УДК 533.95

В. А. Шувалов¹, В. Е. Корепанов², А. А. Лукенюк², Н. А. Токмак¹, Г. С. Кочубей¹

¹ Інститут технічної механіки Національної академії наук України

і Державного космічного агентства України, Дніпропетровськ

² Львівський центр Інституту космічних досліджень Національної академії наук України

і Державного космічного агентства України, Львів

МОДЕЛИРОВАНИЕ ЗОНДОВЫХ ИЗМЕРЕНИЙ ПАРАМЕТРОВ ОКОЛОСПУТНИКОВОЙ ПЛАЗМЫ НА КА «СИЧ-2»

Розроблено процедуру чисельного та фізичного (стендового) моделювання зондових вимірювань параметрів навколосупутникового середовища на КА «Січ-2». Відповідність розрахованих та виміряних значень рівноважного потенціалу ізольованої сфери зонда EZ свідчить про коректність процедури моделювання та допустиму точність визначення температури і концентрації електронів у навколосупутниковій плазмі на полярній орбіті КА «Січ-2».

введение

Космический аппарат «Сич-2» запущен 17 августа 2011 г. ракетой-носителем «Днепр» на гелиосинхронную орбиту высотой 700 км и наклонением 98°. КА «Сич-2» оснащен научной аппаратурой для диагностики околоспутниковой среды. В состав аппаратуры входят следующие элементы.

1. Детектор нейтральных частиц DN, состоящий из двух зондов давления с инверсно-магнетронными преобразователями (ИМП) в качестве чувствительных элементов. Нормали к апертурам входных отверстий ИМП взаимно ортогональны. При измерениях нормаль \mathbf{n}_1 к апертуре первого датчика ИМП должна быть параллельна вектору скорости \mathbf{U}_{∞} полета КА ($\theta_1 = 0$), нормаль к апертуре входного отверстия второго датчика \mathbf{n}_2 – перпендикулярна к вектору скорости \mathbf{U}_{∞} ($\theta_2 = \pi/2$). Здесь θ_1 и θ_2 — углы между нормалями $\mathbf{n}_{1,2}$ и вектором \mathbf{U}_{∞} . Схема зонда давления приведена в работе [23].

2. Электрический зонд DE — одиночный цилиндрический зонд Ленгмюра радиусом $r_n =$ = 0.05 см и длиной l_p =12.0 см с охранным электродом радиусом r_g = 0.2 см и длиной l_g =12.5 см. При измерениях вольтамперных характеристик ось зонда Ленгмюра должна быть ортогональна к вектору скорости U_{∞} полета КА. Детекторы DN и DE разработаны и изготовлены в Институте технической механики и предназначены для определения комплекса кинетических параметров нейтральных и заряженных частиц ионосферной плазмы.

3. Электрический зонд EZ — сфера диаметром $2r_{ps} \approx 6.0$ см, покрытая стеклоуглеродом. Зонд предназначен для измерения и контроля потенциала KA.

4. Блок системы сбора научной информации (ССНИ) и зонд ЕZ разработаны и изготовлены Львовским центром Института космических исследований.

ФИЗИЧЕСКОЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЗОНДОВЫХ ИЗМЕРЕНИЙ НА КА «СИЧ-2»

В силу ряда технических обстоятельств, связанных с размещением зондов на установочной плите космической платформы, для корректировки выходных сигналов зондов возникла необходимость численного и физического моделирования

[©] В. А. ШУВАЛОВ, В. Е. КОРЕПАНОВ, А. А. ЛУКЕНЮК,

Н. А. ТОКМАК, Г. С. КОЧУБЕЙ, 2012

Рис. 1. Численное решение задачи обтекания платформы КА «Сич-2» сверхзвуковым потоком ионосферной разреженной плазмы: *a*, *б*, *в* — распределение изоконцентралей ионов у поверхности платформы; I, II, III — ориентация платформы относительно вектора скорости полета

зондовых измерений параметров околоспутниковой среды на КА «Сич-2». Рис. 1 иллюстрирует результаты численного решения задачи обтекания платформы КА «Сич-2» сверхзвуковым потоком ионосферной разреженной плазмы распределение изоконцентралей $n_i = N_i / N_{i\infty}$ (N_i , $N_{i\infty}$ — концентрация ионов в возмущенной и невозмущённой плазме). На рис. 1, а и б показана структура возмущённой зоны для трёх положений платформы (I; II и III) и зондов DN, DE, EZ относительно вектора скорости \mathbf{U}_{∞} полета КА. Изоконцентрали рис. 1, в характеризуют распределение ионов плазмы при обтекании нижней части платформы вблизи установочной плиты. Распределение изоконцентралей и оновплазмы численное решение задачи плоского обтекания платформы КА «Сич-2» сверхзвуковым потоком разреженной плазмы — решение системы уравнений самосогласованного поля

$$\mathbf{c}_{\alpha} \frac{\partial f_{\alpha}}{\partial \mathbf{r}} \pm \frac{1}{2} \frac{\partial \Phi}{\partial \mathbf{r}} \frac{\partial f_{\alpha}}{\partial \mathbf{c}_{\alpha}} = 0 ,$$

$$\Delta \Phi = \left(\frac{R}{\lambda_d}\right)^2 \sum_{\alpha} \int f_{\alpha}(\mathbf{r}, \mathbf{c}_{\alpha}) d\mathbf{c}_{\alpha}$$
(1)

с граничными условиями

$$\Phi(\infty) = 0 , f_{\alpha}(\infty, \mathbf{c}_{\alpha}) = \pi^{-3/2} \exp[-(\mathbf{c}_{\alpha} - \mathbf{S}_{\alpha})^{2}],$$

$$\Phi(R) = \Phi_{W}, f_{\alpha}(R, \mathbf{c}_{\alpha}) = 0, \text{если } \mathbf{nc}_{\alpha} > 0. \quad (2)$$

Здесь \mathbf{c}_{α} и f_{α} — скорость и функция распределения частиц сорта α ($\alpha = e, i, n$ — электроны, ионы и нейтралы), $\Phi(\mathbf{r}) = e\varphi(\mathbf{r})/(kT_e)$ — безразмерный потенциал электрического поля, e — заряд частицы, \mathbf{r} — радиус-вектор точки пространства, R — характерный размер тела, λ_d — дебаевский радиус в невозмущённой плазме, $S_{\alpha} = U_{\infty}/\sqrt{2kT_{\alpha}/M_{\alpha}}$ — скоростное отношение, U_{∞} — скорость потока, k — постоянная Больцмана, T_{α} , M_{α} — температура и масса частиц сорта α , $\Phi_W = e\varphi_W/(kT_e)$, $\varphi_W = \varphi_p - \varphi_0$ — потенциал поверхности тела φ_p относительно потенциала плазмы φ_0 . Подходы, процедуры и алгоритмы решения системы уравнений (1) с

ISSN 1561-8889. Космічна наука і технологія. 2012. Т. 18. № 6

Рис. 2. Распределение изоконцентралей нейтралов (*a*) и ионов (б) вблизи детектора DN на платформе (численное моделирование)

граничными условиями (2) подробно описаны в работах [18, 19, 21].

Распределения изоконцентралей ионов $n_i = N_i / N_{i\infty}$ (рис. 1) иллюстрируют решение идеализированной задачи обтекания гладкой поверхности платформы без надстроек, антенн и других элементов конструкции. Расположению зондов DE и EZ на платформе соответствуют значения $n_i \approx 0.5 - 0.6$.

Изоконцентрали нейтралов $n_n = N_n / N_{n\infty}$ и ионов $n_i = N_i / N_{i\infty}$ для детектора DN показаны на рис. 2, *а* и *б* соответственно. Распределение нейтралов n_n аппроксимирует выражение [7]

$$n_n = \frac{N_n}{N_{n\infty}} = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{\rho}{t}\right) \right]$$
(3)

при $0 \le t \le 1$, где t = z/R, $\rho = S_n x/R$, $S_n = U_{\infty} / \sqrt{2kT_n/M_n}$, erf $x = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-y^2} dy$ — интеграл

вероятности. Для детектора DN на KA «Сич-2» при $S_n \approx 5.66$, $\rho = 0.6$ и t = 0.27 из выражения (3) следует $n_n \approx 0.94$.

Для уточнения поправок к вольтамперным характеристикам электрических зондов в условиях, соответствующих реальной структуре обтекания поверхности установочной плиты КА «Сич-2», на плазмодинамическом стенде ИТМ выполнено физическое моделирование зондовых измерений на макете платформы КА в сверхзвуковом потоке разреженной плазмы. Вакуумная камера

Рис. 3. Макет платформы KA «Сич-2» в сверхзвуковом потоке разреженной плазмы на стенде ИТМ: a - в потоке плазмы, $\delta - модели$ зондов EZ (1) и DN (2) на макете платформы, e - модели зондов DN (2) и DE (3) на макете платформы

стенда показана на рис. 2 работы [25]. Физическое моделирование осуществлялось для макета платформы КА «Сич-2», выполненного в масштабе М 1:4. Макет в сверхзвуковом потоке разреженной плазмы азота показан на рис. 3. Цифрами обозначены макеты зондов: 1 - EZ, 2 - DN; 3 - DE.

Взаимодействие диагностических зондов с высокоскоростным потоком неравновесной разреженной плазмы в условиях бесстолкновительного обтекания в ионосфере характеризуют семь параметров подобия и масштабных коэффициентов [3]:

• отношение направленной скорости потока U_{∞} (полёта КА) к тепловой скорости нейтральных частиц $S_n = U_{\infty} / \sqrt{2kT_n / M_n}$,

• отношение U_{∞} к скорости ионного звука $S_{ie} = U_{\infty} / \sqrt{2kT_e / M_i},$

• отношение характерного размера (радиуса) зонда r_p к дебаевскому радиусу в невозмущённой плазме r_p / λ_d ,

• безразмерный потенциал $\Phi_W = e \varphi_W / (kT_e) = e(\varphi_p - \varphi_0) / (kT_e)$ зонда φ_p относительно потенциала плазмы φ_0 ,

• степень неизотермичности плазмы T_i / T_e ,

• отношение характерного размера зонда r_p к ларморовским радиусам ионов и электронов $r_p / r_{i.e}$.

К дополнительным параметрам подобия и масштабным коэффициентам, характеризующим взаимодействие «зонд — плазма», относятся:

• скоростное отношение для электронов плазмы $S_e = U_{\infty} / \sqrt{2kT_e / M_e}$,

• отношение потенциала зонда $e\phi_W$ к энергии направленного движения ионов $e\phi_W / (0.5M_i U_\infty^2)$ или Φ_W / S_{ie}^2 ,

• диапазон измеряемых давлений инверсномагнетронными преобразователями детектора нейтральных частиц: $P_{1\max}(\theta_1 = 0)$ и $P_{2\min}(\theta_2 = \pi/2)$.

Параметры подобия позволяют получить критериальные соотношения, устанавливающие связь между параметрами потока плазмы в ионосфере и на стенде [9, 20].

Лабораторная плазма существенно неравновесна. С помощью имеющихся плазменных ускорителей практически не удаётся получить поток разреженного частично ионизованного газа со степенью неизотермичности, эквивалентной значениям параметра T_i / T_e в ионосфере. На практике при моделировании взаимодействия КА с ионосферной плазмой целесообразнее ориентироваться на температуру электронов потока лабораторной разреженной плазмы Тем. При заданном отношении температур $T_{eM} / T_e = \xi_M$ масштабный коэффициент r_p / λ_d позволяет получить соотношение для концентрации заряженных частиц (электронов) $N_{eM} / N_e = \xi_M \beta_M^{-2}$, где индекс «М» относится к параметрам потока лабораторной плазмы. Критерий геометрического моделирования $\beta_M = r_{pM} / r_p$ при соответствующем подобии формы электрических зондов определяется отношением характерного размера r_{pM} зонда (радиуса) на стенде к характерному размеру зонда r_n в ионосфере. Используя масштабные коэффициенты r_p / r_e , S_{ie} и Φ_W при M_{iM} / $M_i = a_M$, получим соотношения для индукции внешнего магнитного поля $B_M / B = \xi_M^{0.5} \beta_M^{-1}$, скорости направленного движения ионов плазмы $U_{\infty M} = U_{\infty} (\xi_M / a_M)^{0.5}$ и условия для потенциалов электрического зонда $\varphi_{WM} = \varphi_W \xi_M.$

В предложении однородности химического состава либо преобладания молекул одного сорта нейтралов в ионосфере и в лабораторных условиях на стенде для выходного сигнала ИМП следует $P_M = Pc_M b_M$, где $c_M = N_{nM} / N_n$, $b_M = T_{nM} / T_n$.

ЗОНДОВЫЕ ИЗМЕРЕНИЯ В ПЛАЗМЕ НА КА «СИЧ-2». Моделирование зондовых измерений на КА «Сич-2». Поток электронов на поверхность электрического зонда (цилиндр, сфера) при положительных относительно плазмы потенциалах может быть представлен в виде

$$I_e = A_p j_{0e} i_e^-(\Phi_W, r_p / \lambda_d).$$

Здесь A_p — площадь поверхности зонда, $j_{0e} = eN_e[kT_e/(2\pi M_e)]^{0.5}$ — хаотический ток электронов, i_e^- — безразмерный коэффициент тока электронов. Расчётные значения коэффициента i_e^- (цилиндр, сфера) для широкого диапазона параметров плазмы приведены в работах [23, 32].

Собирание ионного тока электрическим зондом в потоке неравновесной разреженной плазмы характеризует зависимость [23, 29]

$$\begin{split} I_i = A_p j_{0i} i_i^+ (\Phi_W, r_p \ / \ \lambda_d, S_{ie}, T_i \ / \ T_e) \,, \end{split}$$
где $j_{0i} = e N_i [k T_e \ / \ (2\pi M_i)]^{0.5}$ — хаотический ток,

ISSN 1561-8889. Космічна наука і технологія. 2012. Т. 18. № 6

 i_i^+ — безразмерный коэффициент ионного тока. Расчётные значения безразмерного коэффициента ионного тока i_i^+ для широкого диапазона параметров потока разреженной плазмы приведены в работах [11, 12, 24, 29, 34, 35].

Приведенные критериальные соотношения и масштабные коэффициенты позволяют оценить параметры потока лабораторной разреженной плазмы, пригодной для моделирования измерений на орбите, и в предположении идентичности режимов собирания зондового тока в ионосфере и на стенде получить соотношения для электронного тока на цилиндрический зонд:

$$I_{eM} / I_e = \eta_M \xi_M^{3/2} \chi_{eM} \beta_M^{-1}$$

и сферический зонд:

$$I_{eM} / I_e = \xi_M^{3/2} \chi_{eM} ,$$

где $\eta_M = l_{pM} / l_p$, $\chi_{eM} = i_{eM}^- / i_e^-$.

Для ионного тока в высокоскоростном потоке разреженной плазмы на цилиндрический зонд:

$$I_{iM} / I_i = \eta_M \xi_M^{3/2} \chi_{iM} / \beta_M^{-1} a_M^{0.5}$$

и на сферический зонд:

$$I_{iM} / I_i = \xi_M^{3/2} \chi_{iM} / a_M^{0.5}$$

Здесь $\chi_{iM} = i_{iM}^+ / i_i^+$.

В качестве эталонных для сравнения и контроля точности приняты зондовые характеристики, измеренные в ионосфере на ИСЗ «Интеркосмос-10» (цилиндрический зонд радиусом $r_p = 0.05$ см и длиной $l_p = 11.6$ см [12]) и на ИСЗ DEMETER (цилиндрический зонд радиусом $r_p = 0.3$ см и длиной $l_p = 5.0$ см; сфера радиусом $r_p = 2$ см [33]).

При оценке влияния возмущений околоспутниковой среды элементами конструкций и антеннами, расположенными на плите установочной КА «Сич-2», использовались зонды-макеты: цилиндрический зонд — макет DE радиусом $r_{pM} = 0.012$ см и длиной $l_{pM} = 3$ см; сферический зонд — макет EZ радиусом $r_{pM} = 0.75$ см, а также одиночный цилиндрический зонд Ленгмюра из молибденовой нити радиусом $r_p = 45$ мкм и длиной $l_p = 0.45$ см и сфера диаметром $2r_p =$ = 0.25 см. Зонды и макет установочной плиты размещались в вакуумной камере стенда (цилиндр

Рис. 4. Вольтамперные характеристики моделей зондов DE (*a*) и EZ (*b*): 1 - в невозмущенном потоке плазмы, 2 - в возмущенной зоне на макете установочной плиты KA «Сич-2»

длиной 1.2 м и длиной 3.5 м) на подвижных платформах верхнего и нижнего координатников с четырьмя степенями свободы каждый: продольное и поперечное перемещение в горизонтальной плоскости, перемещение в вертикальной плоскости и вращение вокруг вертикальной оси. Точность отсчёта для линейных перемещений 0.5 мм, для угловых — 0.5°. Измерения вольтамперной характеристики зондов проводились при рабочем давлении 1 мПа в потоке плазмы азота с массовой скоростью $U_{\infty} \approx 10.3$ км/с при концентрации заряженных частиц $N_{e,i} \approx 2 \cdot 10^8 \, \mathrm{cm^{-3}}$ и температуре электронов $T_e \approx 2.5 \cdot 10^4$ К. Точность определения концентрации электронов контролировалась СВЧ-интерферометрами, работающими на частотах 5.45 и 9.8 ГГц [20].

На рис. 4, *а* показаны ионные ветви вольтамперной характеристики зонда-макета DE, измеренные в невозмущённом потоке разреженной плазмы (кривая *1*) и зонда-макета (кривая *2*), ус-

Рис. 5. Временные вариации концентрации, температуры нейтральных частиц и «холодных» электронов: 1 -летные испытания 1 сентября 2011 г. (начало UT = = 00 y 23 мин 37 c), 2 -летные испытания 14 сентября 2011 г. (начало UT = 00 y 57 мин 15 c)

тановленного на модели КА «Сич-2». При ориентации оси зонда-макета ортогонально вектору скорости потока U_{∞} отношения плотностей токов насыщения ионов $j_{i2} / j_{i\infty} \approx N_{i2} / N_{i\infty} =$ $= n_i \approx 0.45 - 0.52$ близки к значению $n_i \approx 0.5 -$ 0.6, полученному по результатам численного моделирования (индекс «2» соответствует измерениям в возмущённой зоне на макете установочной плиты). В отличие от ионной ветви вольтамперной характеристики плотность электронного тока насыщения $j_{e_2}(\Phi_W)$ в возмущённой зоне практически не зависит от ориентации зонда относительно вектора скорости потока U_{∞} .

Зависимости плотности ионного тока $j_i(\Phi_W)$, измеренные на макете зонда EZ в потоке невозмущённой плазмы (кривая 1) и на макете зонда EZ на модели KA (кривая 2) представлены на рис. 4, δ . Для сферы (зонда EZ) соотношение плотностей ионного тока, собираемого в невозмущенной плазме и на макете KA $j_{i2} / j_{i\infty} \approx n_i \le$ ≤ 0.4 , учитывалось при анализе выходных сигналов зонда. Выходной сигнал зонда EZ соответствует равновесному («плавающему») потенциалу изолированной сферы в полярной ионосфере, который формируется потоком заряженных частиц плазмы на борту KA «Сич-2». Уравнение баланса токов на поверхности сферы в авроральной зоне ионосферы может быть представлено в виде [22]:

$$\sum_{\alpha} j_{\alpha}(\varphi_W) = j_{e_{\alpha}} - (j_i + j_{er_{\alpha}} + j_{eb_{\alpha}} + j_{ei} + j_{\gamma}) = 0 , \quad (4)$$

где $j_{e_{\alpha}}$ — плотность тока облучающих поверхность зонда электронов ($\alpha \equiv s, h$; индекс «*s*» соответствует «холодным» электронам ионосферной плазмы, «*h*» — быстрым авроральным электронам), j_i плотность тока ионов «холодной» ионосферной плазмы, $j_{er_{\alpha}}$ — плотность вторичных электронов, $j_{eb_{\alpha}}$ — плотность обратно рассеянных электронов, j_{ie} — плотность тока вторичной ионно-электронной эмиссии, j_v — плотность фототока. Из (4) следует уравнение

$$j_{e_{h}}(1-\sigma_{e_{h}})\exp(\Phi_{e_{h}}) + j_{e_{s}}(1-\sigma_{e_{s}})\exp(\Phi_{e_{s}}) - (1+\gamma_{i})j_{i} - j_{v} = 0.$$
(5)

Здесь σ_{e_h} — коэффициент вторичной электронной эмиссии авроральных электронов, σ_{e_s} коэффициент вторичной электронной эмиссии «холодных» электронов ионосферной плазмы, γ_i — коэффициент вторичной ионно-электронной эмиссии, $\Phi_{e_a} = e\phi_W / (kT_{e_a})$, T_{e_a} — температура ионосферных и авроральных электронов.

При *T_{e_s} / T_{e_k} <<1* из (5) следует

$$\varphi_{W} = -\frac{kT_{e_{s}}}{e} \ln\left[\frac{j_{e_{s}}k_{e_{s}}(B)(1-\sigma_{e_{s}})}{(1+\gamma_{i})j_{i}+j_{v}-j_{e_{h}}(1-\sigma_{e_{h}})}\right], \quad (6)$$

где $k_{e_s}(B)$ — коэффициент, учитывающий влияние внешнего магнитного поля на собирание электронов поверхностью сферы.

Зондовые измерения параметров плазмы. На рис. 5 показаны временные вариации концентрации N_n и температуры T_n , T_e нейтральных частиц и «холодных» электронов, вычисленные по выходным сигналам DN и электронному току вольтамперных характеристик зонда DE, измеренных в ходе летных испытаний на KA «Сич-2» 01.09.2011 г. (кривая 1) и 14.09.2011 г. (кривая 2). С учётом соотношений для плотностей токов на поверхности сферы (рис. 4, δ) вариации концентрации холодных электронов $N_e(t)$ на поверхности зонда ЕZ в момент измерений потенциала φ_W показаны на рис. 6 кривыми 1 и 2 соответственно. Вариации $\varphi_W(t)$ выходных сигналов зонда ЕZ иллюстрируют кривые 3 и 4. Кружками и точками показаны рассчитанные по формуле (6) значения φ_W .

Значения коэффициента вторичной электронной эмиссии σ_{e_s} на поверхности зонда EZ из стеклоуглерода определялись в выражении (6) из условия равенства энергий электронов, бомбардирующих поверхность, и работы выхода χ_W материала зонда. Этому условию соответствует углерод [5, 14]: $\sigma_{e_s}(T_{e_s} \approx 0.2 \text{ эB}) \approx 0.32$.

Индукция магнитного поля в авроральной зоне В≈62 мкТл [2, 6]. Ларморовский радиус «холодных» электронов при $T_{e_s} \approx 2500$ К равен $r_{e_s} \approx 2.5$ см. Для зонда ЕZ отношению $r_p / r_{es} \approx \approx 1.2$ (согласно теориям собирания электронов сферическим зондом в магнитном поле [4, 6, 8, 36, 38]) соответствует значение коэффициента $k_{e_s}(B) \approx 0.7$. При концентрации «холодных» электронов $N_{e_s} \approx 10^4$ см⁻³ плотность электронного тока на сферическую поверхность зонда ЕZ $j_{e_s} \approx 0.25, \ j_{e_s} = 0.25 eV_{e_s}(1 - \sigma_{e_s})k_{e_s}(B) \approx 6.2$ нА/см². Для ионов коэффициент вторичной ионноэлектронной эмиссии $\gamma_i \approx 0.016(h_i - 2\chi_W)$ [10, 20] (*h_i* – потенциал ионизации). Для ионов O⁺ и N^+ , преобладающих на орбите *h* ≈ 700 км (максимум солнечной активности), $j_i = 0.5 e N_i U_{\infty} [1 +$ $+ \operatorname{erf} (e \varphi_W / (kT_{e_e}))$ [9, 10, 20]. Зарядовое состояние поверхностей тела в полярной ионосфере в значительной степени определяется воздействием авроральных электронов с энергиями $T_{e_h} \ge 10$ кэВ при концентрации $N_{e_h} \approx 4$ см⁻³ [13, 30]. Плотность тока авроральных электронов на поверхность твёрдого тела в полярной ионосфере составляет $j_{0e_h} \approx 1.07$ нА/см² [26, 27, 31] или с учётом усреднённых по энергетическому спектру значений коэффициентов вторичной эмиссии $\sigma_{e_h} \approx 0.6$ [1, 13] $j_{e_h} \approx (1 - \sigma_{e_h}) j_{0e_h} \approx 0.43$ нА/см². Влияние авроральных электронов с энергией $T_{e_h} \le 4$ кэВ пренебрежимо мало ($j_{e_h} \le 0.1$ нА/см²) [28]. Максимум плотности тока фотоэлектронов с поверхности стеклоуглерода по данным [17] (формула (1)) составляет $j_{\nu} \approx 8.3$ нА/см². При максимуме солнечной активности [16, 37] $j_v \approx$

ISSN 1561-8889. Космічна наука і технологія. 2012. Т. 18. № 6

Рис. 6. Временные вариации концентрации «холодных» электронов и потенциала поверхности зонда EZ: 1, 2 — концентрации во время летных испытаний 1 сентября 2011 г. (начало UT = 00 ч 23 мин 37 с) и 14 сентября 2011 г. (начало UT = 00 ч 57 мин 15 с), 3, 4 — соответствующие потенциалы поверхности

≈ 6—8 нА/см². С учётом оценок работы [15] значение плотности фототока с поверхности зонда ЕZ принято равным $j_v \approx 7.5$ нА/см².

Рассчитанные с применением изложенной процедуры значения равновесного потенциала φ_W сферы, покрытой стеклоуглеродом (кружки и точки на рис. 6) согласуются с измеренными значениями — выходными сигналами зонда EZ (кривые 3, 4) в пределах погрешности ±1 %. Соответствие измеренных и рассчитанных значений потенциала φ_W свидетельствует о корректности процедуры численного и физического моделирования зондовых измерений на KA «Сич-2» и о приемлемой точности определения параметров «холодных» электронов (T_e и N_e) в околоспутниковой плазме на орбите.

ЗАКЛЮЧЕНИЕ

Разработана процедура численного и физического (стендового) моделирования зондовых измерений параметров околоспутниковой среды в полярной ионосфере на КА «Сич-2». Численно и экспериментально определены значения коэффициентов, характеризующих влияние возмущений околоспутниковой среды на выходные сигналы детектора нейтральных частиц DN и вольтамперные характеристики одиночного цилиндрического (DE) и сферического (EZ) зондов. Соответствие расчётных и измеренных значений равновесного потенциала изолированной сферы (зонд EZ) свидетельствует о корректности процедуры моделирования зондовых измерений и приемлемой точности определения температуры и концентрации «холодных» электронов в околоспутниковой плазме на полярной орбите KA «Сич-2».

- Акишин А. И., Новиков Л. С. Эмиссионные процессы при воздействии на материалы факторов космической среды // Космическая технология и материаловедение. — М.: Наука. 1982. — С. 85—95.
- 2. Альвен Г., Фельтхаммар К. Г. Космическая электродинамика. — М.: Мир, 1967. — 260 с.
- Альперт Я. Л., Гуревич А. В., Питаевский Л. П. Искусственные спутники в разреженной плазме. — М.: Наука, 1964. — 260 с.
- Бакшт Ф. Г., Дюжев Г. А., Циркель Б. И. и др. Зондовая диагностика низкотемпературной плазмы в магнитном поле // Журн. технической физики. 1977. 47, № 11. — С. 2269—2279.
- 5. *Грановский В. А.* Электрический ток в газе. М.–Л.: Гостехиздат, 1952. 543 с.
- Губский В. Ф. Влияние магнитного поля на измерения концентрации и температуры электронов цилиндрическими зондами в ионосфере Земли // Солнечно-земная физика. — 2008. — 1, вып. 12. — С. 261—269.
- 7. *Гуревич А. В., Питаевский Л. П., Смирнова В. В.* Ионосферная аэродинамика // Успехи физ. наук. — 1969. — **99**, № 1. — С. 3—49.
- 8. Девятов А. М., Мальков М. А. Диагностика плазмы в магнитном поле. Плоский зонд // Изв. вузов. Физика. 1984. № 3. С. 29—34.
- 9. *ECSS-E-10-04А*. Параметры космического пространства. — Noordwijk: ESTEC, 2000. — 219 с.
- 10. Козлов О. В. Электрический зонд в плазме. М: Атомиздат, 1969. — 291 с.
- Котельников В. М. Вольтамперные характеристики цилиндрического зонда в потоке столкновительной и бесстолкновительной плазмы // Теплофизика высоких температур. — 2008. — 46, № 3. — С. 342—347.
- 12. *Москаленко А. М.* К теории цилиндрического зонда // Космич. исследования. — 1979. — **17**, № 1. — С. 51— 59.
- Новиков Л. С., Милев В. А., Маклецов А. А. и др. Математическое моделирование электризации космических аппаратов // Модель космоса. Т. 2. Воздействие космической среды на материалы и оборудование космических аппаратов / Под. ред. Л. С. Новикова. — М.: КДУ, 2007. — С. 276—314.

- 14. *Райзер Ю. П.* Физика газового разряда. М.: Наука, 1987. 592 с.
- Смирнова В. В. К теории горячего зонда и фотозонда // Геомагнетизм и аэрономия. — 1966. — 6, № 2. — С. 276—283.
- 16. Смирнова Н. Ф., Станев Г. Определение плотности фотоэлектронного тока на основе сопоставления измерения потенциала спутника «Интербол-2» относительно плазмы зондовыми приборами ИЭСП-2 и КМ-7 // Солнечно-земная физика. — 2008. — 1, вып. 12. — С. 186—189.
- 17. Торкар К., Джезенски Г., Веселов М. В. и др. Измерение электрического потенциала спутника «Интербол-2» относительно плазмы и основанное на нём определение концентрации электронов // Космич. исследования. — 1999. — 37, № 6. — С. 644—653.
- Шувалов В. А. О точности вычисления плотности ионов при обтекании тел потоком разреженной плазмы // Геомагнетизм и аэрономия. — 1977. — 17, № 6. — С. 1040—1043.
- 19. Шувалов В. А. Структура ближнего следа за цилиндром в потоке неравновесной разреженной плазме // Геомагнетизм и аэрономия. — 1980. — **20**, № 3. — С. 425—429.
- 20. *Шувалов В. А.* Моделирование взаимодействия тел с ионосферой. Киев: Наук. думка, 1995. 180 с.
- 21. Шувалов В. А., Зельдина Э. А. Влияние распределения плотности ионов на структуру электростатического поля в следе за спутниками // Геомагнетизм и аэрономия. 1975. 15, № 4. С. 627—632.
- 22. Шувалов В. А., Кочубей Г. С., Приймак А. И. и др. Радиационная электризация подветренных поверхностей космических аппаратов авроральными электронами // Космич. исследования. — 2003. — 41, № 4. — С. 438—448.
- 23. Шувалов В. А., Кочубей Г. С., Приймак А. И. и др. Контактная диагностика высокоскоростных потоков разреженной плазмы // Теплофизика высоких температур. — 2005. — 43, № 3. — С. 343—351.
- 24. Шувалов В. А., Лазученков Д. Н., Кочубей Г. С., Носиков С. В. Диагностика нейтрального и заряженного компонентов потока разреженной плазмы калориметрическими зондами // Приборы и техника эксперимента. — 2010. — 53, № 3. — С. 80.
- 25. Шувалов В. А., Токмак Н. А., Письменный Н. И., Кочубей Г. С. Синергетический эффект воздействия потоков атомарного кислорода и вакуумного ультрафиолета на полиимидные пленки космических аппаратов // Космічна наука і технологія. — 2012. — 18, № 3. — С. 10—19.
- 26. Anderson P. S. A Survey of Spacecraft Charging Events on the DMSP Spacecraft in LEO // Proc. 7-th Spacecraft Charging Technology. Conf. 2001. ESA. Sp.476. – P. 331–336.

ISSN 1561-8889. Космічна наука і технологія. 2012. Т. 18. № 6

- Anderson P. S., Koons H. C. A spacecraft charging anomaly on a DMSP satellite in a aurora // J. Spacecraft and Rockets. 1996. 33, N 5. P. 734–738.
- Davies R. E., Dennison J. R. Evolution of secondary electron emission characteristics of spacecraft surfaces // J. Spacecraft and Rockets. 1997. 34, N 4. P. 571—574.
- Godard R., Laframboise J. G. Total current to cylindrical collectors in collision less plasma // Planet. Space Sci. – 1983. – 31, N 3. – P. 275–283.
- Gussenhoven M. S., Hardy D. A., Rick F., et al. High-level charging in the low-altitude polar auroral environment // J. Geophys. Res. – 1985. – 90. – P. 11009–11029.
- Labramboise J. G., Luo J. High-voltage polar-orbit and beam-induced charging of a dielectric spacecraft: A Wakeinduced barrier effect mechanism // J. Geophys. Res. – 1989. – 94A, N 7. – P. 9033–9048.
- Laframboise J. G. Theory of spherical and cylindrical Langmuir probes in a collisionless plasma at rest // Rarefied gas dynamics. — N.-Y.: Acad. Press, 1965. — Vol. 2. — P. 22—44.
- 33. Lebreton J. P., Stverak S., Travnicek P., et. al. The ISL Langmuir probe experiment processing onboard DEME-TER: Scientific objectives, description and first results // Planet. and Space Sci. – 2006. – 54. – P. 472–487.
- Makita H., Kuriki K. Current collection by spherical Langmuir probes drifting in a collisionless plasma // Phys. Fluids. — 1978. — 21, N 8. — P. 1279—1286
- 35. *McDonald P., Smetana F.* Results of a numerical experiment to determine the current collected by charged cylin-

der in a collisionless plasma stream // Rarefied gas dynamics. — N.-Y.: Acad. Press, 1969. — Vol. 2. — P. 1627— 1636.

- Parker L. W., Murphy B. L. Potential buildup on an electron emitting ionosphere satellite // J. Geophys. Res. 1967. – 72, N 5.
- Pedersen A., Cattell C. A., Falthammar C. G., et. al. Quasistatic electric field measurements with spherical double probes on the GEOS and ISEE Satellites // Space Sci. Revs. – 1984. – 37. – P. 269–283.
- Rubinstein J., Laframboise J. G. Theory of a spherical probe in a collisionless magnetoplasma // Phys. Fluids. – 1982. – 25, N 7. – P. 1174–1182.

Надійшла до редакції 14.09.12

V. A. Shuvalov, V. E. Korepanov, A. A. Lukenyuk, N. A. Tokmak, G. S. Kochubey

MODELING OF PROBE MEASUREMENTS OF PLASMA ENVIRONMENT PARAMETERS ONBOARD THE SPACECRAFT «SICH-2»

We developed a procedure for the numerical and physical (set) modeling of the probe measurements of environment parameters for the spacecraft «Sich-2». A correlation between the calculated and measured values of the equilibrium potential of the insulated sphere (EZ probe) testifies that the modeling procedure is correct and the precision of the determination of electron temperature and plasma environment concentration in the polar orbit of the spacecraft «Sich-2» is acceptable.