doi: https://doi.org/10.15407/knit2017.03.038

УДК 629.7.05

А. И. Ткаченко

Международный научно-учебный центр информационных технологий и систем Национальной академии наук Украины и Министерства образования и науки Украины, Киев, Украина

ВТОРОЕ ПРИБЛИЖЕНИЕ ПОЛЕТНОЙ ГЕОМЕТРИЧЕСКОЙ КАЛИБРОВКИ

Рассматривается возможность улучшения точности полетной геометрической калибровки съемочного комплекса космического аппарата путем использования уравнений второго приближения.

Ключевые слова: полетная геометрическая калибровка, космический аппарат, маркеры, камера, звездный датчик, второе приближение.

В круге публикаций, к которому относится настоящая работа [1, 3–5], понятие полетной геометрической калибровки (далее — калибровки) ограничивается последовательностью действий по уточнению взаимной ориентации съемочной камеры и звездного датчика в корпусе космического аппарата (КА), несущего эти приборы. Неопределенность названной ориентации происходит от технологического несовершенства процедур предполетной наземной калибровки и от факторов, влияющих на бортовой оптико-электронный комплекс при запуске и эксплуатации КА. Считаем, что при калибровке используются снимки координатно привязанных наземных ориентиров (маркеров), находящихся на трассе полета КА или вблизи нее. Калибровка включает полетный этап — съемку маркеров с орбиты — и наземный этап — обработку снимков, переданных на землю вместе с синхронно полученными показаниями звездного датчика и аппаратуры потребителя GPS.

Введем, как в работе [4], ортонормированные координатные базисы: базис **К**, связанный с каме-

© А. И. ТКАЧЕНКО, 2017

рой, с началом в ее центре проекции — точке O; базис **E**, связанный со звездным датчиком, условно с тем же началом; базис **J** — геоцентрический, произвольным образом связанный с Землей. Представления трехмерных векторов в каком-либо из базисов отмечаем соответствующими нижними индексами. Преобразование координат из базиса **K** в **E** определяется неизвестной матрицей вращения C_{EK} . Она аппроксимируется заданной матрицей вращения C_{EK}^* . В первом приближении

$$\mathbf{C}^{*}_{EK} \approx [\mathbf{E}_{3} + \Phi(\boldsymbol{\theta}_{E})] \mathbf{C}_{EK}, \qquad (1)$$

где $\mathbf{\theta}_E = [\mathbf{\theta}_1, \mathbf{\theta}_2, \mathbf{\theta}_3]^{\mathrm{T}} = \text{const} - \text{вектор малого по$ ворота, характеризующий ошибку предполетной $калибровки, <math>\mathbf{E}_3 - \text{единичная} (3 \times 3)$ -матрица, $\mathbf{\Phi}$ - кососимметрическая (3×3) -матрица оператора векторного умножения. Вектор $\mathbf{\theta}_E^*$, найденный в процессе калибровки как достаточно точная оценка вектора $\mathbf{\theta}_E$, используется для коррекции матрицы по формуле первого приближения

$$C_{EK} \approx [E_3 + \Phi(\theta^*_E)] C^*_{EK}.$$
 (2)

Пусть P — место нахождения маркера на земной поверхности, заданное геоцентрическим радиусом-вектором $\mathbf{r}_{j} = \text{const}, \mathbf{R}_{j}$ — геоцентрический радиус-вектор точки O в момент съемки маркера

ISSN 1561-8889. Космічна наука і технологія. 2017. Т. 23. № 3

P, найденный с помощью бортовой аппаратуры GPS, \mathbf{e}_{j} — единичный вектор, полученный нормированием вектора $\mathbf{R}_{J} - \mathbf{r}_{J}$, \mathbf{e}_{K} — единичный вектор прямой *PO*, найденный с помощью камеры,

$$\mathbf{e}_{j}^{*} = \mathbf{C}_{JE} \mathbf{e}_{E}^{*} \mathbf{e}_{E}^{*} = \mathbf{C}_{EK} \mathbf{e}_{K}^{*}, \qquad (3)$$

 C_{JE} — матрица преобразования координат из базиса **E** в **J**, найденная с использованием показаний бортового звездного датчика. Оценка первого приближения θ_E^* для вектора θ_E может быть найдена в результате полетной калибровки как решение системы уравнений, соответствующих доступным снимкам и запечатленным маркерам [4]:

$$G \theta_E^* = \mathbf{e}_j^* - \mathbf{e}_j, \qquad (4)$$
$$G = -C_{IF} \Phi (\mathbf{e}_F^*).$$

Система уравнений (4) решается методом наименьших квадратов. Если предполетная наземная калибровка обеспечила исходные значения элементов θ_E порядка 10', то в результате последующей полетной калибровки путем решения уравнений (4) и уточнения матрицы C^*_{EK} по формуле (2) может быть достигнута остаточная точность определения взаимной ориентации базисов **К** и **E** порядка 10" [1, 3—5].

Предполетная наземная калибровка требует сложного оборудования и значительных трудозатрат. В этой связи может оказаться полезной технология второго приближения в полетной калибровке. Для ее обоснования заимствуем с точностью до обозначений, например, формулу (1.3.11) из работы [2]:

$$C_{EK}^{*} = \left[E_{3} + \frac{\sin\theta}{\theta} \Phi(\theta_{E}) + \frac{1 - \cos\theta}{\theta^{2}} \Phi^{2}(\theta_{E}) \right] C_{EK}, (5)$$
$$\boldsymbol{\theta} = (\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta})^{1/2} .$$

Выполним корректное упрощение формулы (5), проигнорировав величины выше второго порядка малости относительно θ_E и θ . В результате получается выражение второго приближения для C^*_{EK} , более точное, чем (1): $C^*_{EK} \approx [E_3 + \Phi(\theta_E) + \Phi^2(\theta_E)/2] C_{EK}$. Из него и из (3) следует уравнение второго приближения жения

$$G \boldsymbol{\theta}^{**}_{E} = \mathbf{e}^{*}_{j} - \mathbf{e}_{j} + C_{JE} \Phi^{2}(\boldsymbol{\theta}^{*}_{E}) \, \mathbf{e}^{*}_{E}/2.$$
(6)

При реализации формулы (6) используются те же показания камеры, звездного датчика и GPS,

что и в формуле (4), причем без дополнительных преобразований информации. Оценка второго приближения $\boldsymbol{\theta}^{**}_{E}$, полученная путем решения доступных уравнений (6), используется вместо $\boldsymbol{\theta}^{*}_{E}$ при уточнении матрицы C^{*}_{EK} по формуле (2).

Компьютерное моделирование процессов калибровки по формулам (4), (6) выполнялось при условиях, близких к тем, которые предусмотрены в работах [4, 5], включая характеристики возмущений. Имитировалось движение КА по слабоэллиптической солнечно-синхронной орбите высотой около 670 км. Три известных маркера располагались в вершинах равнобедренного прямоугольного треугольника с катетом с. Съемка маркеров производилась, когда они находились на трассе полета или вблизи нее. Моделирование реализовалось как серия вариантов счета, в которой для формирования всех случайных величин использовался генератор последовательности псевдослучайных чисел, инициированной в первом варианте серии и переходящей из варианта в вариант. Серии различались значениями с и порядком приближения при калибровке. В каждом варианте значения $\theta_1, \theta_2, \theta_3$ задавались заново как нормально распределенные центрированные случайные величины. Ошибки звездного датчика вводились при каждом измерении как нормально распределенные случайные углы поворотов вокруг двух направлений, перпендикулярных к оптической оси датчика, и вокруг самой этой оси со средними квадратичными отклонениями 5", 5" и 12" соответственно. Точность восстановления линии визирования маркера по измеренным координатам изображения на чувствительной площадке камеры характеризуется случайными ошибками, связанными с размером пиксела камеры 8.75 мкм. Среднее квадратичное отклонение нормально распределенных случайных ошибок GPS составляет 3 м.

Статистические характеристики остаточных ошибок калибровки θ_1 , θ_2 , θ_3 — средние квадратичные отклонения $\sigma_{\theta 1}$, $\sigma_{\theta 2}$, $\sigma_{\theta 3}$ — рассчитывались в секундах дуги на основании обработки 100 вариантов серии. Существенная особенность моделирования состояла в том, что среднему квадратичному отклонению исходных ошибок θ_1 , θ_2 , θ_3 приписывалось не значение 10′, как в работах

С, КМ	A	$\sigma_{\theta 1}$	$\sigma_{\theta 2}$	$\sigma_{\theta 3}$
6.7	2	6.2	5.1	35.6
6.7	1	32.6	27.3	39.3
0.8	2	8.4	6.5	267.2
0.8	1	33.0	27.4	268.1

Таблица 1. Ошибки калибровки. Один снимок

Таблица 2. Ошибки калибровки. Шесть снимков

с, км	A	$\sigma_{\theta 1}$	$\sigma_{\theta 2}$	$\sigma_{\theta 3}$
6.7	2	2.1	2.2	24.4
6.7	1	32.0	26.9	29.6
0.8	2	4.2	4.0	184.4
0.8	1	32.1	27.1	186.1

[4, 5], а значение 60'. Столь утрированно грубое предположение вводилось с целью отчетливо выявить эффект второго приближения (6).

Некоторые результаты моделирования калибровки с использованием единственного снимка маркеров, выполненного из положения КА непосредственно над участком с маркерами, представлены в табл. 1. Первая графа табл. 1 содержит значения с при реализации конкретной серии вариантов, к которой относится соответствующая строка. Во второй графе (*A* — арргохітаtion) указан порядок приближения при калибровке: 1 первое (только уравнения (4)), 2 — второе (уравнения (4) и (6)). В трех последних графах даны собственно результаты моделирования в охарактеризованной выше форме.

В табл. 2 подобным образом показаны результаты калибровки с использованием шести снимков участка с теми же маркерами. Промежуток между последовательными моментами экспонирования 7 с. В процессе съемок при наведении оптической оси камеры на участок с маркерами тангаж КА варьировался от 12° при первом экспонировании до -12° при последнем.

Прежде всего заметно, как в принятых условиях переход от первого приближения ко второму повышает точность калибровки. В иных, менее грубых начальных предположениях второе приближение калибровки по меньшей мере не ухудшает точности по сравнению с первым приближением. Вообще значительное расхождение первого и второго приближений — признак аномально больших начальных значений θ_F.

Увеличение расстояний между маркерами улучшает обусловленность системы уравнений вида (4) и тем самым способствует повышению точности калибровки. Из табл. 1 и 2 видно, что во втором приближении, как и следовало ожидать, точность калибровки снижается с уменьшением с и что в первом приближении подобный эффект практически незаметен на фоне ошибок, вызванных грубостью исходных данных. Нетрудно установить, как при использовании нескольких снимков проявляются порознь факторы расширения информации и второго приближения и сколь благоприятно совместное воздействие этих факторов на точность калибровки.

Результаты калибровки использовались при моделировании координатной привязки наземных объектов по методике, изложенной в работе [4]. Выполнялось шесть снимков квадратного участка 7 × 7 км с неизвестными точечными объектами. Если координатной привязке предшествовала калибровка во втором приближении, то точность локализации неизвестных объектов характеризовалась средними квадратичными отклонениями 10-20 м. Если же в координатной привязке использовались только результаты первого приближения калибровки, то такого же типа характеристики точности привязки увеличивались до 70-80 м. Уместно отметить, что уточнения результатов калибровки во втором приближении относятся прежде всего к ошибкам θ_1, θ_2 . Последние оказывают определяющее влияние на точность координатной привязки наземных объектов, относительно близких к точке пересечения оптической оси камеры с земной поверхностью [5].

Возможно, прием второго приближения в полетной калибровке позволил бы ослабить требования к наземной предполетной калибровке и упростить эту процедуру.

ЛИТЕРАТУРА

- Лебедев Д. В. О привязке космических снимков по орбитальным данным // Проблемы управления и информатики. — 2016. — № 6. — С. 120—132
- Панов А. П. Математические основы теории инерциальной ориентации. — Киев: Наук. думка, 1995. — 280 с.

- 3. *Ткаченко А. И*. Алгоритмы согласования ориентации звездного датчика и камеры космического аппарата // Проблемы управления и информатики. 2015. № 3. С. 116—126.
- 4. *Ткаченко А. И.* О координатной привязке наземных объектов по космическим снимкам // Космічна наука і технологія. — 2015. — **21**, № 2. — С. 65—72.
- 5. *Ткаченко А. И.* Координатная привязка наземных объектов по неточным космическим снимкам // Проблемы управления и информатики. 2016. № 4. С. 116—123.

Стаття надійшла до редакції 13.04.17

REFERENCES

- Lebedev D. V. On the coordinate determination of space images by orbital data. Problemy upravleniya i informatiki, N 1, 120–132 (2015) [in Russian].
- 2. *Panov A. P.* Mathematical Fundamentals of Inertial Orientation Theory, 280 p. (Naukova dumka, Kiev, 1995) [in Russian].
- 3. *Tkachenko A. I.* Algorithms of the attitude matching of star tracker and camera of the spacecraft. *Problemy upravleniya i informatiki*, N 3, 115–136 (2015) [in Russian].
- 4. *Tkachenko A. I.* On a geo-referencing of terrestrial objects using space snapshots. *Kosm. nauka tehnol.*, **21** (4), 65–72 (2015) [in Russian].
- Tkachenko A. I. Geo-referencing of ground object using inexact space snapshots. *Problemy upravleniya i informatiki*, No 4, 116–123 (2016) [in Russian].

О. І. Ткаченко

Міжнародний науково-навчальний центр інформаційних технологій та систем Національної академії наук України і Міністерства освіти і науки України, Київ, Україна

ДРУГЕ НАБЛИЖЕННЯ ПОЛЬОТНОГО ГЕОМЕТРИЧНОГО КАЛІБРУВАННЯ

Розглядається можливість поліпшення точності польотного геометричного калібрування знімального комплексу космічного апарата шляхом використання рівнянь другого наближення.

Ключові слова: польотне геометричне калібрування, космічний апарат, маркери, камера, зоряний датник, рівняння другого наближення.

A. I. Tkachenko

International Research and Training Center for Information Technologies and Systems of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Kyiv, Ukraine

THE SECOND APPROXIMATION OF THE IN-FLIGHT GEOMETRIC CALIBRATION

We consider and explain an application of the second approximation equations for the accuracy improvement of the inflight geometric calibration of a spacecraft imaging complex.

Keywords: in-flight geometric calibration, spacecraft, landmarks, camera, star tracker, second approximation equations.