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DETERMINATION OF THE FORCE IMPACT OF AN ION THRUSTER
PLUME ON AN ORBITAL OBJECT VIA DEEP LEARNING

The subject of research is the process of creating a neural network model (NNM) for determining the force impact of an ion thruster
(IT) plume on an orbital object during non-contact space debris removal. The work aims to develop NNMs and study the influence
of various factors on the accuracy of determining the force transmitted by the ion plume of the thruster to a space debris object (SDO).
The tasks to resolve are to choose the structures of the NNMs, form a data set and use this data to train and validate the NNMs, and
to explore the influence of the model structure and optimizer parameters on the accuracy of force determination. The methods used
are plasma physics, computer simulation, deep learning, and optimization using an improved version of stochastic gradient descent.
As a result of research, three NNMs have been developed, which differ in the number of hidden layers and neurons in hidden layers.
For training and validation of the NNMs, a data set was generated for an SDO approximated by a cylinder using an autosimilar
description of the ion plasma propagation. The data set was obtained for various relative positions and orientations of the object in the
process of its removal from an orbit. Using this data set, the NNM parameters were optimized with the supervised learning method.
The optimizer and its parameters are selected, providing a small error at the stage of validating learning outcomes. It was found that
the accuracy of determining the force depends on the relative position and orientation of the SDO, as well as the architecture of the
NNM, and the features of this influence were identified. The approach applied allows us to obtain the possibility of using methods of
deep learning to determine the force impact of the IT plume on the SDO. The proposed models provide the accuracy of the force impact
determination, which is sufficient for solving the considered class of problems. At the same time, NNM makes it possible to obtain
results much faster in comparison with the methods used previously. This fact makes the NN Ms promising to use both on-board and in
mathematical modeling of missions to remove space debris.
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INTRODUCTION

At present, there are a large number of space objects
in near-Earth space, such as fragments of launch ve-
hicle stages, non-functioning spacecrafts and their
fragments, which significantly complicate further
space activities [14]. In this regard, the task of creat-

ing tools and technologies for the direct removal of
space debris objects (SDO) from near-Earth orbits is
now urgent.

Various concepts of active debris removal are
known, for example, laser systems [16], electrody-
namic tether systems [18], and combined systems [7,
9]. Most concepts involve docking the removal sys-
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tem with an SDO or capturing it with assistive de-
vices. However, this operation can be technologically
complex and unsafe.

The “Ion beam shepherd” concept was proposed
for the non-contact removal of orbital objects [3].
The basic principle of this concept is to use the ion
plume of an IT as a way to transmit the force impulse
to the SDO for its deceleration. Such removal of
space debris has a number of advantages compared
to other known approaches [16, 18], namely, removal
efficiency, low risk level, reusability, and technologi-
cal readiness.

One of the key tasks within the concept of “lon
beam shepherd” is the determination of the force
transmitted to the SDO by the shepherd. Knowledge
of this force is necessary for the successful imple-
mentation of the selected removal program and can
also be useful for solving problems of navigation and
relative control of the “shepherd — SDO” system |2,
11, 12]. Determining this force is not an easy task
since its value depends in a complex way not only on
the properties of the I'T plume but also on the relative
position and orientation of the SDO.

A number of publications address this problem.
For example, [5] proposes the theoretical founda-
tions for modeling an ion beam plume and calculat-
ing the transmitted force. The authors of this work
used an approach based on the integration of el-
ementary forces over the surface of the object. But,
as practice shows, the implementation of such a cal-
culation method can lead to cumbersome algorithms
and time-consuming modeling, so the application of
these results in the form of algorithms on the shep-
herd board seems difficult. In [4], the possibility of
an analytical description of the force is considered,
however, the authors obtained such expressions only
for the SDO of a spherical shape. An approach to de-
termine the transmitted force using the central pro-
jection of the target onto a selected plane is proposed
in [1, 8]. Despite the fact that this approach signifi-
cantly speeds up the force calculation in comparison
with the direct integration over the SDO surface, it
still requires significant computational resources due
to loops needed for calculating elementary forces.

At this time, artificial intelligence methods attract
a significantly increased interest in the world, which
is largely due to the impressive results obtained us-
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ing deep learning (DL) technologies [15] — machine
learning methods based on multilayer artificial neural
networks (ANN). Recently, DL has been rapidly de-
veloping and demonstrating promising opportunities
in solving complex problems and finding nontrivial
solutions to existing problems [13, 17]. Most of the
results used in practice are obtained using the meth-
ods of supervised learning or example-based learn-
ing. Despite the fact that ANN training can take a
long time, the trained network allows getting results
pretty fast. This feature determines the prospects of
DL methods for finding the force transmitted to the
SDO by the shepherd. However, it is known that the
success of solving a problem by DL methods largely
depends on the correct choice of the ANN structure,
as well as algorithms and learning parameters. These
issues are studied in this article.

The goal of the study is to develop the NNM for
determining the force transmitted by an I'T plume to
an SDO and to investigate the influence of various
factors on its accuracy.

1. PROBLEM STATEMENT

1.1. Reference frames. In the research, the following
right-handed orthogonal reference frames are used.
The IT-fixed reference frame (IRF) O,x,y,z, has the
origin O, located at the top of an imaginary cone of
the ion beam. The axis O,z, coincides with the axis of
the beam and is directed towards the thruster nozzle.
It is assumed that the IT is fixed on the “shepherd”,
which is oriented in such a way that the axis O,z,
coincides with the tangent to the orbit and is directed
to the target, the axis O, y, coincides with the normal
to the orbit and is directed in the direction opposite
to the Earth, and the axis O,x,complements the
reference frame to the right-handed one.

The origin of the reference frame associated with
the SDO (SDF) Ox,y,z, is located at its center of
mass. The direction of the SDF axes coincides with
the principle inertia axes of the SDO. The orientation
of the SDF axes relative to the IRF is determined by
the Euler angles ¢, 9, v [8] with z-y-x rotation se-
quence. The position of the origin of the SDEF, rela-
tive to the IRF, is determined by the vector BIS’ .

1.2. Model of the ion thruster plume. The plasma
plume of an IT can be conventionally divided into
near (usually less than a meter from the IT) and far
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regions [5]. For the problem of contactless space de-
bris, the far region of the plume is of primary inter-
est since the interaction between the plasma and the
target occurs within this region.

A number of mathematical models have been
proposed to describe the far region of the IT plume,
which differ in complexity and accuracy [5]. In this
case, the so-called self-similar model of plasma
propagation can be chosen as a compromise.

Self-similar models are based on the assumption
that the nature of ion propagation can be described
using a dimensionless similarity function as follows

r(z)=rh(z), z=z/R,,

where r, z are the radial and axial coordinates of
the ions, respectively, R, , r, are the beam radius and
radial coordinates of ions at the beginning of the far
region (z=0).

Using the function h(z) , the plasma density at an
arbitrary point with coordinates r, z, can be deter-

mined as follows [12]:

zno~ exp(—C 7;2~ j,
h*(2) 2h*(2)
r=r/R,, (1)

where n, is the plasma density at the beginning of
the far region of the beam, C is the factor that deter-
mines how much of the plasma plume hit a circle of
radius R, (for example, corresponds to 95 % of the
flow hit).

It should be noted that when M >>1, the charac-
ter of the ion plasma distribution approaches a cone,
although, strictly speaking, it is not. At the same
time, when M, >40 and the distance to the target is
less than 10 meters, the character of plasma distribu-
tion can be considered conical. In this case, the simi-
larity function can be defined in the following form

n=

h=1+ztana,,

where o, is the initial divergence angle of the plume.
The initial divergence angle is equal to half the open-
ing angle of the cone restricting 95 % of the plasma
plume. For the problem under consideration, we can
assume that the axial component of the plasma ion
velocity remains constant:

u, =u, =const. )

z

The radial velocity component within the consid-
ered model is determined by the following expression
[12]:

u =u,-(f/z). 3)

1.3. Interaction of the ion beam with SDO. The 1T
plume is a stream of heavy ions of propellant (for ex-
ample, xenon), accelerated to an energy level of sev-
eral kiloelectron-volts. When such a plume affects a
solid body, a force is applied to the latter, which is
mainly due to the momentum of the plasma ions
bombarding the target.

Neglecting the effects of plasma ions leaving the
target surface, sputtering of its material, and electron
pressure, the elemental force transmitted to the SDO
can be calculated as follows [12]:

dF =mnU(=V -U)ds , 4)

where U is the particle velocity vector, ds is the ele-
mentary area of the target surface, V isthe unit nor-
mal vector to the elementary area.

The force F transmitted to the SDO by the IT
plume can be calculated by integrating the elemen-
tary forces (4) over the irradiated surface S of the
target

F=[dF.
N

Inthe general case, this force depends on the prop-
erties of the IT, the shape and size of the SDO, as well
as on its relative position and orientation. Taking into
account that for a specific mission of space debris re-
moval, the IT properties, the shape and dimensions
of the SDO are known and do not change, we can
design an NNM that receives the values of the rela-
tive position and orientation of the SDO as an input
and outputs force projections in the IRE

2. DESIGN AND STUDY
OF NEURAL NETWORK MODELS

2.1. Methodology and model structure. An ANN is a
system of interconnected artificial neurons. A multi-
layer neural network is an ANN consisting of input,
output, and hidden layers of neurons located between
them. Such networks are more capable than single-
layer neural networks. It was proved in [6, 10] that
neural networks with both one and several hidden
layers can be used as universal approximators of con-
tinuous functions of a set of variables, and the only
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Table 1. NNM configurations

Architecture

§ &
- = = 0
Name 852 £8
EZ % number of neurons g S

“s
NN-512 4 | 6x512x256%128x64x3 ReLU
NN-1024 4 16x1024x512x256x128x3 ReLU
NN-1024-512 5 | 6x1024x512x256x128x64x3 | ReLU

Table 2. Results of NNM training

L. Validation accu- | Training
B Optimizer racy MSE, % time, s
NN-512 Adam 99.26 1575
NN-1024 Adam 99.41 3123
NN-1024-512 Adam 99.43 3028

Table 3. Coordinates of center of mass and orientation
parameters of SDO. Variable parameters marked as *

Coordinates Orientation
No of center of mass parameters
by,m | b),m | b, m | 9,rad | ¢ rad | V,rad

1 * 0 7 0 0 0

2 0 * 7 0 0 0

3 0 0 * 0 0 0

4 0 0 7 * 0 0

5 0 0 7 0 * 0

6 0 0 7 0 0 *

7 * 1 9 1.507 1.507 1.507

8 1 * 9 1.507 1.507 1.507

9 1 1 * 1.507 1.507 1.507
10 1 1 9 * 1.507 1.507
11 1 1 9 1.507 * 1.507
12 1 1 9 1.507 1.507 *

13 * 1 9 —1.507 | —1.507 | —1.507
14 1 * 9 —1.507 | —1.507 | —1.507
15 1 1 * —1.507 | —1.507 | —1.507
16 1 1 9 * —1.507 | —1.507
17 1 1 9 —1.507 * —1.507
18 1 1 9 —1.507 | —1.507 *

k.
(= -]

condition is a nonlinearity of the activation function
in hidden layers.

In this work, the ReLLU activation function was
used for all NNMs, which transforms the input signal
in the following way

R(X) = max(0,X).

The inputs of the activation functions are deter-
mined by the values of the weights (synapses) and
biases. These parameters are set as a result of NNM
learning using optimization algorithms. The learn-
ing goal is to minimize errors in the ANN output.
Currently, the most commonly used learning algo-
rithms are improved versions of stochastic gradient
descent (SGD), such as root mean squared propa-
gation (RMSprop) and adaptive moment estimation
(Adam) methods. In this work, the Adam optimizer
was used to train neural networks. The mean squared
error was used as a loss function for training and vali-
dation.

To solve the problem, three different NNM con-
figurations with fully connected layers are consid-
ered. They differ in the number of hidden layers, as
well as the number of neurons in the hidden layers.
NNM configurations are summarized in Table 1.

The total number of neurons in the hidden lay-
ers of the neural network NN-512 is 960, and in the
hidden layers of the neural networks NN-1024 and
NN-1024-512, there are 1920 and 1984 neurons, re-
spectively.

Training, validation, and testing of NNMs, as well
as data preprocessing, were carried out using Python
3.9 programming language and Keras, Scikit-learn,
Numpy and Scipy libraries.

2.2. Initial data. The following IT parameters
were used for the calculations: initial radius: R, =
= 0.0805 m; ion mass (xenon) m=2.18-10" kg;
initial plasma density n, =4.13-10° m™; initial
axial velocity of ions u, = 71580 m/s; divergence
angle o,=7 deg; initial electron temperature
T,=0.001 eV.

The upper stage of the Cyclone-3 launch vehicle is
considered as the SDO, which is approximated by a
cylinder with a height of #=2.6 m and a base diam-
eterof d =2.2 m.

2.3. Dataset for training and validation. For train-
ing and validation of the NNMs, a dataset was gener-
ated that includes input values — the coordinates of
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the center of mass and the angles of orientation of the
SDO relative to the IRF, and the output values of the
projections of the transmitted force corresponding
to them. The ground truth force outputs were calcu-
lated using the methodology presented in Section 1.
During dataset generation, the input data were set
randomly in the range of variation of each param-
eter using a uniform distribution. Range of variation
of input parameters: for the parameters b; and b} it
is [-1.0...1.0]; for the parameter b; it is [5.0...9.0];
for the parameters 3, ¢ and v itis [1.507...1.507].
Then the dataset was normalized to obtain values in a
range of [—1.0...1.0].

The dataset, which contains 3 500 000 records, is
split for training and validation with a ratio of 80 %
and 20 %, respectively.

2.4. Training and validation. NNMs were trained
using a personal computer with a 10th generation
Intel processor, which has 8 cores and 16 threads.
The Xavier method was used to initialize the NNM
weights. The learning rate for each NNM was cho-
sen as 0.0001. The mini-batch size and the number of
training epochs were selected as 256 and 100, respec-
tively. Adam optimizer is used with the following pa-
rameters: gradient damping factor is 0.9; attenuation
coefficient of the squared gradient is 0.999; the small
constant is 7.000-10” . Adam optimizer was cho-
sen because it is computationally efficient, has little
memory requirement, invariant to diagonal rescaling
of gradients, and is well suited for problems that are
large in terms of data/parameters.

To determine the best NNM, they were com-
pared with each other in terms of validation accuracy
and training time. Table 2 summarizes the results of
NNM training. The results show that the NNM with
the smallest number of neurons in the hidden layers
shows a lower validation accuracy compared to other
network configurations. However, it takes almost half
the time for training than others. The NNMs with
the largest number of neurons in the hidden layers
have approximately the same training time and ac-
curacy.

2.5. Testing. Table 3 presents the computational
cases that differ in the values of the position and ori-
entation of the SDO relative to the IRE. The param-
eters marked as variables took values within the con-
sidered ranges (see Table 1) with a fixed step equal to
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Figure 1. The values of the normalized error for each of the
outputs of the NNM. Case 3 (NN-512)
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Figure 2. The same. Case 3 (NN-1024)

0.001. The parameter values of the first 6 cases are
nominal.

Pictures 1—8 show plots for normalized errors for
some of the computational cases. The variable pa-
rameter is displayed along the abscissa-axis. The or-
dinate axis shows the values of the normalized error
for each of the outputs of the NNM.

The components of the normalized error vector
are defined as follows:

AF* =FIf—F}f , k=x,9,z,
where F, is the normalized reference force vector,
F, is the force vector predicted by the NNM.

Figures 1—3 show the results of testing three
NNM configurations for case 3.

In general, according to the figures above, it can be
concluded that the accuracy of the NN-512 model is
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worse than that of the other two models. Figures 4—8
show the results of NNM testing for other cases.

2.6. Model accuracy analysis. To compare the
results, maximum errors in determining the force
transmitted to the SDO for each case from Table 5

put values: full and reduced (half the full).

Table 4. Errors of force prediction for the NN-512 over the full variation interval

are calculated for two intervals of variation of the in-

Maximum errors in the Tables 4—9 are given for
both absolute errors and errors relative to reference
values.

AE RE
No
Af”,10_5N Afy,IO‘SN Af’,10‘3N Af*, % Af, % AfF, %
1 —-1.7 1.6 —0.811 2.720 2.463 2.524
2 —-1.4 2.5 —1.023 2.192 3.873 3.186
3 0.7 —0.9 0.303 1.098 1.367 0.944
4 0.7 0.2 0.024 1.088 0.281 0.073
5 0.6 0.7 —0.045 0.987 1.064 0.660
6 0.7 —4.2 —0.224 1.105 1.094 0.698
7 —4.1 4.7 1.183 6.425 7.329 3.685
8 —-5.4 5.1 —1.477 8.432 8.041 4.600
9 —4.5 6.3 1.359 7.064 9.931 4.232
10 —4.2 4.8 —0.097 6.532 7.532 0.301
11 -9.6 5.0 1.504 14.991 7.848 4.683
12 —4.9 -7.9 —1.406 7.657 12.307 4.380
13 —4.3 4.6 —2.542 6.752 7.190 7.915
14 —4.7 4.9 —1.581 7.228 7.646 4.924
15 =5.1 4.7 2.174 7.909 7.427 6.772
16 —4.3 3.8 —1.333 6.752 6.016 4.152
17 —11.9 -8.1 1.938 18.694 12.604 6.037
18 —4.3 3.8 —1.460 6.752 6.016 4.548
Mean 4.056 3.91 1.147 6.354 6.113 3.573
Table 5. Errors of force prediction for the NN-1024 over the full variation interval
AE RE
No
AfF, 105N Af?, 105N Af7, 103N AFF, % Af7, % Af*, %
1 1.3 0.9 —0.656 2.007 1.390 2.043
2 0.9 2.0 —0.456 1.362 3.094 1.419
3 —0.2 0.4 —0.133 0.386 0.695 0.414
4 —-0.2 0.3 0.028 0.271 0.428 0.086
5 -0.5 0.7 —0.140 0.748 1.162 0.436
6 —0.6 0.6 —0.141 0.863 0.871 0.440
7 -3.3 -2.9 1.118 5.111 4.474 3.483
8 -2.0 -3.0 0.961 3.059 4.642 2.993
9 —1.8 -2.1 1.990 2.811 3.282 6.198
10 -2.1 -2.1 0.961 3.283 3.282 2.993
11 -8.2 —3.8 1.297 12.792 5.910 4.040
12 -1.9 -3.9 0.958 2.924 6.079 2.984
13 2.7 —4.4 —0.945 4.208 6.891 2.944
14 4.7 5.0 —0.317 7.356 7.862 0.986
15 -3.2 4.3 2.211 5.048 6.779 6.886
16 2.7 3.6 0.170 4.208 5.637 0.530
17 —4.5 -9.3 —1.040 6.971 14.599 3.240
18 2.7 3.6 —0.383 4.208 5.588 1.194
Mean 2.0 3.0 0.770 3.756 4.593 2.406
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First, let us compare the results over the full range
of the input variation. Table 4 shows the maximum
errors obtained using the NN-512 model. For this
model, the maximum relative error (RE) of the force
determination is 18.694 %, which is obtained for X-
axis in case 17. However, the absolute error (AE) is
—1.190-10"* N, which is not significant. For cases
where non-variable parameters have nominal values
(cases | —6), the maximumvalue of REis3.873 % (AEis
2.500-107° N) and occurs at the Y-output for case 2.

Table 5 contains the maximum errors over the full
range of the input variation for the NN-1024 model.
The maximum RE is 14.599 % (AE is —9.300-107° N)
and takes place at the Y-output for case 17. In cases
1—6, the maximum RE was observed at the Y-output
for case 2 (as in the model NN-512) and is 3.094 %,
which corresponds to an AE of 2.000-107° N.

Table 6 summarizes the maximum errors of the
model NN-1024-512 for the full range of the input
variation. Here, as well as in the cases for other mod-
els, the maximum RE is 11.570 % and takes place for
case 17 along the Y-axis, which corresponds to an AE
of —7.400-10"° N. For cases 1—6, the maximum RE
is 2.524 % (AE is 1.600-10~° N) and occurs at the X-
output for case 1.

As can be seen, case 17 is the most problematic
for all NNMs, where the SDO orientation angle var-
ies over the full variation range, and the other input
parameters have non-nominal values. It can be as-
serted that the NN-1024-512 model provides the best
result of the three model configurations, showing the
smallest values of the maximum errors for all cases.
The model NN-512 demonstrates the worst results.

Next, the maximum errors over a reduced varia-
tion interval are compared. Such data are presented
in Tables 7—9 for models NN-512, NN-1024, and
NN-1024-512, respectively. It can be seen from Ta-
ble 7 that the maximum RE for the NN-512 model
is 14.139 % (AE is —9.000-107 N) and is observed
at the X-output for case 17. As for cases with nomi-
nal non-variable parameters (1—6), the worst RE is
2.81 6 % (AE 1.800-10~ N) and takes place at the
Y-output for case 2.

For the NN-1024 model, the maximum RE
over the reduced interval (Table 8) is 14.599 %
(AE —9.300-10° N) at Y-output for case 17. For
cases 1—6, the maximum RE is 1.488 % (AE
—9.300-107° N) at Y-output for case 2. The data in
Table 9 indicate that the maximum RE for the NN-
512-1024 model is 11.570 % (AE —7.400-10” N) at

Table 6. Errors of force prediction for the NN-1024-512 over the full variation interval

AE RE
No
Af*, 107N Af?, 107N AfF, 1074 N Af*, % Af7, % Af*, %
1 1.6 0.6 —6.07 2.524 1.007 1.890
2 1.3 1.3 4.83 2.076 2.009 1.503
3 —-0.6 —0.2 2.49 0.882 0.346 0.777
4 —0.1 —0.2 1.37 0.080 0.267 0.427
5 —0.2 —0.6 1.33 0.388 0.921 0.415
6 0.4 —-0.3 1.42 0.619 0.509 0.443
7 -39 —4.5 —10.58 6.145 7.018 3.295
8 -23 -3.0 —-8.76 3.647 4.692 2.730
9 2.6 4.0 15.78 4.094 6.253 4.914
10 0.9 0.7 5.10 1.365 1.097 1.589
11 -5.3 -3.2 11.68 8.296 5.047 3.636
12 1.9 -3.6 —6.72 2.969 5.699 2.093
13 3.1 32 —19.12 4.899 4.983 5.956
14 -2.1 6.4 6.30 3.245 10.025 1.962
15 -23 33 12.82 3.653 5.139 3.993
16 -1.7 1.4 —0.58 2.709 2.181 0.182
17 —4.6 -7.4 13.06 7.262 11.570 4.067
18 -1.7 =37 —-8.01 2.594 5.850 2.494
Mean 2.0 3.0 7.60 3.192 4.145 2.354
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the Y output for design case 17. For cases 1—6, the
maximum RE is 1.454 % (AE 9.000-10~° N) and oc-

curs at the X-output for case 1.

All NNMs have smaller REs in the axial direction
than the lateral one. For the considered models, the

average axial REs are in the range of 2.3...3.6 %, and
the lateral REs are in the range of 4.1...6.3 %.

Thus, it can be concluded that the smallest RE

Table 7. Errors of force prediction for the NN-512 over the reduced interval

over the reduced variation interval occurs for the
model NN-1024-512. As for the full variation inter-

AE RE
No
Af*, 10N Af?, 105N Af*,107*N AfT, % Af?, % Af*, %
1 0.9 0.5 —1.87 1.485 0.771 0.582
2 0.7 1.8 —-2.72 1.042 2.816 0.847
3 0.7 0.4 1.36 1.098 0.645 0.424
4 0.7 0.2 0.21 1.028 0.259 0.067
5 0.6 0.7 —-2.12 0.987 1.064 0.660
6 0.7 0.6 —1.38 1.105 0.951 0.431
7 —-3.4 -3.7 11.06 5.266 5.779 3.444
8 -3.1 2.8 —14.25 4919 4.348 4.439
9 -3.9 6.3 7.36 6.107 9.931 2.291
10 —4.2 4.8 —0.87 6.511 7.475 0.271
11 -7.3 -2.6 15.04 11.387 4.142 4.683
12 —4.9 34 —14.06 7.657 5.313 4.380
13 4.0 4.6 —25.42 6.213 7.190 7.915
14 2.7 -1.6 —11.44 4.202 2.548 3.494
15 —4.7 4.2 —7.07 7.401 6.500 2.202
16 —4.3 3.8 —13.04 6.665 5.919 4.062
17 -9.0 —4.7 15.90 14.139 7.404 4.953
18 -3.3 -2.6 —11.39 5.158 3.995 3.549
Mean 3.0 3.0 8.70 5.132 4.281 2.705
Table 8. Errors of force prediction for the NN-1024 over the reduced interval
AE RE
No
Af*, 105N Af?, 105N Af?,1074N A, % A7, % A7, %
1 0.9 0.4 —1.11 1.357 0.610 0.344
2 0.6 1.0 -1.77 0.938 1.488 0.551
3 —-0.2 0.3 —0.40 0.266 0.504 0.124
4 -0.2 0.3 0.23 0.267 0.424 0.071
5 —-0.2 0.7 —1.29 0.373 1.162 0.402
6 —-0.2 0.4 —0.77 0.863 0.557 0.239
7 2.2 -1.3 3.97 3.378 1.977 1.238
8 —0.8 —-2.8 —5.73 1.318 4.445 1.786
9 -1.0 1.3 13.82 1.616 1.982 4.304
10 -1.9 -2.0 9.42 3.011 3.178 2.934
11 =5.7 -3.8 12.97 8.893 5.910 4.040
12 —-1.2 -2.9 3.36 1.812 4.503 1.046
13 1.8 1.2 —9.45 2.764 1.903 2.944
14 2.0 1.9 —2.88 3.152 2.973 0.896
15 -2.9 4.2 11.37 4.468 6.640 3.541
16 -2.5 3.6 —1.66 3.984 5.618 0.516
17 -2.5 -9.3 —10.40 3.933 14.599 3.240
18 —0.8 -3.3 —3.50 1.204 5.172 1.089
Mean 2.0 2.0 5.20 2.422 3.536 1.628
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Table 9. Errors of force prediction for the NN-1024-512 over the reduced interval

AE RE
N
° A, 105N Af’, 105N Af7, 104N AFF L% Af7, % Af*, %
1 0.9 —0.3 1.55 1.454 0.412 0.483
2 —0.6 0.9 1.60 0.983 1.420 0.498
3 —0.4 —0.2 1.96 0.620 0.346 0.612
4 —0.1 —0.2 1.33 0.080 0.266 0.415
5 —0.2 —0.6 1.33 0.388 0.921 0.415
6 0.4 —0.3 1.42 0.619 0.509 0.443
7 —-3.2 -1.9 5.93 4.957 2913 1.848
8 —1.1 2.1 —2.96 1.660 3.328 0.923
9 1.5 33 9.13 2.391 5.100 2.845
10 0.8 0.7 4.92 1.318 1.058 1.534
11 3.5 2.6 11.68 5.529 4.003 3.636
12 -1.5 —1.7 —6.72 2.340 2.644 2.093
13 2.3 2.0 —6.69 3.667 3.108 2.082
14 1.4 2.5 3.05 2.161 3.880 0.951
15 —2.0 33 —4.39 3.203 5.139 1.366
16 -1.7 1.4 —0.58 2.645 2.181 0.182
17 3.2 —7.4 7.88 4.974 11.570 2.453
18 1.2 -3.7 —3.68 1.952 5.850 1.145
Mean 1.0 2.0 4.30 2.275 3.036 1.329

Table 10. Time for the force determination
using NNMs and CPBM

Time for the force determination (sec)

No
NN-512 NN-1024 | NN-1024-512 CPBM
1 6.350 6.305 6.291 17.660
2 6.084 6.492 6.085 17.514
3 12.584 12.306 12.479 38.009
4 9.640 10.532 10.037 27.443
5 9.796 9.773 9.606 28.019
6 9.526 9.568 9.626 28.003
7 6.053 6.221 6.103 11.840
8 6.193 6.139 6.168 11.505
9 12.131 12.150 12.543 26.556
10 9.586 9.718 9.651 15.862
11 9.690 9.807 9.652 20.317
12 9.640 9.572 9.734 15.768
13 6.267 6.390 6.108 11.827
14 6.347 6.395 6.333 11.513
15 12.221 12.310 12.533 26.321
16 9.664 10.796 14.444 15.938
17 11.050 11.536 11.189 19.715
18 11.043 11.239 11.010 16.088
Mean 9.104 9.292 9.422 19.994

val, all models coped with case 17 worst of all. As for
the cases where the non-variable input parameters

are nominal (1...6), the neural networks show signifi-
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cantly lower values of the maximum error in compar-
ison with cases 7...18. In general, it can be said that
the trends for the full variation interval are the same
for the reduced interval, but the errors are noticeably
smaller for the latter case.

For the considered models, the average axial RE
over the reduced interval lies within the range of
1.3...2.7 %, and the lateral RE is within the range of
3.0...5.1 %.

The obtained results allow us to conclude that
the proposed neural network models can predict the
force impact of the IT plume on an SDO. For most
of the considered cases, the errors of the force de-
termination do not exceed 5 %. But even for cases
where the relative error is higher than this value, the
absolute error remains negligible. This fact suggests
that such errors are insignificant in practice. Fur-
ther improvement can be made to minimize errors
for conditions such as in case 17. Although this case
turns out to be the most difficult for all neural net-
work configurations, it shows a tendency for the er-
ror to go down as the number of neurons in hidden
layers increases.

2.7. Model performance analysis. To analyze the
performance, we compare the time required to de-
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termine the force using the NNMs and previously
proposed approaches. As already noted in the intro-
duction, the method of force determination based on
the central projection of the target is considered to
be the most effective so far [11, 12]. Therefore, this
method was used for comparison. The time intervals
for determining the force using the NNMs and the
central projection-based method (CPBM) for vari-
ous cases are presented in Table 10.

As can be seen from Table 10, the NNMs de-
termine the force much faster in comparison with
CPBM. For the considered cases, the NNMs re-
quire, on average, more than 2 times less time than
CPBM. For case 3, the NSMs are 3 times faster than
the CPBM. Within each of the considered cases, the
time for determining the force by each of the three
NNMs differs insignificantly.

Finally, it should be noted that despite the fact that
the efficiency of the proposed approach is illustrat-
ed in the example of a cylindrical SDO, it can also
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IHCcTUTYT TexHiIUHOT MexaHiku HallioHasibHOT akaieMii Hayk YkpaiHu
i Jlep>xaBHOro KOCMiUHOTO areHTCTBa YKpaiHU
By Jlemko-Tlonens 15, Ininpo, Ykpaina, 49005

BU3HAYEHHS CUJIOBOI'O BIVIMBY ®AKEJIA IOHHOT'O IBUTYHA
HA OPBITAJIbHUI OB’€KT 3A IOTTOMOI'OIO TIMBUHHOI'O HABYAHHS

IIpeamMeTom noCTiIKEHHS y CTaTi € MPoOLeC CTBOPEHHS HelipoMepexeBoi Moaeai (HMM) nist BUBHaU€HHSI CUJIOBOTO BILJIMBY
dakeny enekrpopeakruBHoro asuryHa (EP/]) Ha opOitaabHuii 00’€KT mij yac 0€3KOHTAKTHOTO BUIAJECHHS KOCMIYHOIO
CMITTS.

Merta po6otu — po3podka HMM Ta nociikeHHs BIUIMBY Pi3HUX YMHHUMKIB HA TOYHICTh BU3HAYEHHS CUJIM, L0 Mepeaa-
€Tbcs1 MoTokoM ioHiB EPJI 1o 06’ekTa kocmiuHoro cMittst (OKC).

3anaui: BuzHaueHHs cTpyktyp HMM; dopmyBanHs Habopy maHWX Ui HaBYaHHS Ta Batimanii HMM 3a momomororo
chopMOBaHOTO HAOOPY MAaHUX; HOCIIKEHHS BILIMBY CTPYKTYpU MOJEJIi Ta IapaMeTpiB ONTHMi3aTopa Ha TOYHICTh BU3HA-
yeHHs cuii. Bukopucrano metonu (isuku mia3smMu, KOMIT I0TEPHOTO MOJEIIOBAHHS, INIMOOKOr0 HaBYaHHs, ONTUMI3allii i3
BUKOPUCTAHHSIM BIOCKOHAJIEHOTO BapiaHTa CTOXaCTUYHOIO IPaiEHTHOTO CITYCKY.

OtpuMaHo Taki pe3yasrati. Po3pobieHo Tpu HMM, ski Bipi3HSIOTbCS KiJIbKICTIO TPUXOBAHUX LIapiB Ta HEHPOHIB y
MnpuxoBaHUX wapax. s HaBuaHH4 Ta Bajiinaiii HMM 3 BUKOpUCTaHHSM aBTOMOAIOHOTO OMUCY MOIIUPEHHS 10HIB M1a3MK1
3reHepoBaHo Habip maHux wist OKC, skuii anmpokKcMMoBaHo TiHApoM. Habip maHux oTpuMaHo ISl pi3HUX BiTHOCHUX T10-
JIOXKEeHb Ta OpieHTalliil 00’eKTa y mpolieci oro BinBomy 3 opOiTH. 3 BUKOPUCTAaHHSIM 1IbOr0 HAOOPY JaHUX OYJI0 BUKOHAHO
onTuMisaliito napamerpiB HMM 3a goromoroio Metony HaB4YaHHS i3 BuMTeaeM. OOpaHO ONTUMI3aTop Ta MOro nmapameTrpu,
sIKi 3a0e3MeuyloTh HallMeHIIy TOXMOKY Ha eTarli Bajliiallil pe3y/ibTaTiB HaBYaHHs. Bu3HaueHO 0cOOIMBOCTI BILIMBY BilIHOC-
Horo nojoxeHHs Ta opieHTauii OKC, a Takox apxitektypy HMM Ha TOUHICTh BUSHAUEHHS CUJIU.

BucnoBku. [TokazaHo MOXJIMBICTb 3aCTOCYBaHHSI METOJIB INIMOMHHOIO HaBYAHHS JJISI BUpPILIEHHS 3a7adi BU3HAYEHHS
cwm BruuBy ¢akena EPJI mHa OKC. 3ampornoHoBaHi Moaei T03BOJISIOTh 3a0€3MeYUTH TOYHICTh BU3HAUYEHHS CHUJIOBOTO
BIUIMBY, TOCTaTHIO /I BUPIlLIEHHSI pO3MISIHYTOro Kiacy 3anad. [1pu mbomy HMM nae MOXKJIMBICTb OTPUMYBATH pe3yJbTaTh
3HAYHO LIBU/IIE Y MOPiBHSIHHI i3 METOIaAMU, SIKi BUKOPUCTOBYBAJIMCS PaHillie, 1110 pOOUTD iX MepCHeKTUBHUMU JIJIsI BAKOPUC-
TaHHS SIK IJ11 KOCMiYHUMX anapariB, Tak i 11 MATEMAaTUYHOTO MOJICJIIOBAHHSI MiCili 3 BUTAJIEHHSI KOCMIYHOTO CMITTS.

Karouogi caosa: enekTpopeaKTUBHUN IBUTYH, 00 €KT KOCMIYHOTO CMITTS, CHUJIa IO TIePeNacThcsl, HelipoMepexeBa MOIelb,
TJIMOMHHE HAaBYaHHSI.
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