing the training and inference data sets to 172 251 

and 136 342, respectively.

Figure 2. Histograms of the redshifts (a) and u  r colour indices (b) distributions for the training (green) and inference (brown) 

SDSS galaxy data sets at z < 0.1
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We note that scientific image format (like FITS) 

may be preferable in our task due to the higher ampli-

tude ranges compared to 256 values per band in the 

simple PNG image. But such a flux sampling is more 

required for detailed image analyses, for example, 

gravitational lens modeling, while most of the deep-

learning models are working on images with 8-bit am-

plitudes (see, for example, [76]). Additionally, FITS 

files from the SDSS may be composed into 5-band 

images, expanding spectral information, while PNG 

files are restricted to have three bands only (gri in our 

case). Investigation of this issue is out of scope for our 

paper, and we used the standard approach of utilizing 

the SDSS image cutouts for galaxy morphological 

classification [71].

2.4. Implementation. All the deep-learning models 

were implemented using PyTorch1 and pytorch-im-

age-models2 libraries. To train the models, we used 

GPU GeForce GTX 1080Ti.

3. METHODOLOGY, THE CNN 
IMAGE-BASED GALAXY CLASSIFIER

We exploited CNNs to reveal the morphological 

classification of galaxies by their images. With this 

technique, we solve two different classification 

problems and handle a shift between training and 

inference data sets.

Usually, CNN consists of layers represented by 

a sequence of convolutional operations, activation 

functions, and pooling operations. The principal 

aim of the CNN is to find such convolutional ker-

nels that are the result of applying the whole CNN 

to the image finalized in some target value3. In our 

case, the morphological classes and features of gal-

axies are target values. The CNN architectures use 

the fully connected layers (instead of convolutional 

blocks) at the tail. This tail corresponds to the neural 

network classifier, which transforms the output of the 

convolutional part into the dense layer, the number 

of neurons, which is equal to the number of classes.

1 https://github.com/pytorch/pytorch
2 https://github.com/rwightman/pytorch-image-models
3 A good practical overview can be accessed through http://

cs231n.stanford.edu/. We address readers also to works 

[34, 77—79], where the feature extraction power of CNNs 

was illustrated in numerical experiments for improving the 

classification performance, including astronomical image 

reconstruction.

3.1. General approach. The scheme of our ap-

proach is shown in Fig. 3. First, we divide the studied 

data set into the training and inference parts (Sec-

tion 2). Since the inference data set is enormously 

different from the training one, we have to apply 

some necessary procedure with a final classification, 

namely, the adversarial validation4. It allowed us not 

only to probe the difference between the galaxy im-

ages in training and inference data sets (middle panel 

in Fig. 3) but to derive the most suitable method of 

testing the CNN classifier, which will produce a rep-

resentative estimation of the quality of the inference 

data set. This procedure is also significant in our ap-

proach for two reasons: the labeled galaxy data sets 

are biased in stellar magnitude distribution for the 

training data set (Fig. 1, a); such a difference could 

lead to bias in the final prediction of galaxy classifica-

tion in the inference data set.

At the second stage of the pipeline, we use CNN 

to solve the five-class problem described in Section 

2. We test our model with the data set defined by the 

adversarial validation. 

Finally, we train a second model to predict the 

detailed morphological features (e.g., bar, bulge, 

merging, ring, etc.), which is tested with the adver-

sarial validation and deep test data sets. As a result 

of a pipeline, we get five morphological classes and 

34 detailed morphological parameters for galaxies 

from the inference data set (third and fourth panels 

in Fig. 3).

3.2. Data preparation and augmentation. Stable 

CNN learning presumes the right scaling or normal-

ization of the input data [81]. We scaled each image 

I (pixels of which contain values between 0 and 255: 

Ii,j  {0, 255}) to the range [0.5, 0.5] using the scal-

ing equation as follows:

 

,
,

127.5
255

i j
i j

I
I




. (1)

Also, we defined many affine transformations for 

applying to images of galaxies during the CNN learn-

ing (so-called image augmentation). In our case, the 

augmentation helps to introduce the variative nature 

of galaxies to the CNN methods (because the stan-

4 This method is commonly used in data science competi-

tions, see, e.g., http://fastml.com/adversarial-validation-

part-one/ [80].
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Figure 3. Scheme of the image-based approach for morpho-

logical classification of galaxies. The methodology consists of 

the data preparation of GZ2 training and SDSS DR9 infer-

ence data sets, image augmentation, adversarial validation, 

five-class CNN classification with intelligent train-test split 

via adversarial scores, CNN detailed morphology by 34 im-

age galaxy features with DECaLS deep test. The algorithm has 

resulted in the classification of the inference galaxy data set

dard CNNs are not fully invariant to any transfor-

mation of the images and have a strong ability to 

over-fitting). In most cases, this trick improves the 

generalization ability of CNN producing a less over-

fitted model on the training data set (see, e.g. [82]). 

As augmentations, we used random rotation (0°, 90°, 

180°, or 270°), random zoom (varying at 100...120 

pixels on each axis) with further random cropping of 

the 100  100 region, and random vertical/horizontal 

flipping of the images of galaxies. This process was 

applied randomly to each image of a galaxy so that 

each image of a certain galaxy was put in the CNN as 

a “new” one reducing the sensitivity of CNN to any 

galaxy orientation.

These augmentation steps were exploited during 

the adversarial validation with the CNN classifica-

tion. We note in advance that after the adversarial 

validation was produced, we conducted additional 

data augmentation procedures that helped to learn 

the CNN classifier better (Section 3.3).

3.3. Adversarial validation. Having the training 

and inference data sets (Section 2), we can investi-

gate how the images of galaxies “vary” between these 

data sets. We trained the CNN on all of these images, 

passing the class “0” for the inference data set and 

class “1” for the training one (second panel, Fig. 3).

In this case, the CNN classifier tried to distin-

guish the training images from images of galaxies 

from the inference data set, returning the “adver-

sarial score” — the probability of the galaxy being in 

the training data set. If such a classification accuracy 

is close to random guessing, one could assume the 

similarity of the training galaxy images with the infer-

ence ones. Moreover, vice versa, when the adversarial 

classification accuracy largely differs from random 

guessing (tends to 100 %), one has to investigate the 

difference between the training data set and the infer-

ence one to predict the classes of inference objects 

correctly. The adversarial score is a measure of how 

an individual galaxy is similar to the training data set 

(larger scores correspond to larger similarities with 

galaxies from the training data set). The effect of 

dissimilarity is due to the different observed param-

eters of galaxies from the training and inference data 

sets. We used the full GZ2 data set as a training data 

set (comprising 172 372 galaxies) with adversarial 

class “1”.
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We employed ResNet-101 [83] as a model, where 

the convolutional part was completed by the two lay-

ers of neurons with 128 and 2 neurons in each layer 

respectively. After the first layer of neurons, we put 

on the Leaky Rectified Linear Unit activation func-

tion. The last layer that returns the probabilities of 

being in the training or inference dataset was supple-

mented by the “softmax” activation function. As an 

optimizer, we used Adam with an initial learning rate 

of 5103; the optimizer minimized the categorical 

“crossentropy loss function”. In this way, we tried a 

single ResNet-101 model as a baseline approach and 

obtained a good accuracy for GZ2 vs inference clas-

sification. We did not vary models because the aim 

is not to have a performance as higher as possible. 

The trained model is just a key-performance indica-

tor for each galaxy, and its outputs were used as the 

proxy metric to understand the similarity between 

the target (not GZ) data set and each galaxy or its 

augmented version.

The whole input set consisted of ~170 000 galax-

ies from the GZ2 training data set and 136 000 gal-

axies from the inference one. We have trained the 

model on 75 % of the input data and validated it on 

the rest part of the galaxies. We applied standard data 

augmentation procedures to the training images de-

scribed in Section 3.2. The model was learned dur-

ing 12 epochs. If the overall classification accuracy of 

galaxy images from the validation data set did not in-

crease during three epochs, we decreased the learn-

ing rate by a factor of 0.1. Finally, we used the model 

that provided the best overall accuracy (91.28 % on 

the validation data and 91.67 % on the training one).

For our task, we obtained the accuracy of adver-

sarial classification above 90 %. So, the inference da-

taset contains galaxies with morphological properties 

which are not inherited from the training set. One 

can see in Fig. 4, a that the adversarial score is rela-

tively high for a few galaxies only from the inference 

data set. This agrees with our observation that infer-

ence galaxies are fainter (Fig. 1, a and smaller (Fig. 1, 

b) than galaxies from the training data set.

We highlight that the resulting adversarial classi-

fication accuracy is not a result of over-fitting. Spe-

cifically, we randomly split the GZ2 training plus 

inference data sets into two parts. One of which was 

used to train the adversarial CNN and another to 

validate it. The CNN scored the same adversarial ac-

curacy for these subsets (91 %). So, according to the 

adversarial result, we can conclude that our training 

data set contains galaxies, properties of which are not 

common with the inference one. This means that 

any validation of the morphological classifier has to 

be done with the galaxies from the training data set, 

which have a low adversarial score.

There is a typical danger case of over-fitting when 

an ML model is well performed on the training data 

set but is not able to generalize to new, previously un-

seen data. This effect may be controlled through the 

train-test splitting. In such a way, a portion of the data 

(called the test data) is set aside to be used only to as-

sess the performance of the trained model and is not 

included in the training data set. To do so, we ran-

domly choose 9 000 galaxies with an adversarial score 

higher than 0.7 from the training data set of 72 738 

galaxies (comprising five different morphological 

classes). We picked up the best threshold 0.7 with a 

simple search taking into account the largest accuracy 

(see Fig. 4, a); other thresholds result in lower separa-

tion quality. Within this train-test split, the test part 

of training galaxies (9 000) was used to validate the 

morphological CNN classifier, and the rest part of the 

galaxies (63 738) to train CNN classifier (third panel, 

Fig. 3). It allows to understand the CNN ability to 

generalize on data it has never seen before, namely on 

the galaxies, which are similar to the inference dataset 

according to their adversarial score.

To train the CNN classifier for the prediction of 

the classes of fainter and smaller galaxies, we have 

added the following transformations of images to the 

defined data augmentation procedures (see subsec-

tion 3.2 and Eq. 1):

 
,

,

( , ) 127.5
255

i j
i j

k S I m
I

 


, (2)

where S(Ii,j , m) is a function changing the size of the 

image by m times, and k is an intensity-scaling coeffi-

cient. We implemented the size-changing function as 

simple zooming out of the image (into the new image 

with axes (100  m)  (100  m) pixels, where 0 < m 

< 1), followed by mirror reflection of the image to fill 

up the missing 100  (1  m) pixels along the borders. 

In turn, the intensity of pixels for each image was re-

duced by a factor of 0 < k < 1 (Eq. 2).
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Figure 4. Histograms of adversarial score distributions (a). The inference galaxy data set (brown) and for elliptical and spiral 

galaxies from the GZ2 training data set. Adversarial score is close to 1 if the galaxy is similar to the galaxy from GZ2 training 

data set (b). A random subset of 3000 images from the training data set revealed from original SDSS images (green) and images 

with modified sizes and intensities of galaxies as k = 0.8, m = 0.7 from Eq. 2 (brown)

The augmentation procedures we implemented 

allow us to transform the image of the galaxy, sim-

ulating a decrease in magnitude and size as well as 

veiling it as the galaxy image from the inference da-

taset. For example, applying these transformations 

(k = 0.8, m = 0.7) to the 3 000 random images from 

the training data set with the adversarial score > 0.7, 

we observed the shift of the adversarial score distribu-

tion towards zero value (see Fig. 4, b). The histogram 

of the adversarial score distribution, especially for 

lower values, gives direct confirmation in the support 

of such transformations. This trick with image trans-

formations improves the accuracy of the result emu-

lating the training galaxies to be more similar to the 

galaxies from the inference data set according to the 

adversarial scores. In this way, we do not investigate 

effects caused by different “modalities” (training / 

inference); instead, we built a technique to prevent 

prediction biases. In other words, we solved the do-

main adaptation problem but with manually in-built 

heuristics (changing angular sizes and intensity of 

images of training galaxies).

3.4. CNN five-class morphological classifier. The 

next step of our pipeline was the morphological clas-

sification with CNN on training galaxy images (third 

panel, Fig. 3). The principal difference between our 

approach and the existing ones (see, for example, re-

cent works [56, 84—86]) is the usage of 

1) the pre-defined training-test split through ad-

versarial validation of the classification accuracy on 

the inference-like test set, and

2) the specific data augmentation, which allowed 

us to decrease the difference in galaxy images related 

to the stellar magnitudes between the GZ2 and infer-

ence data sets.

The procedure of training the CNN with the 

overall accuracy of 89.3 % on the test data set of 

9 000 galaxies is described in Paper II. As for the 

data augmentation procedures, we used the stan-

dard techniques described in Section 3.2 and the 

intensity and size reduction of the galaxy images 

described in the previous subsection. For each gal-

axy from the training data set, we randomly sampled 

k and m from the uniform distribution within (0.6, 

1.0) and (0.5, 1.0) ranges (Eq. 2), respectively. Data 

augmentation was applied to the training data set 

only. The confusion matrix of the distribution of 

prediction probabilities of all the classes is in Ta-
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ble 1 of Paper II. One can see that accuracy is not 

dominated by scores for morphological classes with 

higher numbers of galaxies.

Similar to the model for the adversarial validation, 

the tail of CNN models was completed by the two 

dense layers of neurons (with the number of neurons 

equal to 128 and 5, respectively) followed after the 

global max-pooling. The activation functions at the 

tail of the CNN model were the same as in adver-

sarial validation. As an optimizer, we also used the 

Adam with an initial learning rate of 104; the opti-

mizer minimized the categorical “crossentropy loss 

function”. 

CNN models were trained during 40 epochs. 

Moreover, during the learning, we decreased the 

learning rate value if the loss on the validation da-

taset was not decreased after four epochs. The even-

tual classification accuracy of the validation data set 

for all models is shown in Table 1. As the result of 

a comparison between these models, we decided to 

use DenseNet-201 [87], which shows the highest ac-

curacy on the “unseen” validation (96.6 %) and test 

(89.3 %) data sets.

Table 2. Quality of inference morphological feature on the test data sets of galaxies (see, description in the text of this paper)

Parameter
test
NOAUGROC  

test
AUGROC test

diffROC deep test
NOAUGROC deep test

AUGROC deep test
diffROC Threshold

N, all 

data

N, inf. 

data

Smooth 89.25 % 88.59 % –0.66 % 86.06 % 86.84 % 0.78 % 0.1 107657 51911

Features or disk 92.54 % 91.88 % –0.66 % 85.63 % 85.43 % –0.20 % 0.3 138207 58796

Star or artifact 95.36 % 97.63 % 2.28 % 57.70 % 51.43 % –6.27 % 0.05 220 73

Edgeo yes 98.81 % 98.65 % –0.16 % 87.35 % 88.26 % 0.91 % 0.05 34420 14489

Edgeon no 97.21 % 96.82 % –0.39 % 75.53 % 76.41 % 0.88 % 0.25 72843 19088

Bar 93.99 % 92.41 % –1.57 % 57.54 % 57.54 % 0.00 % 0.05 29892 6276

No bar 90.69 % 89.80 % –0.90 % 68.82 % 68.61 % –0.21 % 0.2 86836 27861

Spiral 93.40 % 92.88 % –0.52 % 78.97 % 79.48 % 0.51 % 0.15 65709 17741

No spiral 86.30 % 84.78 % –1.52 % — — — 0.05 69303 20603 

No bulge 98.36 % 98.35 % –0.01 % 65.09 % 69.03 % 3.94 % 0.05 6970 4046

Bulge just notice-

able

90.89 % 89.75 % –1.14 % — — — 0.05 39627 14926

Bulge obvious 90.55 % 89.07 % –1.49 % 62.45 % 64.31 % 1.86 % 0.05 27115 10018

Bulge dominant — — — — — — — — —

Odd yes 94.78 % 93.37 % –1.41 % — — — 0.05 41334 17601

Odd no 84.62 % 83.51 % –1.11 % — — — 0.45 170898 79134

Completely round 96.17 % 95.60 % –0.58 % 93.09 % 93.51 % 0.43 % 0.15 75844 35669

Rounded in be-

tween

92.31 % 91.46 % –0.85 % 82.73 % 82.84 % 0.11 % 0.2 125734 70389

Cigar shaped 97.96 % 97.73 % –0.23 % 97.24 % 97.46 % 0.22 % 0.1 60395 30351

Ring 96.97 % 96.43 % –0.54 % — — — 0.05 13882 1346

Lens or arc — — — — — — — — —

Table 1. Accuracy scores of backbone models 
for the five-classes of CNN morphological 
classification on the validation data 

Architecture References Accuracy

ResNet-50 [83] 0.821

ResNet-101 [83] 0.832

ResNet-152 [83] 0.826

InceptionV3 [88] 0.937

InceptionResNetV2 [89] 0.962

DenseNet-121 [87] 0.960

DenseNet-169 [87] 0.959

DenseNet-201 [87] 0.966

NASNetLarge [90] 0.929

VGG16 [91] 0.909

Xception [92] 0.956
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3.5. Detailed galaxy morphology classification. We 

used another CNN model to predict 34 detailed mor-

phological parameters of galaxies from the inference 

data set. This model exploited DenseNet-201 [87] 

as the backbone model with the included fully con-

nected layers at the top (namely, global max-pooling, 

fully-connected layer with 512 neurons, and classi-

fication fully-connected layers with 34 outputs). We 

put Rectified Linear Unit activation after the first 

fully-connected layer and sigmoid activation after 

the last classification of fully-connected layers. The 

model was trained with the Adam optimizer, which 

minimized the “binary crossentropy loss” function. 

We solved a multi-label classification problem: one 

object may have a few features. So, we did not use the 

“softmax” activation function after the classification 

layer; instead, we treated each class separately and 

solved binary-classification for each label. This con-

figuration looks suitable for solving the multi-label 

problem when we do not need to predict probability 

distribution over all classes to infer the single class for 

a single sample (fourth panel, Fig. 3).

We provide below in Table 2 and Table 3 two re-

sulting accuracy scores measured with the ROC 

AUC classification quality metric [93] to predict 34 

morphological features of galaxies. The names of fea-

tures are in the first column. The next columns cor-

respond to the quality metrics (ROC AUC), ROCt-

est for GZ2 test data set, and ROCdeep test for the 

DECaLS. We provided three scores for each data set: 

with and without adversarial augmentation and the 

difference between both scores. The last three col-

umns: threshold; a number of galaxies matching this 

criterion from all the target data set and the inference 

data set, respectively. Empty cells correspond to the 

missed features. The sum numbers in columns 9 or 

Table 3. (continue). Quality of inference morphological feature on the test data sets of galaxies 
(see, description in the text of this paper)

Parameter
test
NOAUGROC  

test
AUGROC test

diffROC deep test
NOAUGROC deep test

AUGROC deep test
diffROC Threshold

N, all 

data

N, inf. 

data

Disturbed 72.27 % 68.55 % –3.72 % — — — 0.15 0 0

Irregular 96.74 % 96.94 % 0.20 % — — — 0.05 9432 6369

Other 95.93 % 89.20 % –6.74 % — — — 0.05 1442 624

Merger 91.79 % 88.89 % –2.90 % — — — 0.05 2575 738

Dust lane 99.39 % 99.40 % 0.02 % — — — 0.05 588 67 

Bulge shape 

rounded

96.73 % 96.27% –0.47 % 67.18 % 67.26 % 0.08 % 0.05 32280 12835

Bulge shape boxy — — — — — — — — —

Bulge shape no 

bulge

98.65 % 98.52 % –0.13 % 71.61 % 71.46 % –0.16 % 0.05 19570 10867

Arms winding 

tight

89.45 % 88.60 % –0.85 % 72.25 % 72.29 % 0.04 % 0.05 22180 5414

Arms winding 

medium

75.33 % 77.59 % 2.26 % 69.91 % 71.57 % 1.66 % 0.05 304 86 

Arms winding 

loose

94.95 % 94.41 % –0.54 % 69.03 % 69.95 % 0.92 % 0.05 8411 3269

Arms number 1 85.56 % 83.30 % –2.26 % 60.22 % 61.83 % 1.61 % 0.05 445 188

Arms number 2 90.55 % 89.99 % –0.56 % 76.33 % 76.62 % 0.30 % 0.05 69229 22061

Arms number 3 93.54 % 93.47 % –0.07 % 70.14 % 68.55 % –1.58 % 0.05 889 78

Arms number 4 93.84 % 85.45 % –8.39 % 54.95 % 56.96 % 2.01 % 0.05 82 3 

Arms number 

more than 4

97.79 % 97.51 % –0.27 % — — — 0.05 55 4

Arms number 

cannot tell

86.13 % 86.07 % –0.06 % — — — 0.05 7683 1329
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10 may not be equal to the total number of galaxies: 

one galaxy can have features in several classes, and it 

is also possible that there are galaxies that do not fit 

any criterion.

These tables allow comparing this score for the 

model trained with adversarial augmentations (Sec-

tion 3.2) and for the model trained without these 

augmentations. Such a comparison should be useful 

to understand the degree of influence of image aug-

mentations on the classification quality of the trained 

model. Scores are given for two test data sets: 1) for 

the data set of 9000 galaxies and 2) for the DECaLS 

galaxy data set. As one can see in these Tables, for the 

case of the GZ2 test data set, the scores, in general, 

are lower on tests for the model, trained with “flux 

weakening” and “size reduction” augmentations. 

This effect is explained by the similarity of the train 

and test data sets because due to the object selection 

in the GZ2 project, we are not able to sample a satis-

factory amount of faint and small galaxies to test on. 

And thus, our adversarial augmentations shifts the 

training data set distribution with respect to the test 

data set.

At the same time, we note the improvement in the 

classification of the DECaLS galaxies. The scores 

overall are much lower than in the case of our GZ2 

test data set. It may be explained by the revealing fin-

er structure of morphology with DECaLS: galaxies, 

which have some class in the GZ2, may be classified 

in another class with the DECaLS. But applying a 

model trained with adversarial augmentations leads 

to increasing the classification quality (except star or 

artifact class).

4. GENERAL RESULTS 
AND DISCUSSION

There are many classifiers for sorting galaxies by 

morphological type and features, but each has its own 

drawbacks. For example, spectroscopy classification 

requires different methods to define simultaneously 

similar spectra for quiescent/starburst and star-

forming galaxies [94, 95] or emission-line galaxies 

[96]. As well, a photometry-based approach gives 

an error when trying to classify red spirals and blue 

ellipticals [64, 67, 97—100], i.e., galaxies with a high 

content of old stars or interacting galaxies which 

affect the photometric characteristics of each other 

[101—104]. Analyzing our obtained results and data 

products let us discuss several issues related to the 

CNN image-based galaxy classification.

4.1. Accuracy. We applied CNN classifier to the 

studied low-redshifts SDSS galaxies and seized two 

sets of parameters: predictions of beings in one of five 

classes and to have one of 34 detailed morphologi-

cal features using the GZ2 labeling. We remind that 

the five GZ morphological classes are relevant to cer-

tain galaxy morphological types, e.g., T-types by de 

Vaucouleurs. Also, the human bias, which is caused 

by the GZ volunteers’ answers in the decision tree, 

affects the classification accuracy. It is discussed by 

many authors in different aspects (see, if interesting, 

“Astronomy Blog. Galaxy Zoo and human bias” 5. 

We refer to the paper by Cabrera et al. [105], where 

the metric for human labeling measuring in the case 

of low-redshift spiral/elliptical galaxies is proposed 

in the frame of label’s comparison between experts, 

GZ volunteers, and ML models. Hart et al. [106] de-

veloped a reliable method for defining spiral galax-

ies, which eliminates the redshift-dependent bias in 

the GZ2 volunteer’s answers. It was taken into ac-

count “by modeling the vote fraction distributions as 

a function of redshift, and correcting the higher red-

shift vote distributions to be as similar as possible to 

equivalent vote distributions at low redshift.”

We exploited the GZ2 annotated data as by Willett 

et al. [71], which can possess a worse bias for, as an 

example, the late-type galaxies (spiral) as compared 

with the data by Hart et al. [106]. Of course, the ex-

ploiting more and more unbiased data for training 

should improve the accuracy of the CNN classifier, 

see, for example, Tarsitano et al. [107], where this 

debiasing technique is applied for “disk and smooth” 

galaxies. Nevertheless, in general, our method is on 

par with the most contemporary level of morpho-

logical classification performance, attaining the ac-

curacy of 83.3...99.4 % in depending on the morpho-

logical galaxy feature (Table 2 and Table 3). Such an 

overall value of the accuracy is in a good agreement 

with the one obtained in work by Walmsley et al. [56], 

who used Bayesian CNN to study Galaxy Zoo volun-

teer responses and achieved coverage errors of 11.8 % 

within a vote fraction deviation of 0.2.

5 https://www.strudel.org.uk/blog/astro/000758.shtml
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If consider the attained accuracy for certain mor-

phological types of galaxies, we note the work by 

Gauthier et al. [108], who applied both supervised and 

unsupervised methods to study the Galaxy Zoo data 

set of 61 578 pre-classified spiral, elliptical, round, 

and disk galaxies. They attained 94 % accuracy for 

galaxies to be associated with each of these four classes 

and noted the correlation of variation of galaxy im-

ages with brightness and eccentricity. Among other 

relevant works, we note one by Barchi et al. [109], 

who used DL and traditional ML techniques for bi-

nary distinguishing of elliptical/spiral galaxies and 

created a morphological catalog of 670 560 galaxies at 

z < 0.1, where the input data were taken from the SDSS 

DR7 (Petrosian magnitude in r-band < 17.78). They 

developed a non-parametric galaxy morphology sys-

tem (CyMorph). The Decision Tree, Support Vector 

Machine, and Multilayer Perceptron produced 98% 

of overall accuracy. The CNN method (GoogLeNet 

Inception) with the imbalanced data sets and twenty-

two-layer network resulted in 98.7 % overall accuracy 

for this binary morphological classification. Mitta et 

al. [110] introduced the data augmentation-based 

MOrphological Classifier Galaxy using CNN (daM-

COGCNN) and obtained a testing accuracy of 98 % 

on the data sets of 4 614 images from the SDSS, Gal-

axy Zoo challenge, and Hubble Image Gallery.

4.2. Train-test split. Transformation of images by 
intensity and size. Adversarial validation. We revealed 

that adversarial validation is very helpful when the la-

beled data sets are biased in magnitude distribution 

for the training data set, and such a difference could 

bias the final prediction of the classifier on the in-

ference data. So, we apply the adversarial validation 

method to analyze the homogeneity of the two data 

sets (inference and training). As a result, the galax-

ies were selected from the training data set that most 

closely coincided with the inference data set, and the 

images were normalized to be similar.

The principal difference of our approach is the 

pre-defined training-test split through adversarial 

validation of the classification accuracy on the infer-

ence-like test data set (Fig. 3). The deal with testing 

classification quality on different distributions (e.g., 

between training and target datasets) has a few im-

plementations for galaxy morphology classifications 

([86, 111—113]). Below we note several of them.

Gauci et al. ([114]) used decision tree algorithms 

trained on gri photometric information (color indi-

ces, shape parameters) to distinguish between spiral 

and elliptical galaxies or star/ unknown galactic ob-

jects from SDSS DR7 following the GZ annotated 

data. They revealed that the incorrectly classified spi-

ral and elliptical samples are very faint in magnitude. 

Our approach with adversarial augmentation and 

revealing differences between training and inference 

datasets allows us to avoid this problem. 

The transfer learning approach to fine-tune the 

CNN on a dataset, different from the training one, 

has been recently acted by Ghosh et al. [112] in their 

CNN classifier for bulge- and disk-dominated galax-

ies of the SDSS and Cosmic Assembly Near-Infrared 

Deep Extragalactic Legacy Survey (CANDELS). 

The inclusion of this procedure allowed them to 

overcome the problem of non-accurate predictions 

on the unseen datasets by fine-tuning the network on 

the target dataset. Dominguez-Sanchez et al. [115] 

created a morphological catalog for ~670 000 SDSS-

galaxies in two options (T-type, related to the Hubble 

sequence, and GZ2 types). They obtained the high-

est accuracy (>97 %) when applying the same pa-

rameters to a test data set as those used for the train-

ing data set.

But the labeled data from the target distribution is 

an essential condition to conduct the transfer learn-

ing. We handled this limitation simply by imposing 

the required transformations into the training data-

set, preventing the need to label the target galaxies.

Lin et al. [116] used the Vision Transformer model, 

which operates better at classifying smaller-sized and 

fainter galaxies (in comparison to the CNN). This 

improvement is caused, probably, by the architecture 

change from the CNN to the attention-based mod-

el — because transformers usually work better with 

a training dataset increasing, and, at the same time, 

these challenging types of galaxies were dominated in 

their training dataset. The results related to the faint-

er have a special interest when compiling the samples 

of low surface brightness galaxies [117—120]. Lin et 

al. applied thresholds on a series of voting GZ2 ques-

tions [71] but considered eight classes: round ellip-

tical, in-between elliptical, cigar-shaped elliptical, 

edge-on, barred spiral, unbarred spiral, irregular, and 

merger on the data set of 155 951 images of galax-
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ies [116]. These authors attained the accuracy (with 

equal class weights) from 68.7 % to 90.7 % in depen-

dence on the class, excepting irregular (41.3 %) and 

mergers (53.1 %). Dieleman et al. used similar to our 

data augmentation when provided the GZ decision 

tree model to predict probabilities for each of 34 an-

swers of the GZ volunteers for the evaluation set of 

79 975 SDSS galaxy images [82]. They selected the 

subset of images for which at least 50 % of volunteers 

answered the question. Exploiting translational and 

rotational invariation of galaxy images via data aug-

mentation and keeping the center of the galaxy as the 

most informative part, they also used random rescal-

ing, flipping, and brightness adjustment. For images 

with high agreement among the GZ participants, 

their model provides an accuracy of more than 99 % 

for most questions.

The aforementioned results show the success of a 

standard data augmentation technique, while sophis-

ticated augmentations — to adapt the training set to 

the inference one — are also effective, as we demon-

strate in this paper.

4.3. CNN classification by five morphological class-
es of galaxies. Assuming that a galaxy is in a certain 

class if the probability is the highest one, we have 

found (Paper II) that the inference data set compris-

es 27 378 completely round (with the probability of 

83%), 59 194 round in-between (93 %), 18 862 cigar-

shaped (75 %), 7 831 edge-on (93 %), and 23 119 

spiral (96 %) galaxies (see, examples, in Fig. 5, simi-

larity search). The Catalog of 315 776 SDSS DR9 

galaxies at z < 0.1 with image-based morphological 

classification by five classes is available through the 

UkrVO website6 and VizieR [70] to be supplemented 

with Paper II [55]. It contains the CNN morphologi-

6 http://ukr-vo.org/starcats/galaxies/gal_SDSSDR9_z_ 

to_0.1_morph_5_classes.csv

Figure 5. A set of the inference galaxies (3—7 columns) with their two nearest neighbours from the GZ2 training data set (1—2 

columns). Each row represents the morphological class, which is intrinsic to the galaxy from the training data set. A value of the 

probability of being this galaxy in a given class is pointed in the left upper corner of each image
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cal classification of 72738 galaxies from the training 

GZ2 data set, 143410 galaxies from the inference 

data set (the faintest galaxies of the studied sample), 

99528 galaxies from the GZ2 sample that did not pass 

the selection according to the criteria of the most 

votes of GZ2 volunteers and for which their morpho-

logical class was reassigned by the CNN classifier.

In this way, we have shown for the first time that 

implication of the CNN model with adversarial vali-

dation and size-changing function simulating a de-

crease in magnitude and size (data augmentation) 

significantly improves the classification of smaller 

and fainter SDSS galaxies with mr < 17.7 in r-band 

(Fig. 4, a). One can see in Fig. 1, a that the fainter 

end of distribution of the target data set by magni-

tude is occupied by galaxies from the inference data 

set only. As well, we demonstrated another way to 

improve the human bias for those galaxy images 

that had a poor vote classification in the GZ project. 

Such an approach, like autoimmunization, when the 

CNN classifier trained on very good images is able to 

retrain bad images from the same homogeneous sam-

ple, can be considered co-planar to other methods 

on improving human bias, e.g., the method proposed 

by Hart et al. [106].

It is relevant to compare our results with work by 

Zhu et al. [121], in which the ResNet model was 

exploited to classify galaxies into five classes anno-

tated by GZ2 and CNN classifier was compared with 

Dieleman et al. [82], AlexNet, VGG, and Inception 

networks. The samples were pre-selected in a specific 

morphology category with their appropriate thresh-

olds [71] in dependence on the number of volunteers’ 

votes. These authors attained overall classification 

accuracy of 95.21 % and the accuracy of each class 

type of 96.68 % for completely round, 94.42 % for 

round in-between, 58.62 % for cigar-shaped, 94.36 % 

for edge-on, and 97.70 % for spiral. We had a compa-

rable classification performance with a worse output 

for completely round and a better output for cigar-

shaped classes. Gupta et al. [86] provided a classifi-

cation of GZ2 galaxy images on five morphological 

classes as in our work. They trained Neural ordinary 

differential equations with Adaptive Checkpoint Ad-

joint and compared them against the ResNet CNN 

model: an accuracy of 91...95 % depending on the 

image class is in agreement with our results.

Yet one point of the discussion is related to the dis-

tribution of galaxies in the sky and by redshift. For 

example, Dhar and Shamir [122] demonstrated that 

the training of a deep CNN is sensitive to the context 

of the training data, such as the location of the objects 

in the sky. They found statistically significant bias in 

the form of cosmological-scale anisotropy in the dis-

tribution of elliptical and spiral galaxies, which affect 

the deep CNN model. They experimented with Pan-

STARRS and SDSS data and noted that such unbal-

ancing is linked to the training and test samples of 

galaxies, which were imaged in different parts of the 

sky. We analyzed the distribution of galaxies in our 

catalogs and have not found that galaxies of a certain 

morphological class (or morphological feature) have 

a preferential distribution in their location in the sky 

(see as an example, Fig. 6 for the most numerous 

round-in between class and Fig. 2, a for the training 

and inference data sets. There are no differences be-

tween classes in distribution by redshift (Fig. 7).

To compare photometry-based and image-based 

approaches to the same data set of low-redshift gal-

axies, we collected the classification output of four 

methods in Table 4. There are results of classifica-

tions by the CNN model into five morphological 

classes [55]; photometry multi-parametric diagram 

(MPD) into elliptical, spiral, and irregular galaxies 

[58, 60]; machine learning with Random Forest (RF) 

and Support Vector Machine (SVM) into early and 

late morphological types [54]. We inserted the num-

Figure 6. Distribution of galaxies classified by CNN as belong-

ing to the round in-between morphological class in the sky
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ber of only those galaxies that have the maximum 

probability of belonging to one or another morpho-

logical class [70]. One can see that three photome-

try-based methods have comparable overall accuracy 

with an intrinsic error of less than 0.3 % between 

RF and SVM [54] as well as less than 4 % between 

MPD (here, late type is Sp+Irr) and machine learn-

ing methods. The latter error is explained mostly by 

the effect of blue elliptical and red spiral galaxies 

[58]. There is a general agreement between the early 

type of galaxies classified by photometry methods 

and “round-in-between + completely round” types 

of galaxies as well as between late-type galaxies and 

“spiral + round in-between”.

We matched the galaxies of late morphological 

types classified by Support Vector Machine (SVM) 

and Random Forest (RF) [69] and the galaxies clas-

sified in this work by CNN as edge-on and spiral as 

the most relevant morphological types. Namely, we 

selected ~50 000 galaxies with a CNN probability of 

being spiral from 0.77 to 0.99 (Table 2 and Table 3). 

Their labeling obtained by SVM and RF methods says 

that 10.5 %, and 8.8 % among them, respectively, are 

of early morphological type (elliptical). We inspected 

these misclassified galaxies and found that they are 

mostly large nearest spiral galaxies with a massive red 

center region. 

We also selected ~12 000 edge-on galaxies with the 

same CNN probability: also having a redder color and 

larger redshifts. The comparison in Table 4 shows sig-

nificant segregation of galaxies classified by five GZ2 

morphological classes between the adopted morpho-

logical types. This complicates the work of the CNN 

classifier to reveal the real morphology of galaxies. 

The statistical comparison of these results with the 

results of the CNN detailed morphology of the same 

five classes (Table 2) is impossible because a feature-

classified galaxy can have multiple features, while a 

class-classified galaxy belongs to only one class.

In our opinion, it is more efficient to use the exist-

ing catalogs of galaxies (for example, elliptical, spiral, 

irregular, flat, gravitational lenses, mergers, etc.) as 

training ones to determine the morphological types 

of galaxies. Binning these catalogs by redshift, we can 

sequentially create new morphological catalogs at 

Table 4. Comparison of classifications of the studied SDSS DR9 galaxies by the CNN model into five morphological
 classes [54] and by three photometry-based methods: multi-parametric diagram (MPD) into elliptical, spiral, 
and irregular galaxies [58, 60]; machine learning with Random Forest (RF) and Support Vector machine (SVM) into 
early and late morphological types [55, 70]. The number of only those galaxies, N gal, that have the best threshold 
probability of belonging to one or another morphological class is pointed out

Photometry-

based
N gal Type

Image-based, CNN, classes

Completely 

round

Round 

in between
Cigar-shaped Edge-on Spiral

MPD,

N = 308466

138947 E 35389 65839 14360 12067 11292

110454 Sp 13645 41047 12803 6065 36894

59065 Irr 7627 20658 4224 2108 24448

RF,

N = 308466

131663 Early 36424 66043 12268 8549 8379

176803 Late 20237 61501 19119 11691 64255

SVM,

N = 308466

131099 Early 36135 65646 12477 8790 8051

177367 Late 20526 61898 18910 11450 64583

Figure 7. Distribution of galaxies classified by CNN into five 

morphological classes by redshift
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higher redshifts and, after a thorough check, to use 

new catalogs as training, etc. The emergence of new 

data on galaxy images for more in-depth samples by 

future observatories will provide such an algorithm 

by the data for CNN models. Meanwhile, it is useful 

to use both photometry- and image-based methods. 

Our approach to transferring the annotated classifi-

cation of galaxies to fainter and smaller galaxies using 

adversarial validation with train-test splitting and im-

age sizing is in favor of the correct applicability of the 

CNN classifier and the efficiency of the algorithm.

4.4. CNN classification by the detailed galaxy mor-
phological features. The quality of inference morpho-

logical features from the test data sets of galaxies is 

summarized in Table 2 and Table 3. Our CNN mod-

el for the classification of galaxies by their detailed 

structural morphology gives accuracy in the range of 

83.3...99.4 % depending on 32 features (exception is 

for “disturbed” (68.55 %) and “arms winding medi-

um” (77.39 %), the number of galaxies with the given 

feature in the inference data set, the galaxy image 

quality (Table 2 and Table 3). To reach it, we calcu-

lated the number of galaxies that passed the selected 

threshold for the acceptance of detailed morphologi-

cal features. The examples of classification on infer-

ence galaxy data set are given in Fig. 8. As a result, for 

the first time, we assigned the detailed morphological 

classification for more than 140 000 low-redshift gal-

axies with mr < 17.7 from the SDSS DR9, which has 

the highest adversarial score by the CNN classifier.

Using the adversarial validation technique, we 

managed the optimal train-test split of galaxies from 

the training data set to verify our CNN model based 

on the DenseNet-201 realistically. We have also found 

optimal galaxy image transformations, which help 

to increase the classifier’s generalization ability as it 

Figure 8. The examples of galaxies with some morphological features (bar, ring, irregular, merger, dust lane, arms winding tight, 

arms number 2, and star or artifact) from the inference SDSS data set with their two nearest neighbors from the GZ2 training 

data set
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Figure 9: Examples of galaxies labeled as “dust lane”. In the caption below each image: CNN probability to have this feature, 

RA and DEC, redshift

was tested with a specifically created test data set. We 

can compare our results with the work by Dieleman 

et al. [82]. Namely, a level of agreement and model 

confidence presented in Fig. 9 of their paper dem-

onstrates that classification overall accuracy for the 

analyzed examples is in the range of 82.52...96.04 % 

in dependence on the galaxy feature (the exception 

is for “no of arms”, “arm tightness”, “odd”, and 

“bulge”, where accuracy is less than 80 %). Exploit-

ing similar augmentation procedures for the SDSS 

galaxy images, our approach was slightly different: in 

the choice of image data as the PNG files restricted 

for three gri bands as well as performing a multi-label 

task for detailed morphological classification, when 

the galaxy can be attributed with several features (for, 

example, labeling as “spiral”, the galaxy can be also 

with “bar”, “bulge” or “ring” and be characterized 

by a certain number of “arms”).

Good train-test sampling mobility for the CNN 

classifier resulted in the catalogs of low-redshift gal-

axies with morphological features, which are supple-

ments to this paper. The highest score (97...99 %) was 

attained for such features as a ring, irregular shape, 

bulge, star or artifact, edge-on, and dust lane.

So, we can underline that the train/test split has 

very important consequences because with its use, 

the CNN’s applicability to the future LSST, WFIRST, 

and Euclid big data surveys will not depend on the 

need for a large training set of real data.

In general, this allows us to make a quick selection 

of galaxies with certain features for their subsequent 

analysis (see Table 2 and Table 3). Using the SDSS 

Navigate, we performed a preliminary visual inspec-

tion of samples of galaxies with such features as “dust 

lane, irregular, edge-on yes, ring, bar, merger, star or 

artifact” in order to reveal CNN efficiency to classify 

images from an astronomical point of view. 

All the inspected galaxies labeled as “dust lane”, 

“irregular”, and “edge-on yes” demonstrate the 

perfect annotation. All these galaxies possess these 

features even having a lower probability by the CNN 

classifier (see examples in Fig. 9—11: “dust lane” in 

all range of probabilities, “irregular” till 30 %, “edge-

on yes” till 60 %.
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Figure 10: Examples of galaxies labeled as “irregular”. In the caption below each image: CNN probability to have this 

feature, RA and DEC, redshift

Figure 11: Examples of galaxies labeled as “edge-on yes”. In the caption below each image: CNN probability to have 

this feature, RA and DEC, redshift
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4.5. Notes on problem points of CNN image-based 
galaxy classification by their features. The evolution-

ary galaxy properties can affect ML methods’ accu-

racy based on galaxies’ photometry/image features. 

Among these misclassified types are the bluer HI-

rich galaxies of early type and the redder HI-poor 

spiral galaxies; edge-on and galaxies seen face-on, 

especially with a pronounced bulge; the bulge-less 

(ultra-flat) galaxies with inclination 87°...90° for seen 

edge-on and 10°...0° for seen face-on. The face-on 

bulge-less galaxies can be considered counterparts to 

the edge-on disk galaxies giving additional informa-

tion on their physical parameters, including photom-

etry [54, 123]. So, their correct classification is very 

useful when compiling catalogs with a bulge to super-

thin galaxies [124, 125] or studying the influence of 

the environment on the morphology and quench-

ing of galaxies in dense environments (for example, 

[126] for the Hydra cluster). In such cases, where 

the surface brightness profile, color, and concentra-

tion indexes are needed, the ML algorithms trained 

over SDSS photometric parameters are less biased 

than when trained using GZ visual morphology (see, 

amongst others [54, 82, 115, 120, 127]).

At the same time, the results of applying the deep 

CNN to the images of our studied set [65, 66] with 

the aim of binary morphological classification (late 

and early types) have shown limitations. Namely, 

DL methods can classify rounded galaxy images as 

ellipticals. Still, it cannot catch the SED properties 

of galaxies more clearly than the Support Vector Ma-

chine trained on the photometric features of galax-

ies. To avoid several of these misclassifications, Lin-

gard et al. [128] developed a novel method, Galaxy 

Zoo Builder, working well with face-on galaxy image 

modeling based on the four-component photometric 

decomposition of spiral galaxies. Earlier, Schawinski 

et al. [129] exploited the SDSS, GALEX, and GZ 

data to substantiate the transformation from disk to 

elliptical morphology of low-redshift galaxies.

Our visual inspection revealed a few more typical 

nuances about misclassified galaxy images.

As related to the galaxies with the “ring” feature, 

we note that such galaxies were correctly labeled in 

all the range of probabilities. But there are misclas-

sified images, mostly at the higher redshifts, which 

are a) the disk galaxies with a bright bulge, b) galaxies 

with complicated contrast gradient of brightness (see 

Fig. 12, two last images) as well as c) elliptical galax-

ies with a bright core, in which the brightness is not 

distributed smoothly towards the periphery, d) merg-

ing galaxies with a bright core and outer component 

distinctly differed in brightness, as a result, the neural 

network considers the outer component to be a ring.

The creation of the representative catalog of gal-

axies with ring(s) could be very useful ([130, 131]). 

For example, Smirnov and Reshetnikov [131] col-

lected the samples of polar- and collision- ring galax-

ies from all the published data in several deep fields. 

Doing this painstaking preliminary search, they 

constructed the luminosity function for the ringed 

galaxies and confirmed the increase in their volume 

density with redshift: up to z ~1 their density grows as 

(1 + z)m, where m  5. As related to the problem point 

of elliptical galaxies with the bright core, we link to 

the paper by Tarsitano et al. [107], who developed a 

promising CNN approach based on the training of 

elliptical isophotes in the light distribution.

The galaxy images labeled with “bar” have typical 

misclassifications. It has been happening when a) a 

central part of spiral arms of the edge-on galaxy is 

classified as a bar, b) the nuclei of merging galaxies 

are visually located near one another, then the CNN 

matches this as a bar. The samples of misclassified 

images with the “bar” feature are in Fig. 13. Bham-

bra et al. [85] proposed the explainable artificial in-

telligence (XAI) techniques to measure galactic bar 

lengths and bulge-to-disk ratio. They used the Hoyle 

bar length catalog [132] vs. GZ annotated data and 

demonstrated that XAI works more successfully in 

predictions of a bar feature. Also, taking into account 

the class of “smooth” galaxies (no bar, spiral arms, or 

other structure presents), these authors demonstrate 

the difficulties in reconciling differences between the 

ML model predictions and the GZ consensus. We 

agree with their conclusion that the citizen science 

method of classifying galaxies is less easily explained 

than ML methods.

We will not analyze the galaxy samples related to 

the “spiral arms number” features. This task is per-

fectly studied by Hart et al. [106]. Their method 

allowed them to overcome where the rarer many-

armed samples were incomplete, and the two-armed 

category suffered from sample contamination. They 
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Figure 12: Examples of galaxies labeled as a “ring”. In the caption below each image: CNN probability to have this 

feature, RA and DEC, redshift

Figure 13: Examples of misclassified images of galaxies: with “merger” and “bar” features. In the caption below each 

image: CNN probability to have this feature, RA and DEC, redshift
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created a sample of about 18000 SDSS DR7 galaxies 

at 0.03 < z < 0.08 with Mr 
< −21, which was sorted by 

arm multiplicity and further studied for star-forming 

activity.

All the galaxy images with the “star or artifacts” 

have these features. All of them contain galaxies that 

are classified. Bright stars and/or artifacts that ob-

scure the image of a galaxy lead to misclassification 

of galaxies in most cases. 

The sample of “merger” galaxies also has false im-

ages, when a) galaxies are the optical pair, b) the star 

falls into the image background near a spiral galaxy, 

then the CNN considers the star as an elliptical gal-

axy and keeps it as merging, c) spiral galaxies without 

interaction, but their arms are untwisted (see, ex-

amples, in Fig. 13). It is interesting to compare our 

results on merging galaxies with work by Reza [133], 

who also used the SDSS data and obtained that Ex-

traTrees classifier outperforms Neural Network for 

this distinct type of objects. It was noted that merg-

ers are easily confused with both ellipticals and spi-

rals when image-based classification is conducted. 

Our results are useful when compiling the catalogs of 

merging galaxies [104, 134—137].

As one can see, the CNN confident model pre-

dictions are highly accurate and allow us to filter big 

data collections of galaxy images with various mor-

phological features. We expertized our obtained data 

and described several challenging images. When we 

develop the classification model, the aim is not only 

the state-of-the-art accuracy values but also defining 

problem points of the CNN model in working with 

galaxy images and training it to classify large surveys 

of galaxies no worse than an expert for small samples.

5. CONCLUSIONS

The image-based CNN classifier was exploited by us 

to create a morphological catalog of 315776 SDSS 

DR9 low-redshift galaxies (z < 0.1) following our pre-

vious works ([54, 55, 69]). This target data set of the 

SDSS galaxies is tightly overlapped with the annotat-

ed data from GZ2 [71]. For this reason, we divided it 

into two data sets: “inference”, which does not match 

the GZ2 galaxies, and “training”, which matches the 

GZ2 galaxies. In the presence of a pronounced dif-

ference of visual parameters between galaxies from 

the GZ2 training data set and galaxies without known 

morphological parameters, we applied novel proce-

dures, which allowed us to get rid of this difference, 

especially for smaller and fainter SDSS galaxies with 

mr < 17.7 from the inference data set. We describe in 

this paper how we applied the adversarial validation 

technique and managed the optimal train-test split of 

galaxies from the training data set to verify our CNN 

model based on the DenseNet-201 realistically. We 

have also found optimal galaxy image transforma-

tions, which help increase the classifier’s generaliza-

tion ability in similarity search, as is provided with a 

specifically created test data set.

We demonstrate for the first time that implication 

of the CNN model with the train-test split of data sets 

and size-changing function simulating a decrease in 

magnitude and size (data augmentation) significant-

ly improves the classification of smaller and fainter 

SDSS galaxies. It can be considered as another way 

to improve the human bias for those galaxy images 

that had a poor vote classification in the GZ project. 

Such an approach, like autoimmunization, when the 

CNN classifier trained on very good images is able 

to retrain bad images from the same homogeneous 

sample, can be considered co-planar to other meth-

ods of combating such a human bias.

The most interesting data products with this ap-

proach were obtained for galaxy classification by 34 

detailed morphology features. The accuracy of the 

CNN classifier is in the range of 83.3...99.4 % de-

pending on 32 features (exception is for “disturbed” 

(68.55 %) and “arms winding medium” (77.39 %) 

features), the number of galaxies with the given fea-

ture in the inference data set, and the galaxy image 

quality (Table 2 and Table 3). To reach it, we cal-

culated the number of galaxies that passed the best 

threshold for the acceptance of detailed morphologi-

cal features. As a result, for the first time, we assigned 

the detailed morphological classification for more 

than 140000 low-redshift galaxies with mr < 17.7 

from the SDSS DR9 (inference data set), which has 

the highest adversarial score by the CNN classifier. 

The morphological catalogs of low-redshift SDSS 

galaxies with the most interesting features are avail-

able through the UkrVO website http://ukr-vo.org/

starcats/galaxies/ and will be supplemented to this 

paper through VizieR, as well as the catalog of galax-

ies with top five detailed morphological features (to 
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wit, with a maximal prediction probability to possess 

such a feature).

A visual inspection of the samples of galaxies with 

certain morphological features allowed us to reveal 

typical problem points of galaxy image classification 

by shape and features from the astronomical point 

of view. We analyzed them in the discussion section, 

where we also compare machine learning photom-

etry- and image- based approaches testifying that the 

best results are being performed with all of the galaxy 

data types (photometry, image, spectroscopy). We 

believe our results and notes on problem points will 

be useful to strengthen the CNN applicability and 

help in the morphological classification of galaxies 

within the current and forthcoming deep sky surveys 

at the petabyte scale.
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МАШИННЕ НАВЧАННЯ ДЛЯ МОРФОЛОГІЧНОЇ КЛАСИФІКАЦІЇ ГАЛАКТИК ІЗ ОГЛЯДУ SDSS. 

III. ДЕТАЛЬНІ ХАРАКТЕРИСТИКИ ЗА ОБРОБКОЮ ЗОБРАЖЕНЬ У ЗГОРТКОВІЙ НЕЙРОННІЙ МЕРЕЖІ

Стаття є продовженням наших робіт із застосування різних методів машинного навчання до морфологічної класи-

фікації галактик (Vavilova et al., 2021, 2022). Ми досліджували вибірку ~315 800 SDSS DR9 галактик із абсолютними 

зоряними величинами −24m < Mr < −19.4m на червоних зміщеннях 0.003 < z < 0.1 як цільову вибірку даних для CNN 

класифікатора. Оскільки цільова вибірка тісно перетинається із Galaxy Zoo 2 (GZ2), ми використовуємо ці анотовані 

дані як навчальну вибірку для класифікації галактик за 34 детальними морфологічними характеристиками. За наяв-

ності вираженої різниці у яскравості і розмірах між галактиками з навчальної вибірки і галактиками без відомих мор-

фологічних параметрів ми застосували нові методики, які дозволили нам вперше позбутися цієї різниці для менших 

і слабкіших галактик SDSS із mr < 17.7. У статті детально описано ці методи змагальної перевірки, а також процедури 

оптимального розподілу галактик із тренувальної вибірки для перевірки CNN-моделі на основі DenseNet-201. Ми 

також знайшли оптимальні трансформації зображень галактик (зміна яскравості, повороти, підгонка розмірів тощо), 

які допомагають покращити ефективність CNN-класифікатора у пошуку подібності зображень.

Це можна розглядати як ще один спосіб покращити точність морфологічної деталізації зображень галактик, для 

яких вона була статистично низькою в проєкті GZ. Такий підхід, подібно до аутоімунізації, коли CNN-класифікатор, 

навчений на дуже хороших зображеннях, здатний перенавчити погані зображення з тієї самої однорідної вибірки, 

можна вважати аналогічним іншим методам покращення байєса. Найбільш багатообіцяючий результат щодо ймовір-

ністі CNN-прогнозування отримано для таких морфологічних характеристик галактик як кільця, бар, балдж, ознаки 

взаємодії, іррегулярності тощо, – точність становить від 83.3 до 99.4 % за винятком характеристик «порушена струк-

тура» (68.55 %) і «середня закрутка спіральних рукавів» (77.39 %). 

У результаті ми вперше визначили детальну морфологічну класифікацію для більш ніж 140 000 галактик на z < 0.1, пе-

реважна більшість яких має низьку яскравість. Візуальна перевірка вибірок галактик з певними морфологічними озна-

ками дозволила виявити типові проблемні точки CNN-класифікації зображень галактик з астрономічної точки зору.

Морфологічні каталоги галактик SDSS із найцікавішими морфологічними особливостями доступні на веб-сайті 

УкрВО (http://ukr-vo.org/galaxies/) та VizieR.

Ключові слова: галактики, морфологічна класифікація, методи: аналіз даних, згорткова нейронна мережа (CNN), об-

робка зображень.


