УДК 629.197

А. Л. Макаров¹, Д. К. Мозговой², А. М. Кулабухов², В. С. Хорошилов¹, В. Н. Балашов¹, В. М. Попель¹ ¹ Державне підприємство «Конструкторське бюро «Південне» ім. М. К. Янгеля», Дніпропетровськ ² Дніпропетровський Національний університет імені Олеся Гончара

УЧЕТ ПОГРЕШНОСТЕЙ ОРИЕНТАЦИИ КА ПРИ СЪЕМКЕ С НЕНУЛЕВЫМИ УГЛОВЫМИ СКОРОСТЯМИ

Описана методика учета погрешностей ориентации КА при съемке с ненулевыми угловыми скоростями с применением спутников дистанционного зондирования Земли с оптико-электронными сканерами высокого пространственного разрешения. Приведены результаты компьютерного моделирования съемки протяженной территории сложной конфигурации.

ПОСТАНОВКА ЗАДАЧИ

Спутниковая съемка является наиболее эффективным способом получения пространственных данных благодаря своей обзорности, достоверности, оперативности, детальности, бесконтактности и другим преимуществам по сравнению с традиционными наземными методами [8, 9, 17, 19].

Существенно повысить оперативность и достоверность спутниковой съемки протяжных территорий сложной конфигурации позволяет новый метод съемки в процессе перенацеливания (т. е. с ненулевыми угловыми скоростями), реализуемый с помощью программного управления ориентацией спутника [13, 15].

Данный метод позволяет:

• выполнять за один виток съемку произвольно расположенных протяженных участков сложной конфигурации (повысить оперативность выполнения съемки заданной территории);

• увеличить полезный объем данных ДЗЗ, получаемых в одном сеансе съемки;

 производить съемку с соседних витков при меньших углах Солнца (при заданном отношении сигнал/шум);

• обнаруживать на снимках слабоконтрастные объекты при заданных условиях освещенности;

• повысить отношение сигнал/шум спутниковых снимков и выполнять более качественно процедуры классификации снимка, использующие радиометрические и спектральные признаки [12, 16, 18, 20].

Кроме того, при работе в режиме с ненулевыми угловыми скоростями увеличивается длительность сеанса связи в режиме непосредственной передачи (для одной и той же снимаемой территории), что позволяет снизить информационную скорость и использовать приемные станции с меньшими по усилению и габаритам антеннами (при тех же параметрах бортовой передающей аппаратуры) [10, 13, 15].

ОСОБЕННОСТИ СЪЕМКИ С НЕНУЛЕВЫМИ УГЛОВЫМИ СКОРОСТЯМИ

Режим съемки с ненулевыми угловыми скоростями предъявляет повышенные требования к спутнику в части обеспечения требуемой скорости и точности переориентации КА в процессе съемки [11, 15].

При такой съемке необходимо учитывать множество дополнительных факторов, основными из которых являются [1, 13]:

• различная наклонная дальность *d* и угол съемки для строк, соответствующих началу, середине и концу сцены, что приводит к соответствующим различиям в размерах проекции линейки ПЗС на поверхности Земли (рис. 1);

[©] А. Л. МАКАРОВ, Д. К. МОЗГОВОЙ, А. М. КУЛАБУХОВ,

В. С. ХОРОШИЛОВ, В. Н. БАЛАШОВ, В. М. ПОПЕЛЬ, 2013

• значительное отклонение от надира оптической оси КА ВР в начале и в конце съемки, необходимое при больших значениях коэффициента накопления (отношения времени съемки с накоплением к времени съемки без накопления), что приводит к необходимости дополнительного учета высоты рельефа и атмосферной рефракции [2, 10].

Ниже приведена методика учета погрешностей ориентации КА при съемке протяженной территории сложной конфигурации и результаты компьютерного моделирования [7, 13, 15].

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОТЯЖЕННОЙ ТЕРРИТОРИИ СЛОЖНОЙ КОНФИГУРАЦИИ

Снимаемая территория сложной конфигурации задается на карте узловыми точками с произвольным шагом по широте и долготе. Для аппроксимации протяженной территории используется естественный кубический интерполирующий сплайн с последующим сглаживанием методом наименьших квадратов [5, 10].

Определение требуемой ориентации спутника при съемке. Входными данными являются [7, 11]:

• координаты опорных точек $x_{\text{от}i}$, $y_{\text{от}i}$, $z_{\text{от}i}$ в гринвичской системе координат (ГСК), соответствующих началу и концу строки (i = 1, 2), содержащей узловую точку объекта;

• координаты спутника в гринвичской системе координат $x_{cn}, y_{cn}, z_{cn};$

 географическая долгота λ, геоцентрическая широта φ и азимут α спутника;

• векторы визирования опорных точек в приборной системе координат (ПСК) $\mathbf{V}_{ori}^{\Pi CK}$ (*i* = 1, 2).

Выходными данными являются углы крена, тангажа и рыскания спутника (соответственно ϕ_{cn} , ϑ_{cn} и ψ_{cn}).

Сначала вычисляются векторы визирования опорных точек

$$\Delta_{\text{orl}} = \{x_{\text{orl}} - x_{\text{cn}}, y_{\text{orl}} - y_{\text{cn}}, z_{\text{orl}} - z_{\text{cn}}\}^{\text{T}}, \Delta_{\text{or2}} = \{x_{\text{or2}} - x_{\text{cn}}, y_{\text{or2}} - y_{\text{cn}}, z_{\text{or2}} - z_{\text{cn}}\}^{\text{T}}.$$

Затем по Δ_{or1} и Δ_{or2} вычисляются нормированные векторы визирования опорных точек в гринвичской системе координат $\mathbf{V}_{or1}^{\Gamma C K}$ и $\mathbf{V}_{or2}^{\Gamma C K}$:

$$\mathbf{V}_{\text{orl}}^{\text{fCK}} = \frac{\boldsymbol{\Delta}_{\text{orl}}}{|\boldsymbol{\Delta}_{\text{orl}}|}, \ \mathbf{V}_{\text{or2}}^{\text{fCK}} = \frac{\boldsymbol{\Delta}_{\text{or2}}}{|\boldsymbol{\Delta}_{\text{or2}}|}.$$

ISSN 1561-8889. Космічна наука і технологія. 2013. Т. 19. № 1

Рис. 1. Влияние различной наклонной дальности на геометрию съемки

Рассчитываются значения элементов матрицы перехода

$$\mathbf{M}_{\Gamma CK-OCK} \equiv \begin{bmatrix} \sin\lambda \sin\alpha & - & \sin\lambda \cos\alpha & - & \cos\lambda \sin\varphi \\ -\cos\lambda \sin\varphi \cos\alpha & -\cos\lambda \sin\varphi \sin\alpha \\ \cos\lambda \sin\alpha & - & \cos\lambda \sin\alpha & - & \sin\lambda \cos\varphi \\ -\sin\lambda \sin\varphi \cos\alpha & -\sin\lambda \sin\varphi \sin\alpha \\ \cos\varphi \cos\alpha & \cos\varphi \sin\alpha & \sin\varphi \end{bmatrix}.$$

Значения элементов матрицы перехода от ГСК к ОСК определяются следующим образом:

$$\mathbf{M}_{\Gamma CK - OCK} = \mathbf{M}_{OCK - \Gamma CK}^{1} .$$

По матрице $\mathbf{M}_{\text{ГСК-ОСК}}$ и векторам $\mathbf{V}_{\text{от1}}^{\text{ГСК}}$ и $\mathbf{V}_{\text{от2}}^{\text{ГСК}}$ вычисляются векторы визирования опорных точек в OCK $\mathbf{V}_{\text{от1}}^{\text{ОСК}}$ и $\mathbf{V}_{\text{от2}}^{\text{ОСК}}$

$$\mathbf{V}_{\text{or1}}^{\text{OCK}} = \mathbf{M}_{\text{\GammaCK-OCK}} \cdot \mathbf{V}_{\text{or1}}^{\text{\GammaCK}},$$
$$\mathbf{V}_{\text{or2}}^{\text{OCK}} = \mathbf{M}_{\text{\GammaCK-OCK}} \cdot \mathbf{V}_{\text{or2}}^{\text{\GammaCK}}.$$

Затем вводятся две тройки ортогональных векторов:

$$\mathbf{u} = \mathbf{V}_{\text{orl}}^{\text{OCK}},$$

$$\mathbf{v} = \mathbf{V}_{\text{orl}}^{\text{OCK}} \times \mathbf{V}_{\text{or2}}^{\text{OCK}} \times \mathbf{V}_{\text{or1}}^{\text{OCK}},$$

$$\mathbf{w} = \mathbf{V}_{\text{or1}}^{\text{OCK}} \times \mathbf{V}_{\text{or2}}^{\text{OCK}},$$

$$\mathbf{u}_{0} = \mathbf{V}_{\text{or1}}^{\text{IICK}},$$

$$\mathbf{v}_{0} = \mathbf{V}_{\text{or1}}^{\text{IICK}} \times \mathbf{V}_{\text{or2}}^{\text{IICK}} \times \mathbf{V}_{\text{or1}}^{\text{IICK}},$$

$$\mathbf{w}_{0} = \mathbf{V}_{\text{or1}}^{\text{IICK}} \times \mathbf{V}_{\text{or2}}^{\text{IICK}}.$$

21

где

По векторам **u**, **v**, **w**, \mathbf{u}_0 , \mathbf{v}_0 , \mathbf{w}_0 строятся ортогональные матрицы **B** и **B**₀:

$$\mathbf{B} = \begin{pmatrix} u^{x} & v^{x} & w^{x} \\ u^{y} & v^{y} & w^{y} \\ u^{z} & v^{z} & w^{z} \end{pmatrix},$$
$$\mathbf{B}_{0} = \begin{pmatrix} u^{x}_{0} & v^{x}_{0} & w^{x}_{0} \\ u^{y}_{0} & v^{y}_{0} & w^{y}_{0} \\ u^{z}_{0} & v^{z}_{0} & w^{z}_{0} \end{pmatrix},$$

где верхними индексами обозначены соответствующие координаты векторов.

Значения элементов матрицы $\mathbf{M}_{\Pi CK-OCK} = b_{ij}$ ($1 \le i, j \le 3$) вычисляются по формуле $\mathbf{M}_{\Pi CK-OCK} = = \mathbf{B} \cdot \mathbf{B}_0^{\mathsf{T}}$.

Углы крена ϕ , тангажа ϑ и рыскания ψ спутника для данной последовательности поворотов вычисляются по значениям элементов матрицы $\mathbf{M}_{\Pi CK-OCK}$:

$$\varphi_{cn} = -\arctan \frac{b_{23}}{b_{33}},$$

$$\vartheta_{cn} = \arcsin b_{13},$$

$$\psi_{cn} = -\arctan \frac{b_{12}}{b_{11}}.$$

Угловые скорости определяются путем аналитического дифференцирования коэффициентов сплайна, интерполирующего углы ориентации.

Модель орбитального движения спутника. Для малых периодов прогноза и низкокруговых орбит достаточно точной является аналитическая модель SGP4 [3, 7], позволяющая работать с начальными условиями, представленными в виде TLE-файлов, формируемых системой NORAD.

Расчет координат снятых объектов. Входными данными являются полуоси *а* и *b* земного эллипсоида; координаты x_{cn} , y_{cn} , z_{cn} спутника в ГСК; координаты V_x , V_y , V_z вектора $\mathbf{V}_{\Gamma CK}$ визирования в ГСК [5, 6].

Выходными данными являются широта φ и долгота λ визируемой точки.

Для нахождения координат *x*, *y*, *z* визируемой точки в ГСК используется система параметрических уравнений прямой и эллипсоида

$$x - x_{\rm cn} = V_x t, \ y - y_{\rm cn} = V_y t ,$$

$$z - z_{cn} = V_z t$$
, $\frac{x^2 + y^2}{a^2} + \frac{z^2}{b^2} = 1$.

Для решения системы уравнений используется квадратное уравнение

$$Kx^{2} + Lx + M = 0,$$

$$K = \frac{b^{2} + b^{2}A_{y} + a^{2}A_{z}}{a^{2}b^{2}},$$

$$L = \frac{b^{2}B_{y} + a^{2}B_{z}}{a^{2}b^{2}},$$

$$M = \frac{C_{y}}{a^{2}} + \frac{C_{z}}{b^{2}} - 1,$$

$$A_{y} = \left(\frac{V_{y}}{V_{x}}\right)^{2},$$

$$B_{y} = 2\left(y_{cn}\frac{V_{y}}{V_{x}} - x_{cn}\left(\frac{V_{y}}{V_{x}}\right)^{2}\right),$$

$$C_{y} = (y_{cn})^{2} - 2y_{cn}\frac{V_{y}}{V_{x}}x_{cn} + \left(\frac{V_{y}}{V_{x}}\right)^{2}(x_{cn})^{2},$$

$$A_{z} = \left(\frac{V_{z}}{V_{x}}\right)^{2},$$

$$B_{z} = 2\left(z_{cn}\frac{V_{z}}{V_{x}} - x_{cn}\left(\frac{V_{z}}{V_{x}}\right)^{2}\right),$$

$$C_{z} = (z_{cn})^{2} - 2z_{cn}\frac{V_{z}}{V_{x}}x_{cn} + \left(\frac{V_{z}}{V_{x}}\right)^{2}(x_{cn})^{2}.$$

Координаты визируемой точки вычисляются по формулам

$$x_{1,2} = \frac{-L \pm \sqrt{L^2 - 4KM}}{2K},$$

$$y = y_{cn} + \frac{V_y}{V_x} (x - x_{cn}),$$

$$z = z_{cn} + \frac{V_z}{V_x} (x - x_{cn}).$$

Из двух вариантов решения выбирают тот, который соответствует минимальному расстоянию от спутника до визируемой точки.

Геодезические широта φ и долгота λ визируемой точки вычисляются по координатам *x*, *y*, *z*

ISSN 1561-8889. Космічна наука і технологія. 2013. Т. 19. № 1

визируемой точки в ГСК по формулам

$$\varphi = \arctan \frac{z}{p(1-e^2)},$$

$$\lambda = \operatorname{sign}(y) \cdot \begin{cases} \operatorname{arctg}(|y|/|x|), & \operatorname{если} x > 0, \\ 180^\circ - \operatorname{arctg}(|y|/|x|), & \operatorname{если} x < 0, \\ 90^\circ, & \operatorname{если} x = 0, \end{cases}$$
где $p = \sqrt{x^2 + y^2}, e^2 = \frac{a^2 - b^2}{a^2}.$

Анализ влияния погрешностей ориентации и местоположения спутника. Анализ влияния случайных погрешностей задания углов ориентации и прогноза местоположения спутника на реализуемость программы съемки в части точности покрытия заданной территории проводится методом конечных разностей [4, 7].

Входными данными являются погрешности задания углов ориентации и прогноза местоположения спутника.

Рассчитываются значения частных производных от картографических координат опорных точек по координатам *x*, *y*, *z* спутника и углам крена, рыскания и тангажа спутника для снимаемой сцены $(1 \le j \le N)$ для всех сочетаний максимальных и минимальных абсолютных значений погрешностей задания углов ориентации и прогноза местоположения спутника

$$\frac{\partial x_{\text{krOT}j}}{\partial x}, \frac{\partial y_{\text{krOT}j}}{\partial x}, \frac{\partial y_{\text{krOT}j}}{\partial x}, \frac{\partial z_{\text{krOT}j}}{\partial x}, \frac{\partial z_{\text{krOT}j}}{\partial y}, \frac{\partial y_{\text{krOT}j}}{\partial y}, \frac{\partial z_{\text{krOT}j}}{\partial z}, \frac{\partial z_{\text{krOT}j}}{\partial z}, \frac{\partial z_{\text{krOT}j}}{\partial \phi}, \frac{\partial$$

Рис. 2. Сплайн-аппроксимация объекта съемки

Рис. 3. Моделирование съемки: *a* — при отсутствии погрешностей ориентации, *б* — при максимальных погрешностях ориентации КА ±0.1° по крену, тангажу и рысканию

Рис. 4. Выбор витка и времени съемки

Выходными данными являются смещения картографических координат опорных точек $\Delta_{\kappa r j} = \sqrt{\partial x_{\kappa r OT j}^2 + \partial y_{\kappa r OT j}^2}$, соответствующие максимальным погрешностям ориентации и местоположения спутника.

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

Исходные данные для моделирования:

• снимаемый участок — приграничные территории запада Украины (участок Ужгород — Черновцы);

• тип орбиты спутника — солнечно-синхронная, высота 700 км;

• полоса захвата сканера в надире — 40 км.

Съемка протяженной территории сложной конфигурации за один виток выполнялась путем

программного управления ориентацией спутника во время съемки (использовалась сплайн-аппроксимация объекта съемки) [6].

Моделирование проводилось для съемки в режиме «без накопления» при отсутствии погрешностей ориентации КА, а также при максимальных погрешностях ориентации КА \pm 0.1° по крену, тангажу и рысканию.

Результаты моделирования показаны на рис. 2—5.

выводы

Компьютерное моделирование подтвердило возможность спутниковой съемки с ненулевыми угловыми скоростями протяженных территорий сложной конфигурации путем программного управления ориентацией спутника во время

Рис. 5. Угол и угловая скорость во время съемки: a — по крену ϕ , δ — по тангажу θ , s — по рысканию ψ

съемки [2, 3, 11]. Продолжительность съемки заданной территории в режиме «без накопления» составила 46 с.

В таблице приведены требуемые диапазоны углов ориентации и угловых скоростей для различных видов съемки, полученные в результате моделирования [4, 7].

Диапазоны углов ориентации и угловых скоростей для различных видов съемки

Параметры ориентации и углового движения спутника	Диапазон значений	
	Минимум	Максимум
Угол крена, град	-16.6	5.4
Угол тангажа, град	-11.9	14.2
Угол рыскания, град	-81	-79.1
Скорость крена, град/с	0.29	0.65
Скорость тангажа, град/с	-0.05	1.4
Скорость рыскания, град/с	-0.21	0.39

Угловые скорости перенацеливания спутника в среднем составили менее 0.5 град/с. При максимальных погрешностях ориентации KA \pm 0.1° по крену, тангажу и рысканию доля гарантированного покрытия территории составила около 90 %. Погрешности прогноза местоположения спутника практически не уменьшали долю гарантированного покрытия территории ввиду своей малости (для данного масштаба карты были субпиксельными).

- Долинец Ю. С., Мозговой Д. К. Технология спутниковой съемки с ненулевыми угловыми скоростями // Х Міжнар. молодіжна наук.-практ. конф. «Людина і космос»: Зб. тез. — Д.: НЦАОМ, 2008. — С. 495.
- Макаров А. Л., Мозговой Д. К., Кулабухов А. М. и др. Технология спутниковой съемки в процессе перенацеливания // Космічна наука і технологія. — 2011. — 17, № 6. — С. 3—9.
- Макаров А. Л., Мозговой Д. К., Кулабухов А. М. и др. Повышение оперативности спутниковой съемки протяженных территорий сложной конфигурации // Авиационно-космическая техника и технология. Национальный аэрокосмический университет им. Н. Е. Жуковского «Харьковский авиационный институт», 2012. — С. 113—122.
- Макаров А. Л., Мозговой Д. К., Кулабухов А. М. и др. Оценка реализуемости спутниковой съемки протяженных территорий сложной конфигурации // Технологические системы. — 2012. — С. 61—69.
- Макаров А. Л., Мозговой Д. К., Хорошилов В. С. и др. Повышение эффективности съемки с помощью космического аппарата земных объектов произвольной конфигурации // Технологические системы. — 2011. — № 2 (55). — С. 66—70.
- 6. Макаров А. Л., Мозговой Д. К., Хорошилов В. С. и др. Методы повышения эффективности спутниковой съемки произвольно расположенных протяженных

участков Земли // 21-я Междунар. конф. «СВЧ-техника и телекоммуникационные технологии». Материалы конф. — Севастополь: Вебер, 2011. — С. 182— 183.

- Мозговий Д. К. Методика супутникової зйомки малорозмірних слабоконтрастних об'єктів // Програма наук. конф. за підсумками наук.-досл. роботи університету за 2010 рік. — Д.: ДНУ, 2010. — С. 108.
- Мозговий Д. К., Волошин В. І., Тараріко А. Г. Геоінформаційне забезпечення агросфери — система «Агрокосмос» // Міжнар. наук.-практ. конф. «Сучасні проблеми створення і ефективного використання єдиного геоінформаційного простору України при підготовці і прийнятті управлінських рішень»: Зб. тез. — К.: Ін-т проблем нац. безпеки, 2007. — С. 65—66.
- Мозговой Д. К. Использование данных MODIS и ASTER для решения актуальных прикладных задач // IX Міжнар. молодіжна наук.-практ. конф. «Людина і космос»: Зб. тез. — Д.: НЦАОМУ, 2007. — С. 440.
- Мозговой Д. К. Технология съемки протяженных объектов // IX Міжнар. молодіжна наук.-практ. конф. «Людина і космос»: Зб. тез. — Д.: НЦАОМУ, 2007. — С. 439.
- Мозговой Д. К. Управление ориентацией КА ДЗЗ высокой разрешающей способности // Вісник Дніпропетр. ун-ту. Ракетно-космічна техніка. — 2009. — Вип. 13, 1, № 17/4. — С. 59—65.
- Мозговой Д. К., Водопьянов И. Н. Распознавание объектов с использованием радиометрических и геометрических признаков // XV наук.-технічна конф. «Наукові проблеми розробки, модернізації та застосування інформаційно-вимірювальних систем космічного і наземного базування»: Тез. доп. Житомир: ЖВІРЕ, 2006. Ч. 1. С. 19.
- 13. *Мозговой Д. К., Волошин В. И.* Спутниковая съемка протяженных объектов // Вісник Дніпропетр. ун-ту. Ракетно-космічна техніка. 2006. Вип. 10, 2, № 9/2. С. 239—241.
- 14. Мозговой Д. К., Волошин В. И. Технология съемки прибрежных зон // Современные проблемы рационального природопользования в прибрежных морских акваториях Украины: Тез. докл. Междунар. конф. молодых ученых. — Севастополь: МГИ, 2007. — С. 21—22.
- 15. Мозговой Д. К., Волошин В. И., Бушуев Е. И., Салтыков Ю. Д. Использование новых технологий съемки для повышения эффективности КА МС-2-8 // VII Укр. конф. по космич. исследованиям: Сб. тез. — Евпатория: НЦУИКС, 2007. — С. 182—183.
- 16. Мозговой Д. К., Кравец О. В. Использование многоспектральных снимков для классификации посевов

сельхозкультур // Екологія та ноосферологія. — 2009. — **20**, № 1-2. — С. 54—58.

- Dolinets Y., Mozgovoy D. Specialists training in ERS // Advanced space technologies for the humankind prosperity: Internat. Conf. — Dnepropetrovsk: Yuzhnoe State Design Office, 2007. — P. 123.
- Kravets O. V., Mozgovoy D. K. Wavelet transform in remote sensing data processing // Engineer of the 3rd Millennium: Students Scientific conference. — Dniepropetrovsk: National University of Railway Transport, 2009. — P. 49— 50.
- Mozgoviy D. K., Parshina O. I., Voloshin V. I., Bushuev Y. I. Remote sensing and GIS application for environmental monitoring and accidents control in Ukraine. Geographic uncertainty in environmental security. — Dordrecht: Springer, 2007. — P. 259—270.
- Mozgovoy D. K., Voloshin V. I., Bushuev E. I. Filtration of radiometric interference with a space-periodic structure // J. Automation and Inform. Sci. – 2004. – 36. i6.20. – P. 14–22.

Стаття надійшла до редакції 10.12.12

О. Л. Макаров, Д. К. Мозговий, А. М. Кулабухов, В. С. Хорошилов, В. М. Балашов, В. М. Попель

УРАХУВАННЯ ПОХИБОК ОРІЄНТАЦІЇ КА ПІД ЧАС ЗЙОМКИ З НЕНУЛЬОВИМИ КУТОВИМИ ШВИДКОСТЯМИ

Описано методику урахування похибок орієнтації КА під час зйомки з ненульовими кутовими швидкостями із застосуванням супутників дистанційного зондування Землі з оптико-електронними сканерами високого просторового розрізнення. Наведено результати комп'ютерного моделювання зйомки протяжної території складної конфігурації, реалізованої за допомогою програмного керування орієнтацією супутника під час зйомки.

A. L. Makarov, D. K. Mozgovoy, A. M. Kulabuhov, V. S. Horoshilov, V. N. Balashov, V. M. Popel

THE ACCOUNT OF INACCURACY OF SATELLITE ORIENTATION IN THE COURSE OF SHOOTING WITH NONZERO ANGULAR VELOCITY

We describe a procedure for taking into account the satellite orientation inaccuracy during shooting with nonzero angular velocity with the use of remote sensing satellites and highspatial-resolution optical-electronic scanners. We give some results of computer simulation of complex deskside territory shooting with a software control of the satellite orientation in the course of shooting.