doi: https://doi.org/ 10.15407/knit2017.05.055

УДК 535.31; 681.7

В. М. Тягур

Казенне підприємство спеціального приладобудування «Арсенал», Київ, Україна

ТРИДЗЕРКАЛЬНИЙ АНАСТИГМАТИЧНИЙ ОСЕСИМЕТРИЧНИЙ ОБ'ЄКТИВ З ВИПРАВЛЕНОЮ ДИСТОРСІЄЮ

Представлено результати дослідження властивостей тридзеркального анастигматичного осесиметричного об'єктива. Наведено формули для розрахунку конструктивних параметрів дзеркал і положень фокальної площини та площини проміжного зображення при заданих фокусній відстані об'єктива та відстанях між дзеркалами, при яких в об'єктиві виправлено дисторсію.

Ключові слова: тридзеркальний анастигматичний осесиметричний об'єктив, виправлена дисторсія.

вступ

Ключовим елементом оптико-електронної системи (ОЕС) дистанційного зондування Землі (ДЗЗ) є об'єктив. Від його характеристик залежить просторова розрізненість всієї системи, а від оптичної схеми об'єктива — його габарити, а отже і вага. Серед відомих систем ДЗЗ з надвисокою просторовою розрізненістю — «Pleiades», «WorldView-2», «Kompsat-3» [https://directory. eoportal.org/web/eoportal] та інших, найчастіше використовується довгофокусний тридзеркальний анастигматичний об'єктив Корша. Серед усіх довгофокусних об'єктивів він забезпечує найменші габарити, що є одним із найважливіших критеріїв при виборі схеми об'єктива для застосування в ОЕС ДЗЗ з надвисокою просторовою розрізненістю.

Особливістю систем дистанційного зондування є застосування системи сканування "Push-

ISSN 1561-8889. Космічна наука і технологія. 2017. Т. 23. № 5

broom", тобто сканування поверхні Землі ПЗЗлінійкою за рахунок руху космічного апарата. Тому об'єктиви в таких системах працюють щілинним полем зору.

Класична схема тридзеркального анастигматичного об'єктива Корша, яка представлена на рис. 1, складається з головного увігнутого еліптичного дзеркала 1, вторинного гіперболічного опуклого дзеркала 2 і третинного еліптичного увігнутого дзеркала 3. Перше та друге дзеркала утворюють об'єктив Кассегрена, який створює дійсне проміжне зображення за першим дзеркалом. Третє дзеркало формує це зображення зі збільшенням у фокальній площині всього об'єктива і коригує аберації об'єктива Кассегрена. За площиною проміжного зображення у площині вихідної зіниці трьохдзеркального об'єктива під кутом 45° розташоване пласке дзеркало 4, яке розділяє випромінювання, що іде від другого дзеркала до третього, від випромінювання, що іде від третього дзер-

© В. М. ТЯГУР, 2017

Рис. 1. Анастигматичний об'єктив Корша

кала до фокальної площини об'єктива. Розділення випромінювання можливо за рахунок роботи об'єктива щілинним полем зору, яке розташоване під невеликим кутом до оптичної осі [5]. Допоміжне пласке дзеркало дозволяє скоротити габарити об'єктива.

поставлення завдання

Основною перевагою об'єктива Корша порівняно з іншими типами об'єктивів є те, що завдяки своїй конструкції він має набагато меншу довжину при дифракційній якості зображення. У порівнянні з дзеркальними і дзеркально-лінзовими осесиметричними системами схема об'єктива з проміжним зображенням має ряд переваг: покращується захист фокальної площини від стороннього потрапляння світла і з'являється можливість збільшення поля зору. Еквівалентна фокусна відстань усієї системи дорівнює добутку фокусної відстані об'єктива Кассегрена на збільшення, з яким третинне дзеркало переносить зображення з площини проміжного зображення у фокальну площину всього об'єктива, що дозволяє значно зменшити фокусну відстань дзеркального об'єктива Кассегрена, а отже і його довжину. Недоліком даної системи і всіх тридзеркальних об'єктивів з щілинним полем зору є те, що за допомогою трьох асферичних дзеркал звичайно вдається виправити тільки чотири аберації: сферичну аберацію, кому, астигматизм і кривизну поля зору. Наявна в даних об'єктивах дисторсія, значення якої досягає 2 %, утруднює їхнє застосування в апаратурі дистанційного зондування Землі, в якій вимагається одержання якісного зображення без спотворення. Можливість виправлення дисторсії програмними методами потребує паспортизувати велику кількість точок поля зору, з похибкою в долях кутових секунд, що є непростою задачею. Крім того, для зменшення габаритів третє позаосьове дзеркало розташовують під кутом 90° до оптичної осі першого і другого дзеркал, що значно ускладнює юстування всього об'єктива.

Метою дослідження було усунути ці недоліки і визначити залежність конструктивних параметрів об'єктива для отримання осесиметричної схеми тридзеркального об'єктива з усіма виправленими абераціями.

МЕТОДИКА ДОСЛІДЖЕНЬ

При виборі схеми об'єктива було розглянуто область рішень об'єктива, його коригувальні можливості і можливість реалізації конструкції для різних областей рішень. У тридзеркального об'єктива є дев'ять конструктивних параметрів (три радіуси дзеркал, три конічні сталі дзеркал, відстань між головним і вторинним дзеркалами, відстань між вторинним і третинним дзеркалами і відстань від третинного дзеркала до фокальної площини), за допомогою яких можна змінювати фокусну відстань об'єктива і коригувати аберації. Для дослідження області рішень об'єктива і розрахунку сум Зейделя для аберацій третього порядку було розглянуто хід першого (рис. 2) і другого (рис. 3) нульових променів у об'єктиві.

Вихідними даними для габаритного розрахунку об'єктива є: фокусна відстань об'єктива f'_O (від'ємне значення); коефіцієнт екранування K(відношення висоти першого нульового променя на вторинному дзеркалі до висоти цього променя на головному дзеркалі); відстань між головним і вторинним дзеркалами d_1 ; відстань між вторинним і третинним дзеркалами d_2 ; положення площини проміжного зображення S'_{1-2} , яка задається коефіцієнтом a по відношенню до відстані d_1 , і положення фокальної площини об'єктива S'_O . Положення апертурної діафрагми було обрано на головному дзеркалі.

Для розрахунку кутів падіння α_i і висот падіння h_i першого нульового променя на оптичні елементи використаємо такі формули:

$$\alpha_{1} = 0, \quad h_{1} = 1, \quad h_{2} = K \cdot h_{1},$$

$$\alpha_{2} = \frac{h_{2} - h_{1}}{d_{1}}, \quad \alpha_{3} = \frac{h_{2}}{S'_{1-2}},$$

$$S'_{1-2} = a \cdot d_{1}, \quad h_{3} = \alpha_{3}(S'_{1-2} - d_{2}),$$

$$\alpha_{4} = 1, \quad S'_{0} = \alpha_{4} \cdot h_{3}.$$

Знайдемо оптичні сили компонентів об'єктива і радіуси кривизни дзеркал:

$$\varphi_{1} = \frac{\frac{\alpha_{2}}{n_{2}} - \frac{\alpha_{1}}{n_{1}}}{h_{1}}, \ \varphi_{2} = \frac{\frac{\alpha_{3}}{n_{3}} - \frac{\alpha_{2}}{n_{2}}}{h_{2}}, \ \varphi_{3} = \frac{\frac{\alpha_{4}}{n_{4}} - \frac{\alpha_{3}}{n_{3}}}{h_{3}},$$
$$R_{1} = \frac{2f'_{0} \cdot n_{2}}{\varphi_{1}}, \ R_{2} = \frac{2f'_{0} \cdot n_{3}}{\varphi_{2}}, \ R_{3} = \frac{2f'_{0} \cdot n_{4}}{\varphi_{3}}.$$

Для розрахунку ходу другого нульового променя введемо умови нормування. Кут падіння другого нульового променя на головне дзеркало дорівнює $\beta_1 = 1$, а висота падіння $y_1 = 0$, через те що апертурна діафрагма розташована на головному дзеркалі. Для розрахунку кутів падіння β_i і висот падіння y_i другого нульового променя на інших дзеркалах застосуємо такі формули:

дзеркалах застосуємо такі формули: ричних дзері

Рис. 3. Хід другого нульового променя в об'єктиві

$$\beta_1 = 1,$$

$$y_1 = 0,$$

$$\beta_2 = -(\beta_1 + y_1 \cdot \varphi_1) = -\beta_1,$$

$$y_2 = y_1 - d_1 \cdot tg\beta_2 = -d_1 \cdot tg\beta_2,$$

$$\beta_3 = (-\beta_2 + y_2 \cdot \varphi_2),$$

$$y_2 = y_2 - d_2 \cdot tg\beta_2.$$

Через те що оптичні сили дзеркал φ_1 , φ_2 і φ_3 визначено, то обчислимо параметри *P* і *W* сферичних дзеркал [2]:

$$P_{1} = \left(\frac{\alpha_{2} - \alpha_{1}}{n_{2}^{-1} - n_{1}^{-1}}\right)^{2} \left(\frac{\alpha_{2}}{n_{2}} - \frac{\alpha_{1}}{n_{1}}\right), \quad W_{1} = \left(\frac{\alpha_{2} - \alpha_{1}}{n_{2}^{-1} - n_{1}^{-1}}\right) \left(\frac{\alpha_{2}}{n_{2}} - \frac{\alpha_{1}}{n_{1}}\right),$$
$$P_{2} = \left(\frac{\alpha_{3} - \alpha_{2}}{n_{3}^{-1} - n_{2}^{-1}}\right)^{2} \left(\frac{\alpha_{3}}{n_{3}} - \frac{\alpha_{2}}{n_{2}}\right), \quad W_{2} = \left(\frac{\alpha_{3} - \alpha_{2}}{n_{3}^{-1} - n_{2}^{-1}}\right) \left(\frac{\alpha_{3}}{n_{3}} - \frac{\alpha_{2}}{n_{2}}\right),$$
$$P_{3} = \left(\frac{\alpha_{4} - \alpha_{3}}{n_{4}^{-1} - n_{3}^{-1}}\right)^{2} \left(\frac{\alpha_{4}}{n_{4}} - \frac{\alpha_{3}}{n_{3}}\right), \quad W_{3} = \left(\frac{\alpha_{4} - \alpha_{3}}{n_{4}^{-1} - n_{3}^{-1}}\right) \left(\frac{\alpha_{4}}{n_{4}} - \frac{\alpha_{3}}{n_{3}}\right).$$

Знаючи висоти на дзеркалах двох нульових променів і параметри *P* і *W* цих компонентів, розрахуємо суми Зейделя для об'єктива з сферичними дзеркалами в області аберацій третього порядку:

$$S_{1c\phi} = h_1 P_1 + h_2 P_2 + h_3 P_3,$$

$$S_{1Ic\phi} = y_1 P_1 + W_1 + y_2 P_2 + W_2 + y_3 P_3 + W_3,$$

$$S_{1IIc\phi} = \frac{y_1^2}{h_1} P_1 + 2\frac{y_1}{h_1} W_1 + f_1 +$$

$$+ \frac{y_2^2}{h_2} P_2 + 2\frac{y_2}{h_2} W_2 + f_2 + \frac{y_3^2}{h_3} P_3 + 2\frac{y_3}{h_3} W_3 + f_3,$$

$$S_{1Vc\phi} = \frac{n_2 \alpha_2 - n_1 \alpha_1}{h_1 n_2 n_1} + \frac{n_3 \alpha_3 - n_2 \alpha_2}{h_2 n_3 n_2} + \frac{n_4 \alpha_4 - n_3 \alpha_3}{h_3 n_4 n_3},$$

$$S_{Vc\phi} = \frac{y_1^3}{h_1^2} P_1 + 3\frac{y_1^2}{h_1^2} W_1 + 2\frac{y_1}{h_1} f_1 + \frac{y_2^3}{h_2^2} P_2 + 3\frac{y_2^2}{h_2^2} W_2 +$$

$$+ 2\frac{y_2}{h_2} f_2 + \frac{y_3^3}{h_3^2} P_3 + 3\frac{y_3^2}{h_2^2} W_3 + 2\frac{y_3}{h_3} f_3.$$

Вплив асферизації поверхонь дзеркал на аберації третього порядку можна виразити додаванням до коефіцієнтів третього порядку таких членів, які залежать від конічних сталих деформованих поверхонь [3]:

головного дзеркала

$$\Delta S_{\text{LAI}} = k_1 h_1 \frac{(n_2 \alpha_2 - n_1 \alpha_1)^3}{(n_2 - n_1)^2}, \quad \Delta S_{\text{ILAI}} = \frac{y_1}{h_1} \Delta S_{\text{LAI}} = 0,$$

$$\Delta S_{\text{IIIAI}} = \frac{y_1}{h_1} \Delta S_{\text{IIAI}} = 0, \quad \Delta S_{\text{VAI}} = \frac{y_1}{h_1} \Delta S_{\text{IIIAI}} = 0;$$

вторинного дзеркала

$$\Delta S_{IA2} = k_2 h_2 \frac{(n_3 \alpha_3 - n_2 \alpha_2)^3}{(n_3 - n_2)^2}, \ \Delta S_{IIA2} = \frac{y_2}{h_2} \Delta S_{IA2} ,$$

$$\Delta S_{\mathrm{III}42} = \frac{y_2}{h_2} \Delta S_{\mathrm{II}42}, \quad \Delta S_{\mathrm{V}42} = \frac{y_2}{h_2} \Delta S_{\mathrm{III}42}$$

третинного дзеркала

$$\Delta S_{IA3} = k_3 h_3 \frac{(n_4 \alpha_4 - n_3 \alpha_3)^3}{(n_4 - n_3)^2}, \ \Delta S_{IIA3} = \frac{y_3}{h_3} \Delta S_{IA3},$$
$$\Delta S_{IIIA3} = \frac{y_3}{h_3} \Delta S_{IIA3}, \ \Delta S_{VA3} = \frac{y_3}{h_3} \Delta S_{IIIA3}.$$

З урахуванням аберацій об'єктива з сферичними дзеркалами і додатка, що вносить асферизація дзеркал, суми Зейделя для об'єктива з асферичними дзеркалами дорівнюють:

$$\begin{split} S_{\rm I} = S_{\rm Ic\phi} + \Delta S_{\rm IA1} + \Delta S_{\rm IA2} + \Delta S_{\rm IA3} , \\ S_{\rm II} = S_{\rm IIc\phi} + \Delta S_{\rm IIA1} + \Delta S_{\rm IIA2} + \Delta S_{\rm IIA3} , \\ S_{\rm III} = S_{\rm IIIc\phi} + \Delta S_{\rm IIIA1} + \Delta S_{\rm IIIA2} + \Delta S_{\rm IIIA3} , \\ S_{\rm IV} = \left(\frac{n_2 \alpha_2 - n_1 \alpha_1}{h_1 n_2 n_1}\right) + \left(\frac{n_3 \alpha_3 - n_2 \alpha_2}{h_2 n_3 n_2}\right) + \left(\frac{n_4 \alpha_4 - n_3 \alpha_3}{h_3 n_4 n_3}\right) , \\ S_{\rm V} = S_{\rm Vc\phi} + \Delta S_{\rm VA1} + \Delta S_{\rm VA2} + \Delta S_{\rm VA3} . \end{split}$$

За допомогою трьох асферичних поверхонь можна виправити сферичну аберацію, кому і астигматизм, для чого необхідно, щоб $S_{\rm I} = S_{\rm II} = S_{\rm III} = 0$. Для виконання цієї умови необхідно, щоб

$$-S_{Ic\phi} = \Delta S_{IA1} + \Delta S_{IA2} + \Delta S_{IA3} ,$$
$$-S_{IIc\phi} = \Delta S_{IIA2} + \Delta S_{IIA3} ,$$
$$-S_{IIIc\phi} = \Delta S_{IIIA2} + \Delta S_{IIIA3} .$$

Розв'язавши цю систему трьох рівнянь, можна знайти значення конічних сталих k_1 , k_2 і k_3 головного, вторинного і третинного дзеркал, при яких в об'єктиві буде виправлено сферичну аберацію, кому і астигматизм. При певних умовах в об'єктиві може бути також виправлена не тільки кривизна поля зору ($S_4 = 0$), але і дисторсія ($S_5 = 0$) [4]. Для різних відстаней між дзеркалами d_1 , d_2 можна знайти таку відстань від вторинного дзеркала до площини проміжного зображення S'_{1-2} і коефіцієнт екранування K, при яких виправляється кривизна поля зору ($S_4 = 0$) і дисторсія ($S_5 = 0$).

Розрахований об'єктив, як і об'єктив Корша, складається з головного увігнутого дзеркала 1 (рис. 4), вторинного опуклого дзеркала 2 і ввігнутого третинного дзеркала 3. Дзеркала 1 і 2

ISSN 1561-8889. Космічна наука і технологія. 2017. Т. 23. № 5

Рис. 4. Тридзеркальний анастигматичний осесиметричний об'єктив з виправленою дисторсією: *а* — вертикальний переріз об'єктива, *б* — горизонтальний переріз об'єктива

утворюють дзеркальний об'єктив Кассегрена з фокусною відстанню f'_{K} , що створює проміжне зображення на відстані S'_{κ} від вторинного дзеркала. Через те що при зйомці Землі застосовують систему сканування «Push-broom» з щілинним полем зору, то у площині проміжного зображення утворюється зображення у вигляді смужки. У площині проміжного зображення встановлюється допоміжне дзеркало 4 з щілинним отвором (рис. 5). Промені, які відбилися від вторинного дзеркала проходять через щілинний отвір у дзеркалі 4 і потрапляють на третинне дзеркало 3. Дзеркало 3 працює як проекційний об'єктив і передає зображення, сформоване об'єктивом Кассегрена, у фокальну площину 5 усього об'єктива на відстань S'_{ab} від плаского дзеркала 4 зі збільшенням В. Для зменшення габаритів у систему можна додатково ввести відхиляюче пласке дзеркало 6, яке направить промені у фокальну площину об'єктива 5а. Нормаль до плаского дзеркала 4 відхилена від оптичної осі на кут α для розділення випромінювання, яке іде від вторинного дзеркала до третинного, від випромінювання, яке іде від третинного дзеркала в напрямку фокальної площини. Така конструкція дозволяє розмістити всі три дзеркала на оптичній осі об'єктива, що значно спрощує виготовлення та юстування об'єктива, а також дозволяє зменшити довжину об'єктива, двічі використовуючи для ходу променів простір між головним дзеркалом 1 і допоміжним пласким дзеркалом 4.

Аналіз конструктивних параметрів рішень, при яких в об'єктиві виправлено всі аберації тре-

тього порядку, тобто всі п'ять сум Зейделя дорівнюють нулю ($S_{\rm I} = S_{\rm II} = S_{\rm III} = S_{\rm IV} = {\rm S}_{\rm V} = 0$), показав, що залежність радіуса головного дзеркала від відстаней між дзеркалами d_1 і d_2 можна описати формулою [1]

$$R_{1} = (0.96...1.04) \times \left(0.24 \left| d_{2H} \right| + 0.355 \sqrt{\frac{d_{1H}}{0.068}} - 0.215 \right) f_{ob}'$$

де f'_{ob} — фокусна відстань об'єктива (від'ємна величина), $d_{1H} = \frac{d_1}{f'_{ob}}$ — нормована відстань між першим і другим дзеркалами, $d_{2H} = \frac{d_2}{f'_{ob}}$ — нормована відстань між другим і третім дзеркалами.

Радіус вторинного дзеркала в залежності від відстані між дзеркалами для виправлення усіх аберацій третього порядку описується формулою

$$R_{2} = (0.97...1.03) \times$$
$$\times \left(-0.4d_{2H}^{2} + 0.483\sqrt[3]{\frac{d_{1H}}{0.084}} |d_{2H}| + 0.011 \right) f_{ob}'$$

Залежність радіуса третинного дзеркала від відстані між дзеркалами можна описати формулою

$$R_{3} = (0.97...1.03) \times$$
$$\times \left(\frac{0.0213}{d_{1H}}d_{2H}^{2} + 0.65\sqrt[4]{\frac{d_{1H}}{0.087}}|d_{2H}| + 0.01\right)f_{ob}'.$$

Для виправлення аберацій конічні сталі оптичних поверхонь дзеркал в залежності від відстані між дзеркалами повинні змінюватися у відповідності до формул

$$k_{1} = (0.97...1.03) \left(0.173 \sqrt{\frac{d_{1H}}{0.085}} |d_{2H}| - 0.994 \right),$$

$$k_{2} = (0.98...1.02) \times$$

$$\times \left(-6.3 \sqrt[3]{\frac{d_{1H}}{0.085}} d_{2H}^{2} + 7.3 \sqrt[3]{\frac{d_{1H}}{0.085}} |d_{2H}| - 4.57 \sqrt{\frac{d_{1H}}{0.085}} \right),$$

$$k_{3} = (0.98...1.02) \times$$

$$\kappa \left(-0.7d^{2} + \frac{0.88}{0.085} |d_{2H}| - \frac{0.63}{0.063} \right)$$

× $\begin{bmatrix} -0.7a_{2H} + \frac{1}{\sqrt{\frac{d_{1H}}{0.082}}}a_{2H} - \frac{1}{\sqrt{\frac{d_{1H}}{0.084}}} \end{bmatrix}$. Площина проміжного зображення в об'єктиві

знаходиться від вторинного дзеркала на відстані

$$S'_{K} = -(0.97...1.03) \times \left(0.02d_{2H}^{2} + \frac{0.44}{\sqrt[3]{d_{1H} / 0.087}} |d_{2H}| + 0.007 \right) f'_{ob} ,$$

а задній фокальний відрізок об'єктива S'_{ob} в залежності від відстані між дзеркалами повинен змінюватися у відповідності до формули

$$S'_{ob} \approx -\left(-0.7d_{2H}^2 + 0.8 \left|d_{2H}\right| + \frac{0.047}{\left(d_{1H} / 0.085\right)^2}\right) f'_{ob}.$$

Третинне дзеркало створює в фокальній площині об'єктива зображення, яке формується об'єктивом Кассегрена зі збільшенням β , яке підпорядковується закону

$$\beta = -\left(9.9d_{2H}^2 - \frac{9|d_{2H}|}{\sqrt{d_{1H}/0.085}} + \frac{4.18}{\sqrt{d_{1H}/0.085}}\right).$$

На відміну від об'єктива Корша, де третинне дзеркало створює зображення зі збільшенням $\beta \approx -1^{\times}$, в об'єктиві з виправленою дисторсією збільшення третинного дзеркала повинно бути $\beta < -2^{\times}$. Вихідна зіниця об'єктива знаходиться на відстані $S'_{P'}$ від фокальної площини поблизу площини проміжного зображення

$$S'_{P'} = \left(-0.7d_{2H}^2 + \frac{0.795}{\sqrt[8]{\frac{d_{1H}}{0.085}}} |d_{2H}| + \frac{0.039}{\left(\frac{d_{1H}}{0.085}\right)^{1.23}}\right) f'_{ob} \,.$$

висновок

Отримані в результаті дослідження емпіричні формули конструктивних параметрів тридзеркального осесиметричного об'єктива дозволяють швидко сконструювати довгофокусний об'єктив, в якому виправлено всі п'ять аберацій третього порядку (сферична аберація, кома, астигматизм, кривизна поля зору та дисторсія). Для виправлення дисторсії збільшення третинного дзеркала повинно бути $\beta < -2^{\times}$.

Відносний отвір об'єктива становить від 1:20 до 1:10, а поле зору в залежності від вибраних відстаней між дзеркалами від $2\omega = 1^{\circ}$ до $2\omega = 2.6^{\circ}$.

В об'єктиві всі три дзеркала осесиметричні, що значно спрощує виготовлення і контроль дзеркал та юстування об'єктива. Оптична довжина об'єктива може сягати $0.1f_{O}'$, що дозволяє створювати малогабаритні довгофокусні об'єктиви для систем дистанційного зондування Землі з надвисокою просторовою розрізненістю.

ЛІТЕРАТУРА

- Пат. 113104 України на винахід. Тридзеркальний анастигматичний бездисторсійний об'єктив / В. М. Тягур, М. І. Лихоліт. — 2016. — 13 с.
- 2. *Слюсарев Г. Г.* Методы расчета оптических систем. Л.: Машиностроение, 1969. 672 с.
- 3. *Слюсарев Г. Г.* Расчет оптических систем. Л.: Машиностроение, 1975. — 640 с.
- 4. *Цуканова Г. И*. Трехзеркальные ортоскопические объективы с промежуточным изображением // Оптич. журн. 1999. 66, № 12. С. 21—23.
- Pat. 4101195 USA, G02B17/06. Anastigmatic threemirror telescope / R. A. Frosch, D. G. Korsch. – Publ. 18.07.78.

Стаття надійшла до редакції 13.06.17

REFERENCES

1. *Patent* of Ukraine N 113104, G02B17/06. Three-mirror anastigmatic free from distortion lens / V. M. Tiagur,

ISSN 1561-8889. Космічна наука і технологія. 2017. Т. 23. № 5

N. I. Lykholit, declared 22.04.2015; publ. 12.12.2016, N 23 [in Ukraine].

- 2. *Sljusarev G. G.* Metody rascheta opticheskih sistem [Methods of optical systems calculating], 672. p. (Mashinostroenie, L., 1969) [in Russian].
- 3. *Sljusarev G. G.* Raschet opticheskih sistem [Calculation of optical systems], 640 p. (Mashinostroenie, L., 1975) [in Russian].
- Cukanova G. I. Trehzerkal'nye ortoskopicheskie obektivy s promezhutochnym izobrazheniem [Three-mirror orthoscopic lens with intermediate image]. Opticheskij zhurnal, 66 (N 12), 21–23 (1999) [in Russian].
- 5. *Patent* of USA 4101195, G02B17/06. Anastigmatic threemirror telescope / R. A. Frosch, D. G. Korsch; declared 29.07.77; published 18.07.78 [in English].

Received 13.06.17

В. М. Тягур

Казенное предприятие специального приборостроения «Арсенал», Киев, Украина

ТРЕХЗЕРКАЛЬНЫЙ АНАСТИГМАТИЧЕСКИЙ ОСЕСИММЕТРИЧНЫЙ ОБЪЕКТИВ С ИСПРАВЛЕННОЙ ДИСТОРСИЕЙ

В работе представлены результаты исследования свойств трехзеркального анастигматического осесимметричного

объектива. Приведены формулы для расчета конструктивных параметров зеркал и положений фокальной плоскости и плоскости промежуточного изображения при заданных фокусном расстоянии объектива и расстояний между зеркалами, при которых в объективе исправлена дисторсия.

Ключевые слова: трехзеркальный анастигматический осесимметричный объектив, исправленная дисторсия.

V. M. Tiagur

Special Device Production State Enterprise "Arsenal", Kyiv

THREE-MIRROR ANASTIGMATIC ON-AXIS LENS WITH A CORRECTED DISTORTION

We describe results of research of design features of the threemirror anastigmatic on-axis lens, which is free from distortion. Formulas for calculation of radiuses and conic constants of mirrors for specified values of lens focal length and distance between mirrors are given.

Keywords: three-mirror anastigmatic on-axis lens, corrected distortion.