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DETERMINATION OF THE FORCE IMPACT OF AN ION THRUSTER 
PLUME ON AN ORBITAL OBJECT VIA DEEP LEARNING

The subject of research is the process of creating a neural network model (NNM) for determining the force impact of an ion thruster 

(IT) plume on an orbital object during non-contact space debris removal. The work aims to develop NNMs and study the influence 

of various factors on the accuracy of determining the force transmitted by the ion plume of the thruster to a space debris object (SDO). 

The tasks to resolve are to choose the structures of the NNMs, form a data set and use this data to train and validate the NNMs, and 

to explore the influence of the model structure and optimizer parameters on the accuracy of force determination. The methods used 

are plasma physics, computer simulation, deep learning, and optimization using an improved version of stochastic gradient descent. 

As a result of research, three NNMs have been developed, which differ in the number of hidden layers and neurons in hidden layers. 

For training and validation of the NNMs, a data set was generated for an SDO approximated by a cylinder using an autosimilar 

description of the ion plasma propagation. The data set was obtained for various relative positions and orientations of the object in the 

process of its removal from an orbit. Using this data set, the NNM parameters were optimized with the supervised learning method. 

The optimizer and its parameters are selected, providing a small error at the stage of validating learning outcomes. It was found that 

the accuracy of determining the force depends on the relative position and orientation of the SDO, as well as the architecture of the 

NNM, and the features of this influence were identified. The approach applied allows us to obtain the possibility of using methods of 

deep learning to determine the force impact of the IT plume on the SDO. The proposed models provide the accuracy of the force impact 

determination, which is sufficient for solving the considered class of problems. At the same time, NNM makes it possible to obtain 

results much faster in comparison with the methods used previously. This fact makes the NNMs promising to use both on-board and in 

mathematical modeling of missions to remove space debris.
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INTRODUCTION

At present, there are a large number of space objects 

in near-Earth space, such as fragments of launch ve-

hicle stages, non-functioning spacecrafts and their 

fragments, which significantly complicate further 

space activities [14]. In this regard, the task of creat-

ing tools and technologies for the direct removal of 

space debris objects (SDO) from near-Earth orbits is 

now urgent.

Various concepts of active debris removal are 

known, for example, laser systems [16], electrody-

namic tether systems [18], and combined systems [7, 

9]. Most concepts involve docking the removal sys-
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tem with an SDO or capturing it with assistive de-

vices. However, this operation can be technologically 

complex and unsafe.

The “Ion beam shepherd” concept was proposed 

for the non-contact removal of orbital objects [3]. 

The basic principle of this concept is to use the ion 

plume of an IT as a way to transmit the force impulse 

to the SDO for its deceleration. Such removal of 

space debris has a number of advantages compared 

to other known approaches [16, 18], namely, removal 

efficiency, low risk level, reusability, and technologi-

cal readiness.

One of the key tasks within the concept of “Ion 

beam shepherd” is the determination of the force 

transmitted to the SDO by the shepherd. Knowledge 

of this force is necessary for the successful imple-

mentation of the selected removal program and can 

also be useful for solving problems of navigation and 

relative control of the “shepherd — SDO” system [2, 

11, 12]. Determining this force is not an easy task 

since its value depends in a complex way not only on 

the properties of the IT plume but also on the relative 

position and orientation of the SDO.

A number of publications address this problem. 

For example, [5] proposes the theoretical founda-

tions for modeling an ion beam plume and calculat-

ing the transmitted force. The authors of this work 

used an approach based on the integration of el-

ementary forces over the surface of the object. But, 

as practice shows, the implementation of such a cal-

culation method can lead to cumbersome algorithms 

and time-consuming modeling, so the application of 

these results in the form of algorithms on the shep-

herd board seems difficult. In [4], the possibility of 

an analytical description of the force is considered, 

however, the authors obtained such expressions only 

for the SDO of a spherical shape. An approach to de-

termine the transmitted force using the central pro-

jection of the target onto a selected plane is proposed 

in [1, 8]. Despite the fact that this approach signifi-

cantly speeds up the force calculation in comparison 

with the direct integration over the SDO surface, it 

still requires significant computational resources due 

to loops needed for calculating elementary forces.

At this time, artificial intelligence methods attract 

a significantly increased interest in the world, which 

is largely due to the impressive results obtained us-

ing deep learning (DL) technologies [15] — machine 

learning methods based on multilayer artificial neural 

networks (ANN). Recently, DL has been rapidly de-

veloping and demonstrating promising opportunities 

in solving complex problems and finding nontrivial 

solutions to existing problems [13, 17]. Most of the 

results used in practice are obtained using the meth-

ods of supervised learning or example-based learn-

ing. Despite the fact that ANN training can take a 

long time, the trained network allows getting results 

pretty fast. This feature determines the prospects of 

DL methods for finding the force transmitted to the 

SDO by the shepherd. However, it is known that the 

success of solving a problem by DL methods largely 

depends on the correct choice of the ANN structure, 

as well as algorithms and learning parameters. These 

issues are studied in this article.

The goal of the study is to develop the NNM for 

determining the force transmitted by an IT plume to 

an SDO and to investigate the influence of various 

factors on its accuracy.

1. PROBLEM STATEMENT 

1.1. Reference frames. In the research, the following 

right-handed orthogonal reference frames are used. 

The IT-fixed reference frame (IRF) I I I IO x y z has the 

origin IO  located at the top of an imaginary cone of 

the ion beam. The axis I IO z coincides with the axis of 

the beam and is directed towards the thruster nozzle. 

It is assumed that the IT is fixed on the “shepherd”, 

which is oriented in such a way that the axis I IO z  

coincides with the tangent to the orbit and is directed 

to the target, the axis I IO y  coincides with the normal 

to the orbit and is directed in the direction opposite 

to the Earth, and the axis I IO x complements the 

reference frame to the right-handed one.

The origin of the reference frame associated with 

the SDO (SDF) S S S SO x y z  is located at its center of 

mass. The direction of the SDF axes coincides with 

the principle inertia axes of the SDO. The orientation 

of the SDF axes relative to the IRF is determined by 

the Euler angles  , ,   [8] with z-y-x rotation se-

quence. The position of the origin of the SDF, rela-

tive to the IRF, is determined by the vector 
SI
IB .

1.2. Model of the ion thruster plume. The plasma 

plume of an IT can be conventionally divided into 

near (usually less than a meter from the IT) and far 
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regions [5]. For the problem of contactless space de-

bris, the far region of the plume is of primary inter-

est since the interaction between the plasma and the 

target occurs within this region.

A number of mathematical models have been 

proposed to describe the far region of the IT plume, 

which differ in complexity and accuracy [5]. In this 

case, the so-called self-similar model of plasma 

propagation can be chosen as a compromise.

Self-similar models are based on the assumption 

that the nature of ion propagation can be described 

using a dimensionless similarity function as follows

0( ) ( )r z r h z  , 0/z z R ,

where r , z  are the radial and axial coordinates of 

the ions, respectively, 0R , 0r  are the beam radius and 

radial coordinates of ions at the beginning of the far 

region ( 0z  ).

Using the function ( )h z , the plasma density at an 

arbitrary point with coordinates r , z , can be deter-

mined as follows [12]:

2
0

2 2exp
( ) 2 ( )
n rn C

h z h z
 

  
 


 

,

 0/r r R ,  (1)

where 0n  is the plasma density at the beginning of 

the far region of the beam, C  is the factor that deter-

mines how much of the plasma plume hit a circle of 

radius 0R  (for example, corresponds to 95 % of the 

flow hit). 

It should be noted that when 0 1M  , the charac-

ter of the ion plasma distribution approaches a cone, 

although, strictly speaking, it is not. At the same 

time, when 0 40M  and the distance to the target is 

less than 10 meters, the character of plasma distribu-

tion can be considered conical. In this case, the simi-

larity function can be defined in the following form

01 tanh z   ,

where 0  is the initial divergence angle of the plume. 

The initial divergence angle is equal to half the open-

ing angle of the cone restricting 95 % of the plasma 

plume. For the problem under consideration, we can 

assume that the axial component of the plasma ion 

velocity remains constant:

 0 constz zu u  . (2)

The radial velocity component within the consid-

ered model is determined by the following expression 

[12]:

 0 ( / )r zu u r z   . (3)

1.3. Interaction of the ion beam with SDO. The IT 

plume is a stream of heavy ions of propellant (for ex-

ample, xenon), accelerated to an energy level of sev-

eral kiloelectron-volts. When such a plume affects a 

solid body, a force is applied to the latter, which is 

mainly due to the momentum of the plasma ions 

bombarding the target.

Neglecting the effects of plasma ions leaving the 

target surface, sputtering of its material, and electron 

pressure, the elemental force transmitted to the SDO 

can be calculated as follows [12]:

 ( )dF mnU V U ds   ,  (4)

where U is the particle velocity vector, ds  is the ele-

mentary area of the target surface, V  is the unit nor-

mal vector to the elementary area. 

The force F  transmitted to the SDO by the IT 

plume can be calculated by integrating the elemen-

tary forces (4) over the irradiated surface S  of the 

target

S

F dF  .

In the general case, this force depends on the prop-

erties of the IT, the shape and size of the SDO, as well 

as on its relative position and orientation. Taking into 

account that for a specific mission of space debris re-

moval, the IT properties, the shape and dimensions 

of the SDO are known and do not change, we can 

design an NNM that receives the values of the rela-

tive position and orientation of the SDO as an input 

and outputs force projections in the IRF.

2. DESIGN AND STUDY 
OF NEURAL NETWORK MODELS

2.1. Methodology and model structure. An ANN is a 

system of interconnected artificial neurons. A multi-

layer neural network is an ANN consisting of input, 

output, and hidden layers of neurons located between 

them. Such networks are more capable than single-

layer neural networks. It was proved in [6, 10] that 

neural networks with both one and several hidden 

layers can be used as universal approximators of con-

tinuous functions of a set of variables, and the only 
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condition is a nonlinearity of the activation function 

in hidden layers.

In this work, the ReLU activation function was 

used for all NNMs, which transforms the input signal 

in the following way

( ) max(0, )R x x  .

The inputs of the activation functions are deter-

mined by the values of the weights (synapses) and 

biases. These parameters are set as a result of NNM 

learning using optimization algorithms. The learn-

ing goal is to minimize errors in the ANN output. 

Currently, the most commonly used learning algo-

rithms are improved versions of stochastic gradient 

descent (SGD), such as root mean squared propa-

gation (RMSprop) and adaptive moment estimation 

(Adam) methods. In this work, the Adam optimizer 

was used to train neural networks. The mean squared 

error was used as a loss function for training and vali-

dation.

To solve the problem, three different NNM con-

figurations with fully connected layers are consid-

ered. They differ in the number of hidden layers, as 

well as the number of neurons in the hidden layers. 

NNM configurations are summarized in Table 1. 

The total number of neurons in the hidden lay-

ers of the neural network NN-512 is 960, and in the 

hidden layers of the neural networks NN-1024 and 

NN-1024-512, there are 1920 and 1984 neurons, re-

spectively.

Training, validation, and testing of NNMs, as well 

as data preprocessing, were carried out using Python 

3.9 programming language and Keras, Scikit-learn, 

Numpy and Scipy libraries.

2.2. Initial data. The following IT parameters 

were used for the calculations: initial radius: 0R  
= 

= 0.0805 m; ion mass (xenon) 
252.18 10m    kg; 

initial plasma density 
15

0 4.13 10n    
3m

; initial 

axial velocity of ions 0u  = 71580 m/s; divergence 

angle 0 7   deg; initial electron temperature 

0.001eT   eV. 

The upper stage of the Cyclone-3 launch vehicle is 

considered as the SDO, which is approximated by a 

cylinder with a height of h=2.6 m and a base diam-

eter of d =2.2 m. 

2.3. Dataset for training and validation. For train-

ing and validation of the NNMs, a dataset was gener-

ated that includes input values — the coordinates of 

Table 1. NNM configurations

Name

Architecture 

A
c

ti
va

ti
o

n
 

fu
n

c
ti

o
n

s

N
u

m
b

e
r 

o
f 

h
id

d
e
n

 
la

y
e
rs

number of neurons

NN-512 4 6512256128643 ReLU

NN-1024 4 610245122561283 ReLU

NN-1024-512 5 61024512256128643 ReLU

Table 2. Results of NNM training

NNM Optimizer
Validation accu-

racy MSE, %

Training 

time, s

NN-512 Adam 99.26 1575

NN-1024 Adam 99.41 3123

NN-1024-512 Adam 99.43 3028

Table 3. Coordinates of center of mass and orientation 
parameters of SDO. Variable parameters marked as *

No

Coordinates 

of center of mass

Orientation 

parameters

x
Ib , m

y
Ib , m

z
Ib , m  , rad  , rad  , rad

 1 * 0 7 0 0 0

 2 0 * 7 0 0 0

 3 0 0 * 0 0 0

 4 0 0 7 * 0 0

 5 0 0 7 0 * 0

 6 0 0 7 0 0 *

 7 * 1 9 1.507 1.507 1.507

 8 1 * 9 1.507 1.507 1.507

 9 1 1 * 1.507 1.507 1.507

10 1 1 9 * 1.507 1.507

11 1 1 9 1.507 * 1.507

12 1 1 9 1.507 1.507 *

13 * 1 9 –1.507 –1.507 –1.507

14 1 * 9 –1.507 –1.507 –1.507

15 1 1 * –1.507 –1.507 –1.507

16 1 1 9 * –1.507 –1.507

17 1 1 9 –1.507 * –1.507

18 1 1 9 –1.507 –1.507 *
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Figure 1. The values of the normalized error for each of the 

outputs of the NNM. Case 3 (NN-512)

the center of mass and the angles of orientation of the 

SDO relative to the IRF, and the output values of the 

projections of the transmitted force corresponding 

to them. The ground truth force outputs were calcu-

lated using the  methodology presented in Section 1. 

During dataset generation, the input data were set 

randomly in the range of variation of each param-

eter using a uniform distribution. Range of variation 

of input parameters: for the parameters 
x
Ib  and 

y
Ib  it 

is [–1.0…1.0]; for the parameter 
z
Ib  it is [5.0…9.0]; 

for the parameters  ,   and   it is [1.507…1.507]. 

Then the dataset was normalized to obtain values in a 

range of [–1.0…1.0]. 

The dataset, which contains 3
 
500

 
000 records, is 

split for training and validation with a ratio of 80 % 

and 20 %, respectively.

2.4. Training and validation. NNMs were trained 

using a personal computer with a 10th generation 

Intel processor, which has 8 cores and 16 threads. 

The Xavier method was used to initialize the NNM 

weights. The learning rate for each NNM was cho-

sen as 0.0001. The mini-batch size and the number of 

training epochs were selected as 256 and 100, respec-

tively. Adam optimizer is used with the following pa-

rameters: gradient damping factor is 0.9; attenuation 

coefficient of the squared gradient is 0.999; the small 

constant is 
77.000 10 . Adam optimizer was cho-

sen because it is computationally efficient, has little 

memory requirement, invariant to diagonal rescaling 

of gradients, and is well suited for problems that are 

large in terms of data/parameters.

To determine the best NNM, they were com-

pared with each other in terms of validation accuracy 

and training time. Table 2 summarizes the results of 

NNM training. The results show that the NNM with 

the smallest number of neurons in the hidden layers 

shows a lower validation accuracy compared to other 

network configurations. However, it takes almost half 

the time for training than others. The NNMs with 

the largest number of neurons in the hidden layers 

have approximately the same training time and ac-

curacy.

2.5. Testing. Table 3 presents the computational 

cases that differ in the values of the position and ori-

entation of the SDO relative to the IRF. The param-

eters marked as variables took values within the con-

sidered ranges (see Table 1) with a fixed step equal to 

0.001. The parameter values of the first 6 cases are 

nominal.

Pictures 1—8 show plots for normalized errors for 

some of the computational cases. The variable pa-

rameter is displayed along the abscissa-axis. The or-

dinate axis shows the values of the normalized error 

for each of the outputs of the NNM.

The components of the normalized error vector 

are defined as follows: 
k k k

R PF F F   , , ,k x y z ,

where RF  is the normalized reference force vector, 

PF  is the force vector predicted by the NNM.

Figures 1—3 show the results of testing three 

NNM configurations for case 3. 

In general, according to the figures above, it can be 

concluded that the accuracy of the NN-512 model is 

Figure 2. The same. Case 3 (NN-1024)
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Figure 4. The same. Case 5 (NN-512)

Figure 5. The same. Case 13 (NN-1024) Figure 8. The same. Case 17 (NN-1024-512)

Figure 3. The same. Case 3 (NN-1024-512) Figure 6. The same. Case 14 (NN-512)

Figure 7. The same. Case 15 (NN-1024-512)
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worse than that of the other two models. Figures 4—8 

show the results of NNM testing for other cases.

2.6. Model accuracy analysis. To compare the 

results, maximum errors in determining the force 

transmitted to the SDO for each case from Table 5 

are calculated for two intervals of variation of the in-

put values: full and reduced (half the full). 

Maximum errors in the Tables 4—9 are given for 

both absolute errors and errors relative to reference 

values.

Table 4. Errors of force prediction for the NN-512 over the full variation interval

No

АE RE

xf , 10–5 N yf , 10–5 N zf , 10–3 N xf , % yf , % zf , %

1 –1.7 1.6 –0.811 2.720 2.463 2.524

2 –1.4 2.5 –1.023 2.192 3.873 3.186

3 0.7 –0.9 0.303 1.098 1.367 0.944

4 0.7 0.2 0.024 1.088 0.281 0.073

5 0.6 0.7 –0.045 0.987 1.064 0.660

6 0.7 –4.2 –0.224 1.105 1.094 0.698

7 –4.1 4.7 1.183 6.425 7.329 3.685

8 –5.4 5.1 –1.477 8.432 8.041 4.600

9 –4.5 6.3 1.359 7.064 9.931 4.232

10 –4.2 4.8 –0.097 6.532 7.532 0.301

11 –9.6 5.0 1.504 14.991 7.848 4.683

12 –4.9 –7.9 –1.406 7.657 12.307 4.380

13 –4.3 4.6 –2.542 6.752 7.190 7.915

14 –4.7 4.9 –1.581 7.228 7.646 4.924

15 –5.1 4.7 2.174 7.909 7.427 6.772

16 –4.3 3.8 –1.333 6.752 6.016 4.152

17 –11.9 –8.1 1.938 18.694 12.604 6.037

18 –4.3 3.8 –1.460 6.752 6.016 4.548

Mean 4.056 3.91 1.147 6.354 6.113 3.573

Table 5. Errors of force prediction for the NN-1024 over the full variation interval

No

AE RE

xf , 10–5 N yf , 10–5 N zf , 10–3 N xf , % yf , % zf , %

 1 1.3 0.9 –0.656 2.007 1.390 2.043

 2 0.9 2.0 –0.456 1.362 3.094 1.419

 3 –0.2 0.4 –0.133 0.386 0.695 0.414

 4 –0.2 0.3 0.028 0.271 0.428 0.086

 5 –0.5 0.7 –0.140 0.748 1.162 0.436

 6 –0.6 0.6 –0.141 0.863 0.871 0.440

 7 –3.3 –2.9 1.118 5.111 4.474 3.483

 8 –2.0 –3.0 0.961 3.059 4.642 2.993

 9 –1.8 –2.1 1.990 2.811 3.282 6.198

10 –2.1 –2.1 0.961 3.283 3.282 2.993

11 –8.2 –3.8 1.297 12.792 5.910 4.040

12 –1.9 –3.9 0.958 2.924 6.079 2.984

13 –2.7 –4.4 –0.945 4.208 6.891 2.944

14 4.7 5.0 –0.317 7.356 7.862 0.986

15 –3.2 4.3 2.211 5.048 6.779 6.886

16 –2.7 3.6 0.170 4.208 5.637 0.530

17 –4.5 –9.3 –1.040 6.971 14.599 3.240

18 –2.7 3.6 –0.383 4.208 5.588 1.194

Mean 2.0 3.0 0.770 3.756 4.593 2.406
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First, let us compare the results over the full range 

of the input variation. Table 4 shows the maximum 

errors obtained using the NN-512 model. For this 

model, the maximum relative error (RE) of the force 

determination is 18.694 %, which is obtained for X-

axis in case 17. However, the absolute error (AE) is 
41.190 10   N, which is not significant. For cases 

where non-variable parameters have nominal values 

(cases 1—6), the maximum value of RE is 3.873 % (AE is 
52.500 10  N) and occurs at the Y-output for case 2.

Table 5 contains the maximum errors over the full 

range of the input variation for the NN-1024 model. 

The maximum RE is 14.599 % (AE is 
59.300 10  N) 

and takes place at the Y-output for case 17. In cases 

1—6, the maximum RE was observed at the Y-output 

for case 2 (as in the model NN-512) and is 3.094 %, 

which corresponds to an AE of 
52.000 10 N.

Table 6 summarizes the maximum errors of the 

model NN-1024-512 for the full range of the input 

variation. Here, as well as in the cases for other mod-

els, the maximum RE is 11.570 % and takes place for 

case 17 along the Y-axis, which corresponds to an AE 

of 
57.400 10  N. For cases 1–6, the maximum RE 

is 2.524 % (AE is 
51.600 10  N) and occurs at the X-

output for case 1.

As can be seen, case 17 is the most problematic 

for all NNMs, where the SDO orientation angle var-

ies over the full variation range, and the other input 

parameters have non-nominal values. It can be as-

serted that the NN-1024-512 model provides the best 

result of the three model configurations, showing the 

smallest values of the maximum errors for all cases. 

The model NN-512 demonstrates the worst results.

Next, the maximum errors over a reduced varia-

tion interval are compared. Such data are presented 

in Tables 7—9 for models NN-512, NN-1024, and 

NN-1024-512, respectively. It can be seen from Ta-

ble 7 that the maximum RE for the NN-512 model 

is 14.139 % (AE is 
59.000 10  N) and is observed 

at the X-output for case 17. As for cases with nomi-

nal non-variable parameters (1—6), the worst RE is 

2.81 6 % (AE 
51.800 10  N) and takes place at the 

Y-output for case 2.

For the NN-1024 model, the maximum RE 

over the reduced interval (Table 8) is 14.599 % 

(AE 
59.300 10  N) at Y-output for case 17. For 

cases 1—6, the maximum RE is 1.488 % (AE 
59.300 10  N) at Y-output for case 2. The data in 

Table 9 indicate that the maximum RE for the NN-

512-1024 model is 11.570 % (AE 
57.400 10  N) at 

Table 6. Errors of force prediction for the NN-1024-512 over the full variation interval

No

AE RE

xf , 10–5 N yf , 10–5 N zf , 10–4 N xf , % yf , % zf , %

 1 1.6 0.6 –6.07 2.524 1.007 1.890

 2 1.3 1.3 4.83 2.076 2.009 1.503

 3 –0.6 –0.2 2.49 0.882 0.346 0.777

 4 –0.1 –0.2 1.37 0.080 0.267 0.427

 5 –0.2 –0.6 1.33 0.388 0.921 0.415

 6 0.4 –0.3 1.42 0.619 0.509 0.443

 7 –3.9 –4.5 –10.58 6.145 7.018 3.295

 8 –2.3 –3.0 –8.76 3.647 4.692 2.730

 9 2.6 4.0 15.78 4.094 6.253 4.914

10 0.9 0.7 5.10 1.365 1.097 1.589

11 –5.3 –3.2 11.68 8.296 5.047 3.636

12 1.9 –3.6 –6.72 2.969 5.699 2.093

13 3.1 3.2 –19.12 4.899 4.983 5.956

14 –2.1 6.4 6.30 3.245 10.025 1.962

15 –2.3 3.3 12.82 3.653 5.139 3.993

16 –1.7 1.4 –0.58 2.709 2.181 0.182

17 –4.6 –7.4 13.06 7.262 11.570 4.067

18 –1.7 –3.7 –8.01 2.594 5.850 2.494

Mean 2.0 3.0 7.60 3.192 4.145 2.354
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average axial REs are in the range of 2.3...3.6 %, and 

the lateral REs are in the range of 4.1...6.3 %.

Thus, it can be concluded that the smallest RE 

over the reduced variation interval occurs for the 

model NN-1024-512. As for the full variation inter-

the Y output for design case 17. For cases 1—6, the 

maximum RE is 1.454 % (AE 
69.000 10 N) and oc-

curs at the X-output for case 1.

All NNMs have smaller REs in the axial direction 

than the lateral one. For the considered models, the 

Table 7. Errors of force prediction for the NN-512 over the reduced interval 

No

AE RE

xf , 10–5 N yf , 10–5 N zf , 10–4 N xf , % yf , % zf , %

1 0.9 0.5 –1.87 1.485 0.771 0.582

2 0.7 1.8 –2.72 1.042 2.816 0.847

3 0.7 0.4 1.36 1.098 0.645 0.424

4 0.7 0.2 0.21 1.028 0.259 0.067

5 0.6 0.7 –2.12 0.987 1.064 0.660

6 0.7 0.6 –1.38 1.105 0.951 0.431

7 –3.4 –3.7 11.06 5.266 5.779 3.444

8 –3.1 2.8 –14.25 4.919 4.348 4.439

9 –3.9 6.3 7.36 6.107 9.931 2.291

10 –4.2 4.8 –0.87 6.511 7.475 0.271

11 –7.3 –2.6 15.04 11.387 4.142 4.683

12 –4.9 3.4 –14.06 7.657 5.313 4.380

13 4.0 4.6 –25.42 6.213 7.190 7.915

14 2.7 –1.6 –11.44 4.202 2.548 3.494

15 –4.7 4.2 –7.07 7.401 6.500 2.202

16 –4.3 3.8 –13.04 6.665 5.919 4.062

17 –9.0 –4.7 15.90 14.139 7.404 4.953

18 –3.3 –2.6 –11.39 5.158 3.995 3.549

Mean 3.0 3.0 8.70 5.132 4.281 2.705

Table 8. Errors of force prediction for the NN-1024 over the reduced interval

No

AE RE

xf , 10–5 N yf , 10–5 N zf , 10–4 N xf , % yf , % zf , %

 1 0.9 0.4 –1.11 1.357 0.610 0.344

 2 0.6 1.0 –1.77 0.938 1.488 0.551

 3 –0.2 0.3 –0.40 0.266 0.504 0.124

 4 –0.2 0.3 0.23 0.267 0.424 0.071

 5 –0.2 0.7 –1.29 0.373 1.162 0.402

 6 –0.2 0.4 –0.77 0.863 0.557 0.239

 7 2.2 –1.3 3.97 3.378 1.977 1.238

 8 –0.8 –2.8 –5.73 1.318 4.445 1.786

 9 –1.0 1.3 13.82 1.616 1.982 4.304

10 –1.9 –2.0 9.42 3.011 3.178 2.934

11 –5.7 –3.8 12.97 8.893 5.910 4.040

12 –1.2 –2.9 3.36 1.812 4.503 1.046

13 1.8 1.2 –9.45 2.764 1.903 2.944

14 2.0 1.9 –2.88 3.152 2.973 0.896

15 –2.9 4.2 11.37 4.468 6.640 3.541

16 –2.5 3.6 –1.66 3.984 5.618 0.516

17 –2.5 –9.3 –10.40 3.933 14.599 3.240

18 –0.8 –3.3 –3.50 1.204 5.172 1.089

Mean 2.0 2.0 5.20 2.422 3.536 1.628
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val, all models coped with case 17 worst of all. As for 

the cases where the non-variable input parameters 

are nominal (1...6), the neural networks show signifi-

cantly lower values of the maximum error in compar-

ison with cases 7...18. In general, it can be said that 

the trends for the full variation interval are the same 

for the reduced interval, but the errors are noticeably 

smaller for the latter case.

For the considered models, the average axial RE 

over the reduced interval lies within the range of 

1.3...2.7 %, and the lateral RE is within the range of 

3.0...5.1 %.

The obtained results allow us to conclude that 

the proposed neural network models can predict the 

force impact of the IT plume on an SDO. For most 

of the considered cases, the errors of the force de-

termination do not exceed 5 %. But even for cases 

where the relative error is higher than this value, the 

absolute error remains negligible. This fact suggests 

that such errors are insignificant in practice. Fur-

ther improvement can be made to minimize errors 

for conditions such as in case 17. Although this case 

turns out to be the most difficult for all neural net-

work configurations, it shows a tendency for the er-

ror to go down as the number of neurons in hidden 

layers increases.

2.7. Model performance analysis. To analyze the 

performance, we compare the time required to de-

Table 10. Time for the force determination 
using NNMs and CPBM

No

Time for the force determination (sec)

NN-512 NN-1024 NN-1024-512 CPBM

1 6.350 6.305 6.291 17.660

2 6.084 6.492 6.085 17.514

3 12.584 12.306 12.479 38.009

4 9.640 10.532 10.037 27.443

5 9.796 9.773 9.606 28.019

6 9.526 9.568 9.626 28.003

7 6.053 6.221 6.103 11.840

8 6.193 6.139 6.168 11.505

9 12.131 12.150 12.543 26.556

10 9.586 9.718 9.651 15.862

11 9.690 9.807 9.652 20.317

12 9.640 9.572 9.734 15.768

13 6.267 6.390 6.108 11.827

14 6.347 6.395 6.333 11.513

15 12.221 12.310 12.533 26.321

16 9.664 10.796 14.444 15.938

17 11.050 11.536 11.189 19.715

18 11.043 11.239 11.010 16.088

Mean 9.104 9.292 9.422 19.994

Table 9. Errors of force prediction for the NN-1024-512 over the reduced interval

No

AE RE

xf , 10–5 N yf , 10–5 N zf , 10–4 N xf , % yf , % zf , %

 1 0.9 –0.3 1.55 1.454 0.412 0.483

 2 –0.6 0.9 1.60 0.983 1.420 0.498

 3 –0.4 –0.2 1.96 0.620 0.346 0.612

 4 –0.1 –0.2 1.33 0.080 0.266 0.415

 5 –0.2 –0.6 1.33 0.388 0.921 0.415

 6 0.4 –0.3 1.42 0.619 0.509 0.443

 7 –3.2 –1.9 5.93 4.957 2.913 1.848

 8 –1.1 2.1 –2.96 1.660 3.328 0.923

 9 1.5 3.3 9.13 2.391 5.100 2.845

10 0.8 0.7 4.92 1.318 1.058 1.534

11 3.5 2.6 11.68 5.529 4.003 3.636

12 –1.5 –1.7 –6.72 2.340 2.644 2.093

13 2.3 2.0 –6.69 3.667 3.108 2.082

14 1.4 2.5 3.05 2.161 3.880 0.951

15 –2.0 3.3 –4.39 3.203 5.139 1.366

16 –1.7 1.4 –0.58 2.645 2.181 0.182

17 3.2 –7.4 7.88 4.974 11.570 2.453

18 1.2 –3.7 –3.68 1.952 5.850 1.145

Mean 1.0 2.0 4.30 2.275 3.036 1.329
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termine the force using the NNMs and previously 

proposed approaches. As already noted in the intro-

duction, the method of force determination based on 

the central projection of the target is considered to 

be the most effective so far [11, 12]. Therefore, this 

method was used for comparison. The time intervals 

for determining the force using the NNMs and the 

central projection-based method (CPBM) for vari-

ous cases are presented in Table 10.

As can be seen from Table 10, the NNMs de-

termine the force much faster in comparison with 

CPBM. For the considered cases, the NNMs re-

quire, on average, more than 2 times less time than 

CPBM. For case 3, the NSMs are 3 times faster than 

the CPBM. Within each of the considered cases, the 

time for determining the force by each of the three 

NNMs differs insignificantly.

Finally, it should be noted that despite the fact that 

the efficiency of the proposed approach is illustrat-

ed in the example of a cylindrical SDO, it can also 

be applied to other objects, taking into account the 

specifics of preparing the corresponding dataset for 

training an NNM.

CONCLUSION

The proposed approach shows the possibility of using 

deep learning methods to solve the problem of de-

termining the force impact of the IT plume on the 

SDO. The influence of the configuration of the net-

work model, as well as the relative position and ori-

entation of the SDO, on the errors of the force de-

termination is studied. The proposed models make it 

possible to determine the force much faster in com-

parison with the methods used before, which allows 

us to talk about prospects for using them both for 

spacecraft algorithms and mathematical simulation 

of space debris removal missions. Future research in 

this direction may investigate the efficiency of con-

volutional neural networks to determine the force 

impact from SDO images in orbit. 
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ВИЗНАЧЕННЯ СИЛОВОГО ВПЛИВУ ФАКЕЛА ІОННОГО ДВИГУНА 

НА ОРБІТАЛЬНИЙ ОБ’ЄКТ ЗА ДОПОМОГОЮ ГЛИБИННОГО НАВЧАННЯ

Предметом дослідження у статі є процес створення нейромережевої моделі (НММ) для визначення силового впливу 

факелу електрореактивного двигуна (ЕРД) на орбітальний об’єкт під час безконтактного видалення космічного 

сміття. 

Мета роботи — розробка НММ та дослідження впливу різних чинників на точність визначення сили, що переда-

ється потоком іонів ЕРД до об’єкта космічного сміття (ОКС). 

Задачі: визначення структур НММ; формування набору даних для навчання та валідації НММ за допомогою 

сформованого набору даних; дослідження впливу структури моделі та параметрів оптимізатора на точність визна-

чення сили. Використано методи фізики плазми, комп’ютерного моделювання, глибокого навчання, оптимізації із 

використанням вдосконаленого варіанта стохастичного градієнтного спуску. 

Отримано такі результати. Розроблено три НММ, які відрізняються кількістю прихованих шарів та нейронів у 

прихованих шарах. Для навчання та валідації НММ з використанням автоподібного опису поширення іонів плазми 

згенеровано набір даних для ОКС, який апроксимовано циліндром. Набір даних отримано для різних відносних по-

ложень та орієнтацій об’єкта у процесі його відводу з орбіти. З використанням цього набору даних було виконано 

оптимізацію параметрів НММ за допомогою методу навчання із вчителем. Обрано оптимізатор та його параметри, 

які забезпечують найменшу похибку на етапі валідації результатів навчання. Визначено особливості впливу віднос-

ного положення та орієнтації ОКС, а також архітектури НММ на точність визначення сили. 

Висновки. Показано можливість застосування методів глибинного навчання для вирішення задачі визначення 

сили впливу факела ЕРД на ОКС. Запропоновані моделі дозволяють забезпечити точність визначення силового 

впливу, достатню для вирішення розглянутого класу задач. При цьому НММ дає можливість отримувати результати 

значно швидше у порівнянні із методами, які використовувалися раніше, що робить їх перспективними для викорис-

тання як для космічних апаратів, так і для математичного моделювання місій з видалення космічного сміття. 

Ключові слова: електрореактивний двигун, об’єкт космічного сміття, сила що передається, нейромережева модель, 

глибинне навчання.


