УДК 629.197

А. Л. Макаров¹, Д. К. Мозговой², А. М. Кулабухов², В. С. Хорошилов¹, В. Н. Балашов¹, В. М. Попель¹ ¹Державне підприємство «Конструкторське бюро «Південне» ім. М. К. Янгеля», Дніпропетровськ ²Дніпропетровський національний університет імені Олеся Гончара

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОТЯЖЕННЫХ ОБЪЕКТОВ СПУТНИКОВОЙ СЪЕМКИ

Приведена методика математического описания протяженных объектов сложной конфигурации при планировании спутниковой съемки с применением спутников дистанционного зондирования Земли с оптико-электронными сканерами высокого пространственного разрешения. Методика основана на использовании сплайн-интерполяции. Она позволяет получать оптимальное покрытие съемки с учетом полосы захвата съемочного прибора, требуемого направления сканирования и ограничений системы ориентации спутника.

ПОСТАНОВКА ПРОБЛЕМЫ

При планировании спутниковой съемки протяженных территорий сложной конфигурации (границы, дороги, реки, береговые линии и т. п.), расположенных не вдоль подспутниковой трассы, возникает проблема, связанная с узкой (обычно от 5 до 20 км) полосой захвата оптико-электронных сканеров высокого пространственного разрешения, не позволяющей оперативно снимать произвольно расположенные протяженные участки за один виток [3, 7, 10, 13]. Как правило, в таких случаях необходима съемка нескольких сцен с разных витков, причем для солнечно-синхронных орбит, характерных для спутников ДЗЗ с оптико-электронными сканерами, за сутки одна и та же территория может быть снята только на одном витке. Поэтому даже двухвитковая съемка может потребовать при отсутствии облачности и ограничений на минимальные углы съемки нескольких дней (в зависимости от полосы захвата сканера и диапазона углов перенацеливания спутника). С учетом условий облачности съемка может потребовать еще больше времени, что для большинства прикладных и научных задач неприемлемо [2, 14, 15].

Некоторые зарубежные спутники с оптикоэлектронными сканерами высокого пространственного разрешения позволяют выполнять съемку произвольно ориентированных прямолинейных протяженных участков. Однако съемка протяжных территорий сложной конфигурации обычно выполняется за несколько витков [1, 9, 11].

ЗАДАЧИ ИССЛЕДОВАНИЯ

Существенно повысить оперативность спутниковой съемки протяжных территорий сложной конфигурации позволяет новый метод съемки в процессе перенацеливания (т. е. с ненулевыми угловыми скоростями), реализуемый с помощью программного управления ориентацией спутника [4, 6].

Основными этапами планирования такой съемки являются:

• аппроксимация протяженного объекта, заданного отдельными точками на цифровой картооснове (линейная, квадратичная, сплайновая и т. п.),

• определение оптимального покрытия протяженного объекта путем моделирования съемки с учетом полосы захвата съемочного прибора, требуемого направления сканирования и ограничений системы ориентации спутника.

[©] А. Л. МАКАРОВ, Д. К. МОЗГОВОЙ, А. М. КУЛАБУХОВ, В. С. ХОРОШИЛОВ, В. Н. БАЛАШОВ, В. М. ПОПЕЛЬ, 2014

В. С. ХОРОШИЛОВ, В. Н. БАЛАШОВ, В. М. ПОПЕЛЬ, 2014

МЕТОД СПЛАЙН-ИНТЕРПОЛЯЦИИ

Для математического описания протяженного объекта функцией S(x) используется естественный кубический интерполирующий сплайн [3, 7, 10], в котором $S''(x_0) = 0$ и $S''(x_n) = 0$, с последующим сглаживанием методом наименьших квадратов. Снимаемый объект задается на карте узловыми точками x_i с произвольным шагом по широте и долготе (количество узловых точек объекта n = 6...9).

Функция S(x) интерполируется полиномом

 $S_{i}(x) = \omega y_{i} + \overline{\omega} y_{i-1} + h_{i}^{2} [(\omega^{3} - \omega)\delta_{i} + (\overline{\omega}^{3} - \overline{\omega})\delta_{i-1}],$ где

$$h_i = x_{i+1} - x_i, \ \omega = \frac{x - x_i}{h_{i+1}}, \ \overline{\omega} = 1 - \omega$$

Коэффициенты сплайна $\delta_0 = 0$, $\delta_n = 0$, а $\delta_1 \dots \delta_{n-1}$ находятся из системы линейных уравнений

$$\begin{pmatrix} 2[h_{1}+h_{2}] & h_{2} & 0 & \dots & 0 \\ h_{2} & 2[h_{2}+h_{3}] & h_{3} & \dots & 0 \\ 0 & h_{3} & 2[h_{3}+h_{4}] & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & h_{n-1} & 2[h_{n-1}+h_{n}] \end{pmatrix} \times \\ \times \begin{pmatrix} \delta_{1} \\ \delta_{2} \\ \delta_{3} \\ \dots \\ \delta_{n-1} \end{pmatrix} = \begin{pmatrix} \Delta_{2} - \Delta_{1} \\ \Delta_{3} - \Delta_{2} \\ \Delta_{4} - \Delta_{3} \\ \dots \\ \Delta_{n} - \Delta_{n-1} \end{pmatrix}.$$
(1)

Ее матрица является трехдиагональной, симметричной, со строгим диагональным преобладанием. Система (1) эффективно решается методом прогонки.

На рис. 1 показан кубический интерполирующий сплайн и сглаживающие сплайны при коэффициентах сглаживания 0.8 и 0.3. Узловые точки сплайна показаны крестиками, а штриховой линией показана их линейная аппроксимация методом наименьших квадратов.

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

При использовании метода наименьших квадратов наилучшими коэффициентами $a_1, a_2, ..., a_m$ аппроксимирующей функции *S* считаются те, для которых сумма квадратов отклонений найденной теоретической функции от заданных эмпирических значений будет минимальной [2, 8, 15]. Следовательно, задача состоит в определении коэффициентов $a_1, a_2, ..., a_m$ таким образом (т. е. в выборе одной кривой из множества), чтобы сумма квадратов отклонений была наименьшей

$$S(a_1, a_2, ..., a_m) =$$

= $\sum_{i=1}^{n} [f(x_i; a_1, a_2, ..., a_m) - y_i]^2 \rightarrow \min,$ (2)

где $a_1, a_2, ..., a_m$ — коэффициенты аппроксимации.

Чтобы найти набор коэффициентов $a_1, a_2, ..., a_m$, которые обеспечивают минимум функции S, определяемой формулой (1), используется необходимое условие экстремума функции нескольких переменных — равенство нулю частных производных. В результате получим нормальную систему для определения коэффициентов a_i

$$\frac{\partial S}{\partial a_1} = 0, \ \frac{\partial S}{\partial a_2} = 0, \ \dots \ \frac{\partial S}{\partial a_m} = 0.$$
 (3)

Эта система упрощается, если эмпирическая формула (2) линейна относительно параметров *a*,, тогда система (3) будет линейной.

В случае линейной зависимости $y = a_1 + a_2 x$ система (3) примет вид

$$\begin{cases} a_1 \sum_{i=1}^n x_i + a_2 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i \\ a_2 \sum_{i=1}^n x_i + a_1 n = \sum_{i=1}^n y_i . \end{cases}$$

Коэффициенты а, определяются по формулам

$$a_{0} = \frac{\sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}},$$
$$a_{1} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}.$$

МЕТОД ПРОГОНКИ

Систему уравнений (1) для нахождения коэффициентов кубического интерполирующего сплайна можно представить в виде [5—7]

$$\begin{pmatrix} a_{0} & b_{0} & 0 & 0 & \cdots & 0 & 0 & 0 \\ c_{1} & a_{1} & b_{1} & 0 & \cdots & 0 & 0 & 0 \\ 0 & c_{2} & a_{2} & b_{2} & \cdots & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 0 & c_{n-2} & a_{n-2} & b_{n-2} & 0 \\ 0 & 0 & 0 & \cdots & 0 & c_{n-1} & a_{n-1} & b_{n-1} \\ 0 & 0 & 0 & \cdots & 0 & 0 & c_{n} & a_{n} \end{pmatrix} \times$$

$$\times \begin{pmatrix} m_{0} \\ m_{1} \\ m_{2} \\ \vdots \\ m_{n-2} \\ m_{n-1} \\ m_{n} \end{pmatrix} = \begin{pmatrix} d_{0} \\ d_{1} \\ d_{2} \\ \vdots \\ d_{n-2} \\ d_{n-1} \\ d_{n} \end{pmatrix},$$

$$(4)$$

где

$$a_{0} = \frac{h_{1}}{3}, b_{0} = \frac{h_{1}}{6}, d_{0} = -p_{0} + \frac{y_{1} - y_{0}}{h_{1}},$$

$$c_{n} = \frac{h_{n}}{6}, a_{n} = \frac{h_{n}}{3}, d_{n} = p_{n} - \frac{y_{n} - y_{n-1}}{h_{n}},$$

$$c_{i} = \frac{h_{i}}{6}, a_{i} = \frac{h_{i} + h_{i+1}}{3}, b_{i} = \frac{h_{i+1}}{6},$$

$$d_{i} = \frac{y_{i+1} - y_{i}}{h_{i+1}} - \frac{y_{i} - y_{i-1}}{h_{i}}, i = 1, ..., n - 1$$

Решение трехдиагональной системы (4) находится в виде

$$m_i = \lambda_i m_{i+1} + \mu_i,$$

 $i = 0, ..., n - 1,$

где λ_i , μ_i — прогоночные коэффициенты ($m_n = \mu_n$ при $b_n = 0$).

Рекуррентные формулы для прогоночных коэффициентов λ_,, μ, имеют вид

$$\lambda_{0} = -\frac{b_{0}}{a_{0}}, \ \mu_{0} = \frac{d_{0}}{a_{0}},$$
$$\lambda_{i} = \frac{-b_{i}}{a_{i} + c_{i}\lambda_{i-1}}, \ \mu_{i} = \frac{d_{i} - c_{i}\mu_{i-1}}{a_{i} + c_{i}\lambda_{i-1}}$$
$$i = 1, ..., n.$$

Рис. 1. Кубические сглаживающие сплайны: *а* — кубический интерполирующий сплайн; *б*, *в* — сглаживающие сплайны при коэффициентах сглаживания 0.8 и 0.3. Крестики — узловые точки сплайна, штриховая линия — линейная аппроксимация

МОДЕЛЬ РЕЛЬЕФА ТЕРРИТОРИИ СЪЕМКИ

Модель рельефа территории съемки может быть создана одним из следующих способов [1, 9, 12]: по данным спутниковой стереосъемки, по данным спутниковой радиолокационной съемки, по данным наземной геодезической съемки, по данным GPS-съемки, синтезирована из слоя рельефа цифровой карты местности.

В настоящее время в картографии и ГИС используются векторные (изолинии, TIN-сетки) и растровые (матрицы высот, светотени) цифровые модели рельефа. В данной работе используется растровая модель рельефа территории съемки SRTM-90, полученная по данным спутниковой радиолокационной съемки и преобразованная в файл формата DEM.

ПЕРЕХОДЫ МЕЖДУ КАРТОГРАФИЧЕСКИМИ СИСТЕМАМИ КООРДИНАТ

Поскольку выбор узловых точек протяженного объекта и последующая сплайн-аппроксимация

ISSN 1561-8889. Космічна наука і технологія. 2014. Т. 20. № 1

выполняются в географической (широтно-долготной) системе координат, а большинство современных крупномасштабных электронных карт выполнены в картографических проекциях (как правило, в UTM), то при планировании и моделировании спутниковой съемки необходимо выполнять преобразование картографических координат в географические и обратно [2, 15].

Переход от геодезических координат к картографическим. Переход от геодезических координат спутника φ и λ к картографическим координатам *x* и *y* производится по формулам

$$y = B(\phi) + \frac{t}{2}N\cos^{2}\phi \cdot l^{2} + \frac{t}{24}N\cos^{4}\phi \cdot (5 - t^{2} + 9\eta^{2})l^{4} + \frac{t}{720}N\cos^{6}\phi \cdot (61 - 58t^{2} + t^{4} + 270\eta^{2} - 330t^{2}\eta^{2})l^{6} + \frac{t}{40320}N\cos^{8}\phi \cdot (1385 - 3111t^{2} + 543t^{4} - t^{6})l^{8},$$
$$x = N\cos\phi \cdot l + \frac{1}{6}N\cos^{3}\phi \cdot (1 - t^{2} + \eta^{2})l^{3} + \frac{1}{120}N\cos^{5}\phi \cdot (5 - 18t^{2} + t^{4} + 14\eta^{2} - 58t^{2}\eta^{2})l^{5} + \frac{1}{5040}N\cos^{7}\phi \cdot (61 - 479t^{2} + 179t^{4} - t^{6})l^{7},$$

где $B(\phi)$ — длина дуги меридиана от экватора, $N = \frac{a^2}{b\sqrt{1+\eta^2}}$ — радиус кривизны в первом вертикале, $\eta^2 = e'^2 \cos^2 \phi$ — вспомогательный параметр, $e'^2 = (a^2 - b^2)/b^2$ — второй числовой эксцентриситет, $t = tg\phi$ — вспомогательная величина, $l = \lambda - \lambda_0$ — разность долгот, λ_0 — долгота центрального меридиана.

Длина дуги меридиана $B(\phi)$ вычисляется при помощи следующего разложения в ряд:

 $B(\phi) = \alpha [\phi + \beta \sin 2\phi + \gamma \sin 4\phi + \delta \sin 6\phi + \varepsilon \sin 8\phi],$ где

$$\alpha = \frac{a+b}{2} \left(1 + \frac{1}{4}n^2 + \frac{1}{64}n^4 \right),$$

$$\beta = -\frac{3}{2}n + \frac{9}{16}n^3 - \frac{3}{32}n^5,$$

$$\gamma = \frac{15}{16}n^2 - \frac{15}{32}n^4,$$

$$\delta = -\frac{35}{48}n^3 + \frac{105}{256}n^4,$$

$$\varepsilon = \frac{315}{512}n^4,$$
$$n = \frac{a-b}{a+b}.$$

Переход от картографических координат к геодезическим. Переход от картографических координат спутника *x* и *y* к геодезическим координатам φ и λ производится по формулам

$$\begin{split} \varphi &= \varphi' + \frac{t}{2N^2} (-1 - \eta^2) x^2 + \\ &+ \frac{t}{24N^4} (5 + 3t^2 + 6\eta^2 - 6t^2\eta^2 - 3\eta^4 - 9t^2\eta^4) x^4 + \\ &+ \frac{t}{720N^6} (-61 - 90t^2 - 45t^4 - 107\eta^2 + 162t^2\eta^2 + 45t^4\eta^2) x^6 + \\ &+ \frac{t}{40320N^8} (1385 + 3633t^2 + 4095t^4 + 1575t^6) x^8, \\ \lambda &= \lambda_0 + \frac{1}{N\cos\varphi} x + \frac{1}{6N^3\cos\varphi} (-1 - 2t^2 - \eta^2) x^3 + \\ &+ \frac{1}{120N^5\cos\varphi} (5 + 28t^2 + 24t^4 + 6\eta^2 + 8t^2\eta^2) x^5 + \\ &+ \frac{1}{5040N^7\cos\varphi} (-61 - 662t^2 - 1320t^4 - 720t^6) x^7, \end{split}$$

где *N*, η, *t* вычисляются для значения широты точки пересечения ϕ'

 $\phi' = y' + \beta \sin 2y' + \gamma \sin 4y' + \delta \sin 6y' + \epsilon \sin 8y'$, где

$$\alpha = \frac{a+b}{2} \left(1 + \frac{1}{4}n^2 + \frac{1}{64}n^4 \right),$$

$$\beta = \frac{3}{2}n - \frac{27}{32}n^3 + \frac{269}{512}n^5, \quad \gamma = \frac{21}{16}n^2 - \frac{55}{32}n^4,$$

$$\delta = \frac{151}{96}n^3 - \frac{417}{128}n^4, \quad \varepsilon = \frac{1097}{512}n^4, \quad y' = \frac{y}{\alpha}.$$

АППРОКСИМАЦИЯ ПРОТЯЖЕННОГО ОБЪЕКТА

Для аппроксимации протяженных объектов сложной конфигурации наиболее эффективны методы сплайн-аппроксимации [7, 9, 16]. На рис. 2 показана кусочно-линейная аппроксимация узловых точек объекта съемки (приграничной территории). Легко видеть, что линейная аппроксимация не обеспечивает полного покрытия объекта съемки.

На рис. 3 показаны контуры покрытия при сплайн-интерполяции заданного протяженного

ISSN 1561-8889. Космічна наука і технологія. 2014. Т. 20. № 1

Рис. 2. Кусочно-линейная аппроксимация объекта съемки

Рис. 3. Контур покрытия при сплайн-интерполяции объекта съемки

Рис. 4. Контур покрытия при сплайн-аппроксимации объекта съемки

ISSN 1561-8889. Космічна наука і технологія. 2014. Т. 20. № 1

участка приграничной территории. Как видно из рис. 3, сплайн-интерполяция имеет существенную кривизну, что требует динамичного перенацеливания спутника.

Определение оптимального покрытия протяженного объекта с учетом полосы захвата съемочного прибора и требуемого направления сканирования производится путем подбора коэффициента сглаживания сплайна и при необходимости — сдвигов и поворотов контура покрытия.

На рис. 4 показаны контуры покрытия при сплайн-аппроксимации заданного протяженного участка приграничной территории. Как видно из рис. 4, сплайн-аппроксимация обеспечивает полное покрытие заданного участка приграничной территории при меньшей кривизне контура сцены.

выводы

Предложена эффективная методика математического описания протяженных объектов сложной конфигурации с использованием сплайнаппроксимации.

Данная методика позволяет получать оптимальное покрытие протяженного объекта путем подбора коэффициента сглаживания сплайна и при необходимости сдвигов и поворотов контура покрытия с учетом полосы захвата съемочного прибора, требуемого направления сканирования и ограничений на диапазоны углов перенацеливания и угловых скоростей спутника.

Результаты компьютерного моделирования подтвердили высокую эффективность предложенной методики. При спутниковой съемке протяженных приграничных территорий запада Украины (участок Ужгород — Черновцы) угловые скорости перенацеливания спутника в среднем составили менее 0.5 град/с. При этом сплайн-аппроксимация объекта съемки оказалась наиболее эффективной как для оперативности съемки (выполняется за один виток), так и для доли покрытия территории (100 %).

1. Гофманн-Велленгоф Б., Ліхтенеггер Г., Коллінз Д. Глобальна система визначення місцеположення (GPS).

Теорія і практика: Пер. з англ. під ред. Я. С. Яцківа. — К.: Наук. думка, 1995. — 380 с.

- Долинец Ю. С., Мозговой Д. К. Технология спутниковой съемки с ненулевыми угловыми скоростями // X Міжнар. молодіжна наук.-практ. конф. «Людина і космос»: 36. тез. — Д.: НЦАОМ, 2008. — С. 495.
- 3. *Макаров О. Л., Мозговой Д. К., Кулабухов А. М. и др.* Технология спутниковой съемки в процессе перенацеливания / // Космічна наука і технологія. — 2011. — **17**, № 6. — С. 3—9.
- 4. Макаров А. Л., Мозговой Д. К., Кулабухов А. М. и др. Повышение оперативности спутниковой съемки протяженных территорий сложной конфигурации // Авиационно-космическая техника и технология. — Харьков: Нац. аэрокосмический ун-т им. Н. Е. Жуковского «Харьковский авиационный институт», 2012. — С. 113—122.
- 5. Макаров О. Л., Мозговой Д. К., Кулабухов А. М. и др. Учет погрешностей ориентации КА при съемке с ненулевыми угловыми скоростями / // Космічна наука і технологія. — 2013. — **19**, № 1. — С. 20—27.
- 6. Макаров А. Л., Мозговой Д. К., Хорошилов В. С. и др. Методы повышения эффективности спутниковой съемки произвольно расположенных протяженных участков Земли // «СВЧ-техника и телекоммуникационные технологии»: Матер. 21-я Междунар. конф. конф. (Севастополь, 12—16 сент. 2011 г.). — Севастополь: Вебер, 2011. — С. 182—183.
- 7. *Мозговий Д. К.* Методика супутникової зйомки малорозмірних слабоконтрастних об'єктів // Програма наук. конф. за підсумками наук.-досл. роботи університету за 2010 рік. Дніпропетровськ: ДНУ, 2010. С. 108.
- Мозговий Д. К. Підвищення інформативності супутникової зйомки малорозмірних об'єктів земної поверхні / Програма наукової конференції за підсумками науково-дослідної роботи університету за 2012 рік. — Дніпропетровськ: ДНУ, 2012. — С. 92.
- 9. *Мозговой Д. К.* Технология съемки протяженных объектов // IX Міжнар. молодіжна наук.-практ. конф. «Людина і космос»: Зб. тез. Дніпропетровськ: НЦАОМ, 2007. С. 439.
- Мозговой Д. К. Спутниковая съемка с высоким разрешением при ненулевых угловых скоростях // Доклад на заседании научного семинара «Космическая техника и технологии», 17 декабря 2008 г.: Тез. докл. — Днепропетровск: Физико-технический факультет ДНУ, 2008.
- 11. *Мозговой Д. К.* Управление ориентацией КА Д33 высокой разрешающей способности // Вісник Дніпропетр. ун-ту. Ракетно-космічна техніка. 2009. Вип. 13, **1**, № 17/4. С. 59—65.
- 12. Мозговой Д. К. Метод программного управления угловым движением спутника ДЗЗ в процессе съемки //

Междунар. конф. «Космические технологии: настоящее и будущее», 16—20 апреля 2013 г.: Тез. докл. — Днепропетровск: ГКБ «Южное», 2013. — С. 61.

- 13. Мозговой Д. К. Использование данных MODIS и ASTER для решения актуальных прикладных задач // Междунар. научно-практическая конф. «Стратегические решения информационного развития экономики, общества и бизнеса на современном этапе», 17—19 июля 2013 г., п. Научный, АР Крым, Украина: Тез. докл. — Научный, 2013. — С. 113— 114.
- 14. *Мозговой Д. К., Волошин В. И.* Спутниковая съемка протяженных объектов // Вісник Дніпропетр. унту. Ракетно-космічна техніка. 2006 Вип. 10, **2**, № 9/2. С. 239—241.
- 15. Мозговой Д. К., Волошин В. И. Технология съемки прибрежных зон // Современные проблемы рационального природопользования в прибрежных морских акваториях Украины: Тез. докл. Междунар. конф. молодых ученых (Кацивели, 12—14 июня 2007). — Севастополь, 2007. — С. 21—22.
- Mozgovoy D. Method of program's control of angle motion of remote sensing satellite during the shooting // Technologies: Present and Future. International Conf. – Dnepropetrovsk: Yuzhnoe State Design Office, 2013. – P. 158–159.

Стаття надійшла до редакції 16.01.14

О. Л. Макаров, Д. К. Мозговий, А. М. Кулабухов, В. С. Хорошилов, В. Н. Балашов, В. М. Попель МАТЕМАТИЧНА МОДЕЛЬ ПРОТЯЖНИХ

ОБ'ЄКТІВ СУПУТНИКОВОЇ ЗЙОМКИ

Наведено методику математичного опису протяжних об'єктів складної конфігурації при плануванні зйомки із застосуванням супутників дистанційного зондування Землі з оптико-електронними сканерами високої просторової роздільної здатності. Методика базується на використанні сплайн-інтерполяції. Вона дозволяє одержувати оптимальне покриття зйомки з урахуванням полоси захоплення знімального пристрою, потрібного напрямку сканування і обмеження системи орієнтації супутника.

A. L. Makarov, D. K. Mozgovoy, A. M. Kulabukhov, V. S. Khoroshilov, V. N. Balashov, V. M. Popel' A MATHEMATICAL MODEL OF ELONGATED OBJECTS OF SATELLITE IMAGERY

We describe a procedure for the mathematical description of extended objects with complex configuration in the design of a satellite imagery with the use of electro-optical scanners of high spatial resolution. The procedure is based on the splineinterpolation use. It allows one to receive optimum cover of shooting taking into account a band of acquisition of the filmmaking device, the required direction of scanning and limitations of the satellite attitude control system.