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DEEP LEARNING FOR SPACE GUIDANCE, NAVIGATION, AND CONTROL

The advances in deep learning have revolutionized the field of artificial intelligence, demonstrating the ability to create autonomous 

systems with a high level of understanding of the environments where they operate. These advances, as well as new tasks and requirements 

in space exploration, have led to an increased interest in these deep learning methods among space scientists and practitioners. The 

goal of this review article is to analyze the latest advances in deep learning for navigation, guidance, and control problems in space. 

The problems of controlling the attitude and relative motion of spacecraft are considered for both traditional and new missions, such 

as orbital service. The results obtained using these methods for landing and hovering operations considering missions to the Moon, 

Mars, and asteroids are also analyzed. Both supervised and reinforcement learning is used to solve such problems based on various 

architectures of artificial neural networks, including convolutional and recurrent ones. The possibility of using deep learning together 

with methods of control theory is analyzed to solve the considered problems more efficiently. The difficulties that limit the application 

of the reviewed methods for space applications are highlighted. The necessary research directions for solving these problems are 

indicated.
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INTRODUCTION

At this time, artificial intelligence methods attract 

great interest of researchers and practitioners all 

over the world [2], which is largely due to the im-

pressive results obtained using deep learning (DL) 

techniques [7]. DL has rapidly evolved and showed 

promising results in solving complex tasks, finding 

non-trivial solutions of existing problems [47]. DL-

based systems are already successfully used in prac-

tice in various fields, for example, in computer vision 

[50], natural language processing [56], autonomous 

driving [42], robotics [38], etc. Meanwhile, space 

control systems have been designed mostly based 

on classical methods, for example [1, 16]. Howe-

ver, the developers face the problems of adaptabil-

ity, robustness, and autonomy when they attack new 

problems of space exploration using conventional 

techniques.

Complex tasks of an orbital service, such as re-

leasing a payload or capturing non-interacting tar-

gets, are accompanied by rapid changes in attitude 

and mass parameters of the SC, which can lead to 

unstab le motion and tumbling of the satellite [51]. In 

such conditions, the driving modes and mass char-

acteristics are unpredictable. In these cases, con-
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ventional attitude control techniques cannot always 

stabilize the satellite since they depend on the mass 

parameters of the plant.

The desire to expand the human presence in the 

near moon space determines the demand for “light” 

automated onboard processes of SC [33]. Finding 

computationally efficient guidance strategies is chal-

lenging for nonlinear dynamic objects. Many con-

ventional approaches rely either on simplifying as-

sumptions in the dynamic model or significant com-

putational resources.

The necessity to operate successfully under uncer-

tainty is becoming evident for future space missions 

that are being developed to explore various bodies 

in deep space. High-precision SC attitude control, 

which is robust to emerging perturbations and uncer-

tain dynamics, is very important to continue success-

ful space flights into deep space.

Future full-scale missions to Mars will require ad-

vanced guidance algorithms that can adapt to more 

stringent requirements, such as autonomous land-

ings in selected regions with maximum precision and 

cost-effective flight trajectories [18]. Missions to the 

Moon and Mars require a perfect navigation system 

and control algorithms for the descent phase. Such 

algorithms should estimate the SC state vector using 

input data from the array of sensors and generate the 

required control commands to ensure an accurate 

landing in an optimal way. This problem was tradi-

tionally solved offline when optimal landing trajecto-

ries were calculated in advance on the Earth and then 

used in onboard control algorithms, which violates 

the autonomy of the mission. Autonomous fault de-

tection and recovery capability are also essential for 

future manned missions to Mars.

The currently used methods for maneuvering near 

asteroids require extremely accurate knowledge of 

the environment model and accurate knowledge of 

the SC position before the maneuver [16]. Acquiring 

this knowledge is both time-consuming and expen-

sive. This leads to a delay of several months between 

the arrival of the SC to the asteroid and the moment 

when it is possible to start safely performing maneu-

vers in its proximity. Autonomous operations in close 

proximity (including hovering and landing) in a low-

gravity asteroid environment are particularly chal-

lenging. 

Mapping and navigating around a small unknown 

body continue to be an extremely interesting and 

exciting challenging task in space exploration [5]. 

Traditionally, the trajectory of a SC for mapping mis-

sions is calculated by a human expert, which requires 

hundreds of hours of human time to control the navi-

gation process and orbit selection. While the current 

methodology has yielded satisfactory results for pre-

vious missions (e.g., Rosetta, Hayabusa, and Deep 

Space), current requirements for mapping missions 

are expanding, requiring additional autonomy during 

the mapping and navigation process for the SC.

The high cost of space missions has prompted 

several space agencies to intensify the development 

of autonomous SC control systems [21]. Learning 

agents represent one of the possible ways in which an 

autonomous SC can adapt to changing equipment 

capabilities, environmental parameters, or mission 

objectives while minimizing dependence on inter-

ventions from the Earth.

New requirements and tasks in the field of space 

exploration, as well as significant advances in apply-

ing DL technologies in other areas, have inspired re-

search to apply these methods for space applications, 

and many interesting results in this field have been 

published in the past several years.

The goal of this survey is to analyze the results of 

recent work on the adaptation of DL methods for 

space navigation, guidance, and control tasks. To the 

best of our knowledge, this is the first specialized re-

view devoted directly to this specific field with this 

scope. However, there are reviews close to this topic 

[24, 34, 59], which can be useful for deepening or ex-

panding knowledge in this field.

The remainder of the article is organized as fol-

lows. Section 1 introduces the basic concepts of DL 

that are necessary to understand the material of the 

next sections for readers who are not familiar with 

this subject. Section 2 reviews publications related 

to the topic of guidance and navigation. Sections 3 

and 4 analyze publications on SC attitude and rela-

tive control, respectively. The problems of landing on 

space bodies and flights in their proximity are con-

sidered in Section 5. Mission planning and high-level 

decision-making tasks are reviewed in Section 6. The 

main problems of DL implementation and possible 

ways of their solution are summarized in Conclusion.
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1. DEEP LEARNING

Machine learning is a subset of artificial intelligence 

methods used to develop algorithms that can solve a 

problem by searching for patterns in a variety of input 

data [35].

There are two main paradigms of machine learn-

ing:

1. Supervised learning is the task of learning a 

function that maps an input to an output based on ex-

ample input-output pairs. The cost or loss function, 

as a rule, is determined through the average error of 

the algorithm responses for all examples. Supervised 

learning includes classification and regression prob-

lems.

2. Unsupervised learning is a type of algorithm that 

learns patterns from untagged data. This includes the 

tasks of clustering, anomaly detection, latent variable 

models, etc.

There are also so-called semi-supervised learning 

methods that take the place somewhere in between 

supervised and unsupervised learning. Reinforce-

ment learning (RL) [41] is an example of semi-

supervised learning. According to the RL setup, an 

intelligent agent learns by interacting with some 

environment. The separation line between the envi-

ronment and the agent is rather vague, but from the 

perspective of the tasks analyzed in this article, the 

agent can be considered as a control system, and the 

environment can be considered as a plant.

The environment is usually modeled in the form 

of a Markov decision process (MDP). In this regard, 

many RL algorithms use dynamic programming 

methods [20]. The main difference between the clas-

sical methods of dynamic programming and RL al-

gorithms is that the latter do not imply knowledge of 

the accurate mathematical model of the MDP and 

are especially expedient when it is difficult to apply 

exact methods. The goal of the RL is to find an opti-

mal sequence of actions of the agent, called a policy, 

which maximizes the reward function. Similarly to 

the control law in classical control theory, the policy 

often maps the state vector and control actions.

Machine learning methods based on artificial neu-

ral networks (ANN) [7] are called DL. New ANN 

architectures have largely determined the latest ad-

vances in DL. For example, convolutional neural 

networks (CNN) are effective for the analysis of visu-

al data [32]. CNNs are based on convolution kernels 

or general-weighted filters that slide over the input 

and provide equivalent responses, known as feature 

maps. Recurrent neural networks (RNN) are used to 

process input data sequences of variable length [19]. 

The connections between RNN nodes form a di-

rected graph in a time sequence. This allows them to 

demonstrate dynamic behavior over time using their 

internal state (memory).

Different approaches are used to improve the ef-

fectiveness of DL, for example, transfer-learning 

(TL) [53] and meta-learning (ML) [49]. TL allows 

the system to improve the learning of a new task by 

using the knowledge gained earlier in solving a simi-

lar task. ML is based on the use of such metadata, 

which makes automatic learning more flexible and 

improves the efficiency of existing algorithms.

2. NAVIGATION AND GUIDANCE

Reference [31] presents a new method for attitude 

determination using color images of the Earth ob-

tained with a visible range camera. A conventional 

earth camera is used to coarsely determine orienta-

tion by detecting the edge of the earth, and therefore 

only provides a rough 2-axial orientation. In con-

trast, the proposed method can provide information 

to determine the orientation about three axes by rec-

ognizing the earth pattern with an accuracy of frac-

tions of a degree and then comparing the detected 

earth pattern with the global map. In addition, this 

method can be implemented on the basis of a detec-

tor system consisting of an inexpensive optical color 

camera and a single onboard computer. This reduces 

the size, weight, and cost of the system. 

To demonstrate this method in space, a sensor 

system called the “Deep Learning Attitude Sensor” 

has been developed [31]. The resulting images are 

quickly analyzed using state-of-the-art real-time im-

age recognition algorithms. The algorithm demon-

strates good performance in various images. Image 

processing time to determine the orientation is less 

than 6 seconds. It is noted that the ANN architecture 

should be selected depending on the performance of 

on-board computers. In the future, it is planned to 

apply one of the U-net image segmentation meth-

ods, which is a CNN for fast and accurate image seg-

mentation.
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A new approach called deep guidance is investi-

gated in Ref. [22]. The authors use deep RL to learn 

guidance policies instead of handcrafting them. The 

deep guidance technique includes a trained guidance 

policy that generates speed commands to the con-

ventional tracking controller. The application of the 

deep RL in conjunction with control theory methods 

reduces the training load and facilitates the transfer 

of the trained system from simulation to reality. Sim-

ulations and experimental studies of scenarios for 

position tracking and docking of the SC were carried 

out to test the feasibility of the proposed approach. 

The results show that such a system can be fully 

simulated and transferred into real-world conditions 

with an acceptable loss of performance without any 

additional tuning. Apparently, this is the first experi-

mental demonstration of an artificial intelligence ap-

plication to control the motion of a SC.

Reference [18] proposes a new adaptive guidance 

system developed using meta-RL. In this work, the 

principles of meta-RL are used to obtain two laws of 

adaptive guidance. The first one is designed to con-

trol the SC during the descent to Mars, and the sec-

ond one is suitable for landing on small bodies, such 

as asteroids. Guidance laws take the form of a global 

policy in the state space, determined by the deploy-

ment region and the places of possible landing. This 

global policy maps the estimates of the lander state 

vector in the target coordinate system and the thrust 

control vector. The system architecture includes the 

RNNs for the implementation of the control law and 

the cost function approximator. The RNN allows the 

obtained algorithms to adapt in real time to environ-

mental disturbances acting on the SC.

 Policy optimization involves modeling the inter-

actions between the agent implementing the policy 

and the environment over many episodes with ran-

domly generated initial conditions that cover pos-

sible scenarios of operation [18]. It is important to 

note that environmental parameters such as state 

error, lander wet mass, and disturbance forces vary 

between episodes. The optimized strategy adapts to 

these parameters in real time. The effectiveness of the 

policies of recurrent and non-recurrent RL agents 

is analyzed in comparison with conventional guid-

ance algorithms in four complex tasks with unknown 

and very volatile dynamics. Such tasks include a safe 

landing on Mars with an accidental engine failure 

and landing on an asteroid with an unknown model 

of the environment. 

Using a series of experiments, it has been demon-

strated that the meta-RL guidance outperforms the 

conventional feedback control algorithm with opti-

mal power consumption [18]. In addition, it is shown 

that in a subset of experiments, the adaptive meta-

RL guidance outperforms the non-adaptive guidance 

law optimized using standard RL. It should be noted 

that the RL policy is optimized in the same environ-

ment as the meta-RL policy. The possibilities of an 

optimized ML policy for obtaining and implement-

ing the guidance law using observations consisting 

only of Doppler radar altimeter measurements dur-

ing landing on Mars and LIDAR altimeter measure-

ments during landing on an asteroid are demonstrat-

ed. This example illustrates the capabilities of the 

simultaneous solution of guidance and navigation 

tasks.

Reference [15] presents a new guidance law, which 

uses only measurements of the seeker viewing angles 

and their rates. The policy is optimized using meta-

RL, and its effectiveness is demonstrated by simulat-

ing the final phase of exoatmospheric interception. 

It is important to note that guidance law does not re-

quire range estimates, making it particularly suitable 

for passive seekers. Optimized guidance law maps 

the stabilized view angles and velocities of the finder 

and the thrust of the control thrusters of the missile. 

Meta-RL allows the optimized policy to adapt to the 

acceleration of the target. It is demonstrated that 

the RL policy provides better guidance performance 

compared to the algorithms that use accurate target 

acceleration knowledge.

Each training episode is based on a scenario of in-

teraction with random parameters [15]. A scenario 

of high-altitude interception of a maneuverable bal-

listic missile is considered, in which the intercept 

missile must kinetically destroy the target by a direct 

hit (miss less than 50 sm). The interaction scenario 

has been significantly simplified. First, only the fi-

nal phase of the interception is modeled. Secondly, 

realistic ballistic trajectories of the missile and tar-

get are not generated, and gravity is also neglected. 

Note, however, that it is common practice to neglect 

gravity when initially developing a new guidance law. 
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Third, target separation and angular motion control 

are not considered. In this case, the interaction sce-

nario assumes that the target has an initial speed ad-

vantage, namely the initial missile and target speeds 

are 3000 m/s and 4000 m/s, respectively. The target 

performs a random bang-bang maneuver during in-

terception. This is a realistic maneuver for a descent 

vehicle in order to avoid interception in a way that 

does not radically change the trajectory of the vehi-

cles entering the atmosphere. The ratio of the thrust-

to-target ratio of the missile to the target is 2:1. The 

RL policy provides improved guidance accuracy and 

fuel efficiency. 

The effectiveness of the RL policy [15] is achieved 

by using RNNs to approximate the policy and the 

cost function, which enables the policy to adapt to 

a specific target maneuver in real time. In particu-

lar, the hidden states of the recurrent layers change 

in different ways in response to target maneuvers for 

each specific interaction, which makes it possible to 

form control actions taking into account the specifics 

of the maneuver. In contrast to the zero-effort miss 

policy [57], where the state filter evaluates accelera-

tions, the RL policy adapts to the target maneuver in 

real time. The optimized policy is computationally 

efficient, requires minimal memory size, and is com-

patible with modern onboard processors.

In Ref. [17], adaptive integrated guidance, naviga-

tion, and control system was developed for maneu-

vering in the proximity of asteroids with unknown 

environmental dynamics, with initial conditions 

covering large launch areas, and without know-

ing the model of the asteroid shape. The system is 

implemented as a policy optimized using meta-RL. 

The SC is equipped with an optical finder which is 

fixed either on a certain feature of the surface, or on 

the reflected light from a targeting laser, or an active 

beacon. The policy directly maps observations, in-

cluding the finder angles and LIDAR distance, and 

the thrust commands. The policy is implemented in 

the form of an RNN, which can adapt in real time to 

both external disturbances acting on the agent and 

internal disturbances such as actuator failures and 

variations of the center of mass. 

The guidance system was validated by modeling 

landing maneuvers using a simulator with six degrees 

of freedom [17]. The simulator randomizes asteroid 

characteristics such as solar radiation pressure, den-

sity, rotation speed, and nutation angle, requiring 

appropriate adaptation of guidance and control al-

gorithms. The authors demonstrate the robustness of 

the system to failure of the actuators, displacement of 

sensors, as well as variation of the inertia and center 

of mass of the SC. 

The concept of maneuvers for performing ope-

rations in the proximity of asteroids is proposed in 

Ref. [17], which is compatible with the developed 

guidance system. In future studies, the authors plan 

to focus on search technologies that rely on terrain 

features rather than beacons and replace the LIDAR 

rangefinder with binocular vision. Another direction 

of future work may study the possibility of positioning 

the SC on the collision triangle with the target, which 

can increase both fuel efficiency and robustness with 

respect to fast rotations of asteroids. The approach 

discussed in this paper can also be applied to orbital 

rendezvous and landing on the Moon, especially for 

the Moon missions, where the landing site is already 

indicated by beacons.

Reference [33] is motivated by the demand for 

“light” automated onboard processes of SC to ex-

pand the human presence in the near Moon space. 

The controller proposed in this work uses nonlinear 

equations of motion, but this does not lead to a large 

additional load on the on-board computer. Howe-

ver, such guidance principles can leverage high-per-

formance computations by decoupling the learning 

process from the resulting controller. Practical exam-

ples demonstrate the flexibility of the RL approach 

and the possibility to use it for tasks requiring higher 

guidance accuracy. The controller provides compu-

tationally efficient onboard guidance based on mul-

tiple bodies. The ANN controller demonstrates ro-

bustness to the reference geometry variations and can 

generalize past experience for solving new tasks. In 

addition, the proposed approach separates the learn-

ing agent from environmental dynamics, which pro-

vides model-free guidance.

Reference [11] introduces an approach for per-

forming precise landing on the planets of the solar 

system, based on the methodology for the trajectory 

formation using potential functions. The theory of 

extreme machine learning is used to develop a single-

layer feed-forward ANN, which learns to map the 
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current position of the SC and the optimal velocity 

field necessary to form a path to the planet’s surface, 

taking into account fuel economy. Extreme learning 

methods provide fast and accurate learning as well 

as good generalization. The network is trained in an 

open loop using economical trajectories that are gen-

erated numerically using pseudospectral methods. 

Once tested and verified, the ANN becomes a critical 

element in the loop of the linear guidance algorithm. 

In particular, a linear-quadratic controller (LQR) is 

used to track the field of optimal speed, which is de-

termined to be attractive for a landing target. Monte 

Carlo simulations show that the algorithm provides a 

low residual pointing error of less than one meter in 

position and less than 0.9 m/s in velocity.

The adaptive RL-based guidance algorithm for 

real-time trajectory tracking is designed in Ref. [14] 

for reliable, cost-effective, and accurate landing on 

Mars without needing it to build on Earth first. The 

results of the Monte Carlo simulations show that 

the algorithm is capable of autonomously providing 

movements along close to optimal trajectories with 

minimal fuel consumption and with an accuracy 

exceeding the accuracy of past and future missions 

to Mars. The RL-based guidance algorithm demon-

strates a high degree of flexibility and can easily adapt 

autonomous retargeting while maintaining accuracy 

and fuel efficiency. Although RL and other similar 

machine learning methods have previously been ap-

plied to aerospace guidance and control problems, 

this work is the first attempt to apply RL to the prob-

lem of autonomous planetary landing.

The adaptive guidance algorithm [14] based on 

RL allows the SC to be trained while performing the 

best landing by selecting the sequence of accelera-

tion / thrust commands that provide economical tra-

jectories and the necessary accuracy in terms of the 

desired final position and speed (soft landing). This 

problem was solved by developing an ANN guid-

ance algorithm representing the landing problem in 

the form of an MDP. The training procedure tunes 

the ANN weights that maximize the expected perfor-

mance criterion. The latter ensures that only those 

control actions are selected that move the descent ve-

hicle to the desired location with maximum accuracy 

and with minimum fuel consumption. It is important 

to note that the proposed algorithm does not require 

any reference trajectory. As a result of the learning 

process, the network determines autonomously the 

optimal landing algorithm using the current position 

and speed information provided by the navigation 

system. Moreover, the system can learn the optimal 

landing in the presence of adverse factors such as en-

vironmental disturbances, noise, and delays in sen-

sors and actuators.

3. ATTITUDE CONTROL 

Reference [9] presents a framework for developing an 

adaptive SC attitude controller using deep RL. It is 

shown that the controller efficiently performs large-

angle slew maneuvers with industry-standard point-

ing accuracies. The controller can adapt to various 

disturbances that were not presented at the training 

stage and does not depend on the parameters of the 

SC, even if it was trained on a different configura-

tion with different parameters. Different RL meth-

ods and reward functions are investigated to improve 

the control accuracy. It has been demonstrated that 

these controllers can be trained on a modern person-

al computer.

A state-of-the-art single-actor RL algorithm is 

implemented and applied in a designed simulation 

environment [9], where a trained agent achieved the 

industry-standard accuracy in a relatively short train-

ing time. The robustness of the agent to uncertainties 

of the environmental conditions was tested in four 

different test scenarios, which are designed to simu-

late different conditions that the agent may encounter 

in space. The agent successfully adapted to all pertur-

bation tests performed, demonstrating results close to 

time optimal. The ability of the agent to be robust to 

conditions that were not explicitly used during train-

ing makes it possible to substantiate the possibility of 

using RL-based controllers on real SC. The results 

also suggest that it is possible to use one “basic” con-

trol algorithm for a wide range of satellites, which al-

lows increasing the constellation of autonomous SC. 

This is a necessary step for space exploration of the 

future. The results of this work can be expanded by 

applying the latest achievements in distributed RL in 

order to use data generated by a constellation of satel-

lites to solve SC attitude control problems.

Reference [51] investigates rapid changes of ori-

entation and mass parameters that SC encounters 
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performing complex tasks, such as dropping-off a 

payload or capturing an object. This work proposes a 

new algorithm for attitude control based on the deep 

RL. A three-dimensional modeling environment 

has been developed that simulates the SC attitude 

variation in real time, taking into account the con-

trol torques. An ANN model based on a segmented 

weighted reward function is proposed. The ANN 

takes the parameters of the SC orientation as an in-

put and outputs a discretized control torque. 

The deep Q-learning algorithm [52] was used to 

train the agent for the task SC attitude control. Sim-

ulation experiments show that thanks to continuous 

self-learning and self-improvement, the deep RL 

agent gradually learns to restore the SC attitude af-

ter unknown disturbances. The proposed algorithm 

is compared with the proportional-derivative (PD) 

controller and the backstepping controller. The PD 

controller cannot restore the SC attitude due to its 

dependence on inertial parameters. The backstep-

ping controller is robust against mass uncertainty but 

can only handle a constant control cycle. Compared 

to these two conventional controllers, the deep RL 

algorithm provides competitive performance in the 

presence of mass uncertainties and allows the con-

trol loop to be varied during the learning phase. The 

proposed mechanism makes it possible to implement 

intelligent control and can serve as a technical basis 

for SC orbital service.

Reference [8] presents a framework for designing a 

discrete neural SC attitude controller using RL with-

out high-performance computations. Quasi-time-

optimal constrained control algorithms are obtained, 

capable of providing attitude accuracy significantly 

exceeding industry standards. The control tests of the 

agent performing SC large-angle slews in the devel-

oped modeling environment are also presented. The 

selected reward function allows the agent to improve 

the accuracy of attitude control beyond the mini-

mum specified requirements. This feature illustrates 

the advantages of RL over classic control methods. 

The ability of the controller to understand long-term 

dependencies in processes in the presence of external 

disturbances or other constraints makes it possible to 

improve control efficiency and performance. In the 

short term, it is of interest to consider the capabili-

ties of distributed RL. For example, distributed RL 

can be used to train agents online using data from a 

constellation or swarm of satellites.

Reference [4] deals with the task of SC optimal 

attitude control using a minimum number of thrust-

ers. Three possible solutions to this problem are pre-

sented: 

1) an easy-to-implement logic-based controller;

2) a projective controller trying to approximate 

ideal continuous control as accurately as possible;

3) an optimal neural network predictive controller 

(NPC) that minimizes the total impulse during the 

maneuver.

The NPC includes an RNN to predict the state 

vector in the finite time horizon of the optimization. 

Due to the fact that the considered system has dis-

crete inputs, the backpropagation algorithm tradi-

tionally used for continuous systems is not applicable 

for the case considered in this article. In this paper, 

the NPC is adapted for binary input systems using 

a robust genetic algorithm to optimize the receding 

horizon. An automatic selection of the parameters 

of the cost function is proposed, which improves the 

performance of the NPC and reduces the number of 

adjustable parameters to one. In addition, the multi-

layer perceptron is trained offline using data obtained 

under optimal control. This approach allows desig-

ners to replace the cost of a function-based algorithm 

that requires intensive CPU computations with a 

much less computationally expensive meta-model. 

The performance of the NPC is compared with 

the proposed logic and projective control algorithms 

for 12U CubeSat [4]. The NPC is the most effec-

tive from the point of view of the total impulse, the 

least sensitive to the choice of parameters, and has 

the same settling time. Multilayer perceptron control 

drastically reduces the computing resources required 

online, with control performance comparable to the 

NPC. A comparative analysis of the considered con-

trollers showed that the NPC allows the system to 

save up to 25 % of fuel for the de-tumbling task and 

up to 36 % of fuel for slew maneuvering.

The ability of an RL agent to find the optimal 

control strategy for SC attitude control is studied in 

Ref. [48]. Two main types of attitude control systems 

are considered. First, the general problem of atti-

tude control is investigated for the case of a full set 

of reactive actuators with restrictions on their control 
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torques. Then, reaction wheels were used for attitude 

control with additional constraints. To obtain the at-

titude control policy, the proximal policy optimiza-

tion algorithm (PPO) [44] was used to train the RL 

agent. To ensure robustness, the satellite inertia ma-

trix is considered unknown to the agent and is ran-

domly selected for each new episode of simulation. 

Since the plant is non-linear, curriculum learning is 

used to increase training efficiency. The RL-based 

controller is compared to the well-proven control 

strategy, known as the quaternion rate feedback 

(QRF) controller. 

The nominal performance and robustness to un-

certainties in the dynamics of the system are inves-

tigated [48]. The RL-based agent adapts to any SC 

mass without re-training it. In the mass range of 0.1 

to 100,000 kg, the RL agent provides 2 % better con-

trol performance than the QRF controller tuned for 

the same mass range, and its performance is similar 

to the QRF controller tuned specifically for a given 

mass. In the case of the reaction wheels, the trained 

RL agent provides 25 % higher reward function va-

lues   than the tuned QRF controller.

Reference [55] proposes an approach based on 

deep RL to increase the adaptability and autonomy 

of the satellite control system. It is a model-based 

algorithm that can find solutions in fewer training 

episodes than model-free algorithms. The simula-

tion shows that when the classical control fails, this 

approach can find a solution and achieve the goal 

in one hundred training episodes. To optimize the 

policy, heuristic search is used to avoid local optima 

inherent in gradient methods. Compared to classical 

control methods, this approach does not require pri-

or knowledge of the parameters of the satellite and its 

orbit but can be adapted to different situations based 

on the data obtained. To improve the efficiency of 

adaptation to various types of satellites and various 

tasks, it is proposed to use transfer learning.

Reference [58] is devoted to the model-free atti-

tude control of a rigid SC in the presence of satura-

tion of the control torque and the action of external 

disturbances. A model-free deep RL controller is pro-

posed, which can continuously learn using feedback 

signals from the plant and implement high-precision 

SC attitude control without re-adjusting the control-

ler parameters. Taking into account the continuity of 

the state and control action space, the twin delayed 

deep deterministic policy gradient algorithm (TD3) 

[10] is applied using “actor-critic” architecture. TD3 

is more efficient than the Deep Deterministic Policy 

Gradient (DDPG) algorithm. 

Nevertheless, the learning process is time-con-

suming because the TD3 agent optimizes the policy 

by interacting with the environment without using 

any prior knowledge [58]. To mitigate this problem, 

the PID-Guide TD3 algorithm is proposed to speed 

up learning and improve the convergence of the TD3 

algorithm. Given that RL is difficult to implement 

in real conditions, a method of preliminary prepa-

ration for deployment and fine tuning is proposed. 

The method allows the agent not only to save training 

time and computational resources but also to quickly 

achieve good results. The experimental results show 

that the RL controller can implement high-precision 

attitude stabilization, as well as the required trajec-

tory tracking with a high response speed and small 

overshoot. The proposed PID-Guide TD3 algorithm 

has a faster learning rate and is more robust than the 

TD3 algorithm.

Reference [36] investigates the attitude motion of 

a SC capturing non-cooperative targets. RL is used 

to stabilize the SC attitude under conditions of rapid 

variation of attitude and mass parameters. An ANN 

model has been built to output a discrete control 

torque for the SC control. An environment for mo-

de ling the SC dynamics has been developed, and the 

ANN is trained in this environment using the deep 

Q-learning algorithm. The agent receives a reward 

if the satellite is successfully stabilized. Simulation 

shows that when the learning process is repeated, 

the ANN gradually learns to restore the SC orienta-

tion after an unknown disturbance. On the contrary, 

the traditional PD controller did not cope with this 

task due to its dependence on mass parameters. This 

method of SC attitude control demonstrates signifi-

cant versatility and has great potential for intelligent 

control of SC performing complex tasks in the future.

The goal of Refs. [28—30, 40] is to develop an ef-

fective algorithm for SC intelligent control based on 

RL methods. To increase the RL efficiency, a statisti-

cal model of SC dynamics based on the concept of 

Gaussian processes is used. On the one hand, such 

a model allows authors to use a priori information 
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about the plant, and it is sufficiently flexible, and on 

the other hand, it characterizes uncertainty of the 

dynamics in the form of confidence intervals, which 

can be clarified during the SC operation. In this 

case, the task of studying the state — control action 

space is to obtain such measurements that reduce the 

boundaries of confidence intervals. As a reinforce-

ment signal, a well-known quadratic criterion is used 

to take into account both accuracy requirements and 

control costs. The control actions are found based on 

the RL using the algorithm of the policy iterations. 

To implement the controller and evaluate the cost 

function, ANN approximators are used. 

Guarantees of stability of the SC motion taking 

into account the uncertainty of the dynamic model, 

are obtained using the method of Lyapunov functions 

[30]. The cost function is chosen as a candidate for 

the Lyapunov function. In order to simplify stability 

verification on the basis of this methodology, the as-

sumption about Lipschitz continuity of the dynamics 

of the plant was used, which made it possible to use 

the Lagrange multiplier method to find control ac-

tions taking into account the constraints formulated 

using the upper bound of uncertainty and Lipschitz 

dynamics constants. The efficiency of the proposed 

algorithm is illustrated by the results of computer 

simulations. The approach makes it possible to de-

velop control systems that can improve their perfor-

mance as data is accumulated during the operation of 

a specific object, and allows developers to reduce the 

requirements for its elements (sensors, actuators), 

not to use special test equipment, and reduce time 

and cost of the development.

4. RELATIVE CONTROL

The policy for docking maneuvers with six degrees 

of freedom was developed on an RL basis and im-

plemented in the form of a feedback control law in 

Ref. [6]. RL provides a feasible approach for reliable, 

autonomous maneuvers under uncertain conditions 

with low computational costs. An RL algorithm is 

used to obtain a docking policy in a certain region of 

the state space of the plant with six degrees of free-

dom, trying to minimize the performance criterion 

and control costs. The simulation results of rendez-

vous and docking maneuvers for the Apollo mission 

demonstrate that the capabilities of the resulting pol-

icy are comparable to the results obtained by conven-

tional optimal control methods. As for directions for 

future work, specific problems and their possible so-

lutions, as well as the advantages and disadvantages 

of docking algorithms based on RL, are discussed. 

This work can serve as a basis for further investigation 

of the RL-based control for rendezvous operations 

under uncertain conditions.

Reference [46] synthesizes an adaptive neuro-

controller for the formation flying of two SCs in low 

near-Earth orbit. One of the SCs is considered to be 

controllable, the second one is uncontrollable with 

an unknown ballistic coefficient. The controlled SC 

is capable of changing its cross-section within cer-

tain limits, as well as making impulse maneuvers. 

The main approaches to solving this problem are 

discussed. Two ANNs are introduced, and their op-

timal structure is found. The task is to adjust two pa-

rameters: the ballistic coefficient of the uncontrolled 

SC and the density of the atmosphere that are input 

to the control ANNs but unknown to the controlled 

SC. This problem is solved by a non-gradient optimi-

zation method.

Reference [27] approximates optimal relative con-

trol of an underactuated SC using RL and studies the 

influence of various factors on the performance of 

such a solution. The problem of in-plane SC relative 

control using only control actions applied only in-

track direction is considered. This approach makes 

it possible to reduce the propellant consumption of 

the thrusters and to simplify the architecture of the 

control system. However, in some cases, methods 

of the classical control theory do not allow obtain-

ing acceptable results. In this regard, the possibility 

of solving this problem by the RL methods has been 

investigated. This approach allows designers to find 

control algorithms, which are close to optimal, as a 

result of interactions of the control system with the 

plant, using a reinforcement signal characterizing the 

quality of control actions. 

The RL-based search for control actions is made 

using the policy iteration algorithm [27]. This algo-

rithm is implemented using the “actor-critic” archi-

tecture. Various options for the “actor-critic” repre-

sentation using ANN approximators are considered 

to implement the control law and obtain the value 

function estimates. It is shown that the accuracy of 
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the optimal control approximation depends on a 

number of features, namely, the successful structure 

of the approximators, the method for updating the 

parameters of the ANNs, and the parameters of the 

learning algorithm. The approach makes it possible 

to solve the considered class of control problems for 

controllers of different structures. Moreover, the ap-

proach allows the control system to improve its con-

trol algorithms during the SC operation.

5. LANDING AND HOVERING CONTROL

An adaptive landing algorithm is presented in Ref. 

[45], which learns to form the optimal thrust com-

mands to ensure an accurate landing on the Moon us-

ing images and altimeter measurements as input data 

and the obtained experience. A new approach based 

on meta-RL is proposed, which combines intelligent 

guidance and navigation functions, providing a com-

plete solution to the problem of landing on the Moon 

based on the obtained images. In particular, a simula-

tion environment has been developed that combines 

the dynamics of the system and images obtained from 

the on-board cameras. This is achieved by merging a 

Python simulator with a ray tracer (such as Blender) 

that generates accurate images using lunar digital ter-

rain models and a physics rendering engine. The im-

ages are then used to update the policy in real time us-

ing RL. The advantages of the latest achievements in 

the field of CNN and RNN for image processing and 

RL for policies are used to develop an agent for per-

forming an optimal soft landing.

Considering the failures of the actuators and the 

uncertainty of the atmospheric parameters, a new 

active fault-tolerant algorithm for controlling the de-

scent to Mars using an ANN and adaptive inversion 

of the model is presented in Ref. [23]. The ANN is 

used to detect failures and isolate them online. Then, 

an adaptive ANN PID controller based on the inver-

sion of the structural adaptive model was developed for 

fault-tolerant control of descent to Mars. When a mal-

function is detected in the actuator, the system auto-

matically activates the ANN PID controller replacing 

the traditional PID controller. The error between the 

output of the reference model and the output of the 

attitude control system is corrected in such a way as to 

provide the required dynamic properties of the descent 

vehicle. The stability of the closed-loop of the control 

system is investigated using the Lyapunov functions. 

The effectiveness of the developed algorithm is illus-

trated by the results of computer simulation. Consid-

ering that the detection and isolation of failures in-

crease the computational load on the control system, 

in future works, it is advisable to consider the possibil-

ity of fault-tolerant control without the need to explic-

itly perform such operations.

In Ref. [13], a new nonlinear controller for ho-

ve ring operation under low gravity conditions of the 

asteroid environment was developed using RL. The 

controller is robust enough for accurately hovering 

in unknown environments. The controller capabili-

ties are limited only by the maximum thrust require-

ments of the environmental conditions. The robust-

ness of the controller is demonstrated by simulating 

precise hovering in multiple environments that were 

unknown during the policy optimization. The envi-

ronment is modeled using non-uniform rotation and 

non-uniform gravity field. Models of the shape of the 

asteroid Itokawa were used for modeling. The per-

formance of the RL control is compared with the PD 

and LQR controllers. An approach based on optical 

finders is presented to estimate the SC state vector 

relative to a landmark on the asteroid surface. The 

current state of the SC is accurately estimated using 

only a camera and laser rangefinder.

The policy with six degrees of freedom to con-

trol hovering over an asteroid was optimized in Ref. 

[16] using meta-RL. The ANNs of the policy and 

cost function include recurrent hidden layers, and 

the policy network additionally has an input module 

consisting of convolutional layers. The policy maps 

the pulsed LIDAR measurements and commands of 

the thrusters. This policy allows the SC to hover in 

a fixed position and with a given orientation relative 

to the reference frame fixed with the asteroid. It is 

important to note that the policy does not require po-

sition and velocity estimates and can also operate in 

environments with unknown dynamics and without 

an asteroid shape model and navigation aids. During 

the optimization, the agent encounters a new, ran-

domly generated asteroid for each episode, ensuring 

that it is not familiar with the shape and texture of the 

asteroid, as well as with the environmental dy na mics. 

The experiments demonstrate that the policy can be 

used for the asteroid with new characteristics. The 
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hover controller simplifies mission planning since 

the SC can immediately perform hovering right after 

arriving at the asteroid. This, in turn, simplifies the 

creation of the shape model and allows remote sens-

ing mapping of resources immediately upon arrival at 

the target asteroid.

Reference [5] presents a framework for optimizing 

the tasks of autonomous visualization and mapping 

as a partially observable MDP. A new environment 

for simulating orbital small body mapping is devel-

oped. It is demonstrated that policies trained with 

this MDP formulation are able to maximize the map 

quality while autonomously selecting orbits and con-

trolling imaging tasks. The integration of deep RL 

modules into the classical SC software systems and 

some problems that can be encountered in this case 

are discussed.

The authors of Ref. [54] used deep RL to control 

the SC around a small celestial body, the gravitational 

field of which is unknown. It is assumed that the small 

body is a 3D ellipsoid, and its density and dimensions 

are uncertain within a wide range. Experiments were 

carried out with different systems of perception of 

the SC, highlighting light neuromorphic systems for 

detecting optical flow. It is demonstrated that even in 

such a highly uncertain environment and with limi-

ted sensory capabilities, the proposed approach can 

provide a control strategy that allows the SC to hov-

er over the asteroid surface with little residual drift. 

The SC orbiting in an unknown gravitational field 

due to the complex rotation of the body modeled 

as MDP. A direct policy search algorithm was used 

to find control capable of keeping the SC hovering 

at a given point. In contrast to previous studies, the 

3D ellipsoid and a number of different sensor inputs 

are considered. The proposed approach allowed the 

authors to find policies that can also minimize drift 

when elementary motion sensors are the only pro-

prioceptive sensors on-board. This result is the first 

step towards obtaining visual-aid-based low-gravity 

landing algorithms.

6. MISSION PLANNING AND DECISION-MAKING

The possibility of using deep architecture to control 

all or part of the SC on-board decision-making sys-

tem in navigation and control tasks is studied in more 

detail in Ref. [43]. Deep ANNs are used to form op-

timal control actions during landing at a given point 

and obtain accurate information about the state of the 

plant. The trained deep ANN demonstrates close to 

optimal landing results. These results make it pos-

sible to develop an on-board real-time optimal con-

trol system capable of generating optimal actions for 

large sets of possible initial states. The article shows 

how deep ANNs can be trained to implement opti-

mal state feedback control for a number of continu-

ous deterministic nonlinear systems that are of in-

terest to the aerospace industry. The capabilities of 

trained networks are not limited to predicting the op-

timal state feedback in a subset of the state space used 

during training but are also able to generalize these 

results to cases that go far beyond the training data. 

This feature allows authors to assume that the ANN 

has learned the basic model that is the solution of the 

Hamilton — Jacobi — Bellman equation. The depth 

of the ANN strongly affects the obtained results. It is 

noteworthy that small networks trying to approach 

the optimal state feedback cannot satisfactorily ap-

proximate its complex structure. Errors caused by the 

use of the trained ANN do not significantly affect the 

final value of the cost function, and they are also safe 

from the point of view of preventing catastrophic con-

sequences for conditions that are far from nominal.

Deep RL frameworks and tools for mission plan-

ning and high-level decision-making for autono-

mous SC are considered in Ref. [21] under the as-

sumption that subtasks are solved at the design stage 

accordingly. Two typical tasks, reflecting the prob-

lems of autonomous orbit insertion and the planning 

of scientific operations, are presented in the form of 

a partially observable MDP. The possibility of solving 

these problems using RL is considered, and the ad-

vantages, difficulties, and some features inherent to 

this approach are demonstrated. The dependence of 

the success of solving problems on the initial condi-

tions and learning strategy is analyzed. The results of 

solving these problems demonstrate the possibility of 

using RL to improve or refine the policies obtained 

within the framework based on the paradigm focused 

on specific modes of operation while maintaining 

robustness to the uncertainty of environmental pa-

rameters.

RL methods are adapted to the paradigm of the 

SC finite state machine [21]. A Deep Q-learning 
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algorithm is applied to partially observable MDP 

for obtaining policies that are comparable in per-

formance to those that can be developed with prior 

knowledge of all the features of the problem. Various 

structures of the reward function, hyperparameters, 

and environment parameters were considered. The 

lack of positive results in solving the SC control tasks 

using deep Q-learning is a consequence of an insuffi-

cient amount of space domain data for training. This 

problem is aggravated by the strong computational 

requirements needed to run the environment simula-

tor, which significantly slows down the learning task 

compared to simpler environments. 

Moreover, the mode-based paradigm for the de-

sign of future decision-making algorithms is directly 

testable through the theory of hybrid systems. This 

paper presents one approach by which this theory 

can be used to identify “successful” or “stable” au-

tonomous decision-making agents. Further work 

will investigate model-based RL methods to reduce 

the number of attempts and use existing knowledge 

of the space environment. In addition, fast models 

built using the Basilisk astrodynamic framework will 

be used to reduce training time.

CONCLUSION

Recent studies have shown the advantages of DL for 

solving space guidance, navigation, and control tasks. 

These results provide the basis for further studies of 

the possibilities of DL for controlling all or part of the 

SC on-board decision-making system.

Among the problematic issues that restrain the use 

of DL methods for the considered tasks, it should be 

noted, first of all, that the efficiency of solving prob-

lems is mainly illustrated by computer simulations, 

and there are practically no rigorous analytical re-

sults that provide stability and performance guaran-

tees. Such results are very important for space prac-

titioners for more active use of these methods in real 

missions. Examples of the efforts in this direction 

are Refs. [3, 25], where the methods of deep RL and 

classical control theory are used together to obtain 

stability guarantees.

As the next issue, it should be pointed out that 

many SC control tasks do not allow critical errors in 

the process of finding the optimal solution. In this 

regard, the ideas of such a direction as a safe-RL [39] 

should be more actively used for space missions.

The low training efficiency of DL algorithms is 

especially acute in space applications, which is due 

to the limited capabilities of SC for collecting and 

processing data in orbit. However, model-based RL 

methods [12] and transfer learning [37] has the po-

tential to mitigate this problem.

Despite the underlined issues, the navigation, 

guidance, and control algorithms based on DL can 

simplify the development and increase the reliability 

of the SC control systems since the same algorithm 

can be used for a large number of different missions. 

DL makes it possible to develop control systems that 

can improve their performance using data accumu-

lated during the operation of a particular object. This 

feature allows the designers to relax the requirements 

for the units of control systems (sensors, actuators), 

not to use special bench equipment, and reduce the 

development time and cost.
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ГЛИБОКЕ НАВЧАННЯ ДЛЯ НАВІГАЦІЇ, НАВЕДЕННЯ ТА КЕРУВАННЯ В КОСМОСІ

Успіхи глибокого навчання призвели до революції в області штучного інтелекту, демонструючи можливості створен-

ня автономних систем з високим рівнем розуміння середовища функціонування. Ці успіхи, а також нові завдання 

та вимоги в галузі освоєння космосу зумовили підвищений інтерес протягом останніх років до методів глибокого 

навчання серед працюючих в космічній сфері вчених і практиків. Метою цієї оглядової статті є аналіз останніх досяг-

нень в галузі використання глибокого навчання для вирішення завдань навігації, наведення та керування в космосі. 

Розглянуто завдання керування кутовим і відносним рухом космічних апаратів при вирішенні як традиційних, так і 

нових завдань, таких як сервісні операції в космосі. Проаналізовано роботи, присвячені застосуванню цих методів 

для виконання операцій посадки і зависання при реалізації місій на Місяць, Марс і астероїди. Для вирішення таких 

завдань використовуються як методи навчання з вчителем, так і навчання з підкріпленням. Розглянуто використання 

різних архітектур штучних нейронних мереж, в тому числі згорткові та рекурентні. Аналізується можливість спіль-

ного використання глибокого навчання і методів теорії керування для підвищення ефективності вирішення розгля-

нутих завдань. Виділено складності, що обмежують застосування розглянутих методів для космічних застосувань. 

Позначені необхідні напрямки досліджень для вирішення цих проблем.

Ключові слова: космічний апарат, глибоке навчання, навігація, наведення, керування, штучна нейронна мережа, нав-

чання з підкріпленням, посадка, зависання.


