УДК 523.683; 520.8; 52.126; 52.128; 52.13; 52.14

П. М. Козак, О. О. Рожило, Ю. Г. Тарануха, В. Г. Кручиненко

Астрономічна обсерваторія Київського національного університету імені Тараса Шевченка, Київ

КІНЕМАТИЧНІ ХАРАКТЕРИСТИКИ ВЕРЕСНЕВИХ МЕТЕОРІВ ЗА БАЗИСНИМИ ТЕЛЕВІЗІЙНИМИ СПОСТЕРЕЖЕННЯМИ 2003 РОКУ

Наведено результати базисних телевізійних спостережень метеорів, що проводились у вересні 2003 р. на спостережних станціях Астрономічної обсерваторії Київського національного університету імені Тараса Шевченка. Аналізується проблема визначення точності обчислень кінематичних параметрів метеора. Наведено таблиці обчислених геоцентричних та геліоцентричних характеристик 80 базисних метеорів. Побудовано статистичні розподіли основних метеорних параметрів. Аналізуються деякі отримані аномальні характеристики метеорів.

ВСТУП

Вивчення навколоземного метеорного комплексу пов'язане з вирішенням як фундаментальних фізичних задач (розподіл навколоземної матерії зафізичними характеристиками, походження метеорної речовини в аспекті космогонії Сонячної системи, зв'язок метеорних потоків з кометами, взаємодія метеорної речовини з атмосферами планет), так і ряду прикладних задач (безпека космічних польотів, розробка термостійких покриттів космічних апаратів та ін.). Особливо актуальним є накопичення даних спостережень метеорів в оптичному діапазоні, оскільки сучасні бази даних менш точних радіолокаційних спостережень нараховують мільйони орбіт [6], в той час як центр метеорних даних Міжнародного астрономічного союзу [MDC IAU, http://www. astro.amu.edu.pl/~jopek/ MDC2007] нараховує на сьогодні лише 4581 орбіту метеорів, отриманих за допомогою фотографічних спостережень [14]. Ситуація з телевізійними спостереженнями дещо краща — існує ряд публікацій про обчислені кінематичні характеристики метеорів [7—9, 13, 15]. Окремо можна виділити досягнення японських любителів астрономії, які за підтримки корпорації SonotaCo з допомогою відеокамер сучасного покоління, у співробітництві з міжнародною метеорною організацією любителів метеорних спостережень [International Meteor Organization: http://www.imo.net] та за консультативного сприяння професіоналів метеорної астрономії створили каталог кінематичних параметрів 39208 метеорів [13]. На жаль, характеристики метеорів – радіанти, швидкості, елементи геліоцентричних орбіт — розраховувалися автоматично за допомогою програмного забезпечення [SonotaCo "UFCaptureV2 Users Manual", http://sonotaco.com/soft/UFO2/help/english/ index.html; SonotaCo "UFOAnalyzerV2", http:// sonotaco.com/soft/download/UA2Manual EN.pdf; SonotaCo "UFOOrbitV2 Users Manual", http:// sonotaco.com/soft/UO2/UO21Manual EN.pdf] i не перевірялися на достовірність. Камери, що використовувались, були малочутливими — максимум розподілу метеорів за зоряними величинами відповідає блиску +1^{*m*}, найслабші метеори, що реєструвались, мали блиск +4^{*m*}...+4.5^{*m*} [13]. Отже, спостереження слабкосвітних метеорів $(+6^{m}...+8^{m})$ та визначення їхніх параметрів є і до сьогодні актуальною задачею.

[©] П. М. КОЗАК, О. О. РОЖИЛО, Ю. Г. ТАРАНУХА,

В. Г. КРУЧИНЕНКО, 2011

СПОСТЕРЕЖНА АПАРАТУРА

Для базисних спостережень метеорів в Астрономічній обсерваторії Київського національного університету імені Тараса Шевченка (КАО) використовуються модернізовані телевізійні системи «Інтроскоп», побудовані на базі високочутливих передавальних трубок типу суперізокон Лі-804. Телевізійні камери оснащуються ширококутними фотографічними об'єктивами, найчастіше «Юпітер-3» (F = 50 мм, F/1.5), або «Геліос-40» (F = = 85 мм, *F*/1.5). Дві такі установки для базисних спостережень розміщені в пунктах А (спостережна станція с. Лісники) і В (спостережна станція с. Пилиповичі), що знаходяться на відстані 54 км по хорді земного сфероїда. Телевізійна система працює в штатному режимі 25 кадрів/с, із черезстроковою розгорткою. Для визначення часу за допомогою таймерів в телевізійний кадр вдруковується час з точністю до 0.01 с. Спостережні дані реєструються в аналоговому вигляді за допомогою відеомагнітофонів типу VHS або S-VHS. Далі в лабораторних умовах результати спостережень переглядаються та вибірково оцифровуються відеопослідовності з метеорами в кадрах. Формат повного оцифрованого кадра загалом залежить від телевізійної системи та цифрувального пристрою, зазвичай 768 × 576 пкл. Шляхом зіставлення часу появи метеора в обох пунктах встановлюються спільні явища, обробка яких дає змогу визначити усі параметри метеора. Оскільки метеор динамічний об'єкт, а телевізійна камера працює в черезстроковому режимі, то для уникнення накладання двох зображень метеора, які формуються в парних і непарних полях, рознесених в часі на 0.02 с, оцифровані відеопослідовності з метеорами (зазвичай файли у форматі AVI) програмно розбиваються на парні та непарні поля кадру. При використанні об'єктива «Юпітер-3» кутовий розмір поля приблизно складає 23.5 × 19°, розмір пікселя 4', при використанні «Геліос-40» поле — $13 \times 11^{\circ}$, розмір пікселя 2.2'. Для обчислення параметрів метеора достатньо опрацювати одну парну або непарну послідовність полів, при цьому часова роздільна здатність складатиме 0.04 с. Для підвищення точності обчислення швидкості метеора можна незалежно опрацювати парні та непарні поля, а перед базисною обробкою — об'-

єднати дані. Тоді часова роздільна здатність складе 0.02 с.

МЕТОДИКА ОБРОБКИ

Методика обробки результатів телевізійних спостережень метеорів була розроблена раніше та описана в ряді публікацій. Методи вимірювань об'єктів у кадрі обговорюються в роботі [2]. Астрометричну обробку, а саме вибір редукційної моделі, просторової зони та кількості опорних зір та інших факторів, що визначають точність обчислення екваторіальних координат точок на зображенні метеора, описано в роботі [4].

Для базисної обробки двох відеопослідовностей одного і того ж метеора, отриманих з двох пунктів, використовується розроблений у метеорній групі КАО векторний метод [5]. Він дає змогу визначати просторові характеристики траєкторії метеора у атмосфері Землі (висота появи, максимум блиску та зникнення; дальність до метеора від пунктів спостереження; видимі та геоцентричні швидкості та екваторіальні координати радіанта метеора та ін.), елементи геліоцентричної орбіти метеора, блиск метеора. Згадані методи обробки закладені в оригінальне програмне забезпечення «Falling star» [10, 11], що дозволяє проводити обробку у ручному та напівавтоматичному режимах (реалізація програми з повністю автоматичним режимом перебуває на стадії розробки).

ЯКІСНИЙ АНАЛІЗ ПОПЕРЕДНЬОЇ ОБРОБКИ РЕЗУЛЬТАТІВ СПОСТЕРЕЖЕНЬ

Спостереження проводилися 19—24 вересня 2003 р. в рамках програми пошуку слабких метеорних потоків. Час спостережень Δt та кількість метеорів N, що були зареєстровані в обох пунктах, наведено у табл. 1, де С — спільні (базисні) метеори.

Досить велика частка з 80 зареєстрованих базисних метеорів — це надзвичайно слабкі метеори (до $+7^m$). Частина метеорів були дуже короткі і реєструвались лише на кількох кадрах, інші влітали з-за меж кадру або вилітали за кадр. Очевидно, точність обчислення параметрів метеорів за таких обставин не може бути високою.

Для того щоб визначити ступінь достовірності обчислюваних параметрів метеора, робилась оцінка якості М_о метеорного зображення по кожному з пунктів. Оцінка значною мірою суб'єктивна і варіює в межах 1—5. Для її визначення враховувалась інтенсивність зображення, близькість до краю кадру, наявність поблизу опорних зір, кількість кадрів з метеором. Відтак оцінка $M_o = 5$ відповідає зображенню метеора з чіткими контурами, що дають змогу досить чітко встановити положення голови метеора, реєстрація метеора мінімум у 5-6 кадрах для якомога точнішого визначення швидкості, наявність навколо достатньо симетричної вибірки опорних зір. Найгірша оцінка $M_{\rho} = 1$ відповідає надслабкому метеорові, який видно на 2–3 кадрах, має дифузну напівпрозору структуру (через мале відношення сигнал/шум) та розташований на межі кадру. У більшості випадків метеорні зображення з $M_{0} = 1$ без спеціального досвіду не можуть бути візуально знайдені у відеопослідовності. Для порівняння якості реєстрації метеорів з різних пунктів були побудовані гістограми розподілів M_o , приведені на рис. 1. Видно, що якість зображень в обох пунктах однакова, її типове значення — 3 бали, однак неякісні зображення (1-2 бали) складають досить великий відсоток.

Крім введеної оцінки, що описує якість зображення, на точність обчислення параметрів суттєво впливає ще один фактор, який може бути визначений лише після обробки. Це позиційний кут γ між напрямком руху метеора і напрямком на пункт спостереження. З огляду на методику базисної обробки метеорів [5, 11] та з геометричних міркувань похибки у визначенні радіанта та швидкості метеора будуть тим більші, чим менший кут γ . Оскільки похибки визначення кінематичних параметрів кожного індивідуального метеора обчислити досить складно, то для оцінки достовірності параметрів кожного з 80 метеорів була побудована табл. 2.

В табл. 2 наведено кількість кадрів N, на яких видно метеор, кути γ та оцінки M_Q . Також приводиться описова характеристика ВМЕ (Begin-Maximum-End), яка показує наявність у кадрі початку метеора, максимуму його блиску та кінця. Унікальним у цьому плані є метеор № 78, зареєстрований з пункту А — він не має в кадрі жодної зі згаданих точок. Як видно з табл. 1,

Рис. 1. Розподіл кількості базисних метеорів по значеннях M_{ϱ} оцінок якості зображень для двох пунктів спостережень: пункт А — світла штриховка, В — темна

кількість метеорів, що перебувають у кадрі повністю, значно вища для пункту В — 57 (71 %) проти 45 (56 %) для пункту А. Даний факт легко пояснюється напрямком орієнтації оптичних осей камер: у пункті А камера направлена в зеніт, і відтак охоплює меншу площу на висоті горіння метеорів. Щодо позиційних кутів, то кількість метеорів низької ($\gamma < 30^\circ$) та критичної ($\gamma < 20^\circ$) якості є такою: $N(\gamma < 30^\circ) = 17 (21\%), N(\gamma < 20^\circ) =$ = 7 (9 %) для пункту A та $N(\gamma < 30^\circ) = 20$ (25 %), $N(\gamma < 20^{\circ}) = 9$ (11%) для В. З пункту А зареєстровано один практично стаціонарний метеор № 40 з $\gamma = 0.2^{\circ}$. Очевидно, точність обчислення інших параметрів цього метеора є надзвичайно низькою. Величина позиційного кута залежить від орієнтації оптичних осей камер та від радіантів індивідуальних метеорів, які для метеорів спорадичного фону розподілені хаотично. Найбільша похибка обчислень кінематичних параметрів буде для тих метеорів, позиційні кути яких малі для обох пунктів.

Таблиця 1. Час спостережень та кількість зареєстрованих метеорів

Дата	Пун	кт А	Пун	кт В	С (спільні метеори)		
	Δt , год	N	Δt , год	Ν	Δt , год	N	
19	4	7	4	29	4	4	
20	4	16	4	26	4	2	
21	3	17	4	30	3	11	
22	4	27	5	43	4	25	
23/24	7	49	7	68	7	38	
Всього	22	116	24	196	22	80	

Номер Т		Г	B_M_E		ү, град		M_Q		Номер	1	Γ	B_N	∕I_E	γ, г	рад	M	I_Q
п/п	А	В	А	В	А	В	Α	В	п/п	А	В	А	В	А	В	А	В
1	13	12	BME	BME	23.7	21.0	4	4	41	11	13	BME	BME	16.3	42.4	3	4
2	4	4	BME	BME	19.3	24.5	2	2	42	5	4	BME	BME	41.0	35.6	3	3
3	8	11	BME	BME	58.7	31.6	3	3	43	41	9	BME	BM_	42.6	32.9	5	2
4	9	16	_ME	BM_	80.4	86.0	5	5	44	11	13	BM_	BME	72.2	47.5	4	4
5	30	8	BME	_ME	22.8	47.3	5	3	45	12	15	BM_	BME	43.4	14.2	5	4
6	5	4	BME	BME	43.6	38.0	3	3	46	3	9	E	_ME	55.3	56.1	1	3
7	14	13	_ME	BME	32.4	60.1	3	2	47	12	14	BME	BME	26.1	52.7	3	4
8	16	33	BM_	BME	59.4	31.2	5	5	48	6	5	_M_	BM_	41.5	56.4	2	2
9	7	9	BM_	BM_	22.6	20.8	4	3	49	8	6	BME	BM_	15.8	32.5	2	2
10	7	9	BM_	BME	52.3	49.5	5	3	50	14	21	E	_ME	76.3	51.1	5	5
11	5	10	_ME	_ME	61.8	61.4	3	4	51	6	6	BME	BME	45.8	19.0	2	1
12	9	5	BM_	BME	36.4	50.0	3	1	52	8	10	BME	BME	43.4	15.5	4	3
13	28	24	_M_	B	20.3	49.9	5	5	53	6	7	BME	BM_	37.6	46.3	1	1
14	4	6	BME	BME	44.8	31.3	1	1	54	5	7	BM_	BME	83.8	80.7	2	3
15	9	7	BME	BME	50.6	51.6	4	2	55	10	10	BME	BME	42.5	59.6	3	4
16	6	6	BME	BME	72.9	47.2	3	3	56	4	16	BM_	B	57.5	45.0	2	5
17	3	3	BME	BME	23.3	28.2	1	1	57	12	13	E	_ME	62.8	55.9	3	4
18	18	30	BM_	BM_	76.8	84.8	4	4	58	6	13	_M_	_M_	77.5	79.6	4	5
19	6	8	_ME	BME	58.0	28.5	3	2	59	6	5	_ME	E	65.6	55.0	4	3
20	7	6	BME	BME	31.5	58.5	2	2	60	8	25	B	BME	54.2	27.7	3	5
21	13	17	BM_	BME	53.8	26.7	2	2	61	8	5	BME	BME	46.6	67.3	1	1
22	7	7	BM_	BM_	65.8	59.7	3	3	62	17	16	BME	BME	35.1	25.5	4	4
23	14	13	BME	BME	56.3	26.0	3	3	63	7	10	BME	BME	18.4	47.9	2	3
24	16	19	BME	BME	56.4	32.2	3	3	64	6	6	BME	BME	64.7	68.7	3	2
25	7	11	E	_ME	61.5	51.7	4	4	65	6	5	BME	BME	47.6	45.9	3	2
26	7	11	BME	BME	58.2	46.8	3	4	66	5	3	E	BME	25.0	5.9	2	1
27	4	3	BME	BME	49.6	50.1	2	1	67	5	17	E	BME	26.7	24.9	1	4
28	13	15	B	BME	54.0	51.3	5	5	68	7	7	BME	BME	25.2	45.3	3	3
29	6	12	E	BME	62.4	50.1	4	4	69	4	2	BME	BME	31.6	15.7	1	1
30	9	7	BME	BME	39.6	25.3	3	2	70	23	21	BME	BME	66.2	86.9	5	5
31	15	16	BME	BME	32.6	32.4	5	4	71	4	6	B	BME	42.4	46.8	2	2
32	9	6	BME	BME	37.0	54.4	3	2	72	12	12	BME	BME	43.5	47.9	4	3
33	32	34	BME	_ME	36.2	51.4	5	5	73	7	6	BME	BME	18.4	15.4	3	3
34	4	6	B	BM_	81.9	74.2	2	1	74	5	4	BME	BME	9.2	38.8	1	1
35	6	8	BME	BME	41.3	61.2	2	3	75	10	9	BME	BME	60.8	84.6	2	3
36	23	23	BM_	BME	50.6	49.6	5	5	76	16	15	BM_	BME	59.4	70.8	4	4
37	4	10	BME	BM_	59.7	86.5	1	2	77	3	4	B	BME	29.2	3.8	1	1
38	4	11	BM_	BM_	46.1	40.9	1	2	78	3	4		BME	50.2	24.1	1	1
39	5	5	BME	BME	52.1	31.4	1	3	79	4	3	BME	BME	41.0	14.9	3	1
40	2	11	BME	BM_	0.2	31.4	1	3	80	4	4	BME	BME	35.8	13.2	1	1

Таблиця 2. Деякі характеристики метеорних зображень, що визначають точність обробки кожного індивідуального метеора

ПАРАМЕТРИ ТРАЄКТОРІЙ МЕТЕОРІВ В АТМОСФЕРІ ТА ГЕОЦЕНТРИЧНІ ВЕКТОРИ ШВИДКОСТЕЙ

Отримані внаслідок базисної обробки кінематичні характеристики метеорів було розбито на дві групи: 1) геометричні характеристики траєкторій в атмосфері Землі, видимі координати радіантів та модулі їхніх швидкостей на нескінченності (виправлені за обертання Землі навколо осі та за вплив атмосфери) та скориговані за гравітаційний вплив Землі, тобто геоцентричні параметри; 2) геліоцентричні параметри метеора — геліоцентричні радіанти та швидкості, елементи орбіти метеора.

У табл. 3 приведено дату, час реєстрації метеора, мінімальний час життя т та мінімальну дов-

T C D T	••						
Tahnung 3	апаметпи тпаєктопі	I METEODIR V	v armoecheni	геоцентричні	паліанти та	МОЛУПІ ШВИЛКА	OCTI
1 40 114 10 . 11	upumerph rpackropi	i mercopin j	, armocycpi,	теоцентри пп	раднанти та	тодулі швидко	0011

№ п/п	Дата	Час	Δt , c	<i>L</i> , км	H_{b} , км	H_{e} , км	α_{Rinf}	δ_{Rinf}	υ_{inf} , KM/c	σ _υ ,км/с	α_{RG}	δ_{RG}	υ _{<i>g</i>} , км/с
1	19.09.2003	19 ^h 30 ^m 16 ^s	0.481	13.1	97.5	85.2	23 ^h 06 ^m 10 ^s	+40°02′59″	25.892	0.908	23 ^h 10 ^m 26 ^s	+39°24′43″	23.389
2	19.09.2003	20 42 04	0.141	4.7	104.2	99.0	23 55 18	+49 22 46	38.066	3.372	23 57 00	+49 19 44	36.411
3	19.09.2003	20 42 31	0.397	11.9	92.2	86.2	23 56 09	-07 08 01	23.728	0.602	0 00 19	-11 03 29	20.966
4	19.09.2003	21 25 30	>0.648	>31.2	98.1	88.9	10 26 46	+55 16 10	47.314	0.553	10 28 04	+54 03 43	45.992
5	20.09.2003	20 14 13	>1.157	>23.1	97.8	78.5	20 07 11	+25 23 29	16.141	0.690	19 52 53	+20 48 17	11.711
6	20.09.2003	22 43 22	0.162	10.4	112.5	104.4	4 37 03	+49 39 45	65.426	6.549	4 38 37	+49 33 00	64.478
7	21.09.2003	20 27 21	>0.526	>17.3	>110.0	96.7	18 04 39	+69 45 05	33.439	1.051	17 52 10	+69 40 32	31.544
8	21.09.2003	20 28 16	>1.313	>27.9	92.0	76.8	0 47 55	+01 33 17	21.038	0.226	0 56 34	-02 58 30	17.865
9	21.09.2003	20 48 46	>0.322	>13.3	104.4	<91.2	23 33 38	+34 43 09	38.097	3.170	23 34 21	+34 21 53	36.444
10	21.09.2003	21 05 53	>0.321	>18.8	114.2	101.5	4 11 52	+55 53 00	60.164	1.514	4 14 25	+55 42 33	59.132
11	21.09.2003	22 10 52	>0.403	>20.3	>100.1	90.5	8 21 02	+56 01 52	55.901	0.152	8 24 05	+55 27 57	54.787
12	21.09.2003	22 17 26	>0.325	>15.7	99.5	<86.1	2 56 22	+77 18 13	48.495	0.744	3 02 36	+77 33 47	47.206
13	21.09.2003	22 17 34	>1.091	>59.3	>131.7	<76.1	22 54 36	+67 36 36	40.626	1.065	22 51 43	+67 54 04	39.086
14	21.09.2003	22 17 58	0.199	13.3	107.1	98.1	4 59 40	+39 45 34	68.880	8.653	5 01 04	+39 33 23	67.980
15	21.09.2003	22 23 42	0.324	21.4	115.0	102.1	6 31 17	+52 22 11	64.036	1.365	6 33 34	+52 06 34	63.068
16	21.09.2003	23 06 10	0.197	11.1	108.4	103.9	5 02 48	+02 09 26	54.744	2.016	5 04 43	+01 29 39	53.607
17	21.09.2003	23 06 49	0.101	3.7	94.6	89.5	2 39 39	+59 53 35	45.543	0.438	2 41 25	+60 00 22	44.167
18	22.09.2003	19 00 39	>1.165	>16.6	86.7	<81.7	16 55 27	$+00\ 08\ 40$	12.937	0.155	15 48 11	$-21\ 08\ 28$	6.617
19	22.09.2003	19 06 54	>0.278	>9.7	94.7	89.5	0 52 51	+13 39 03	31.050	1.028	0 58 17	+11 58 15	28.995
20	22.09.2003	19 28 03	0.240	8.0	93.9	87.2	18 52 47	+79 28 42	31.759	2.579	18 33 01	$+80\ 07\ 41$	29.752
21	22.09.2003	19 35 35	>0.638	>13.8	95.8	86.1	22 54 10	$+08\ 08\ 21$	20.240	0.770	22 58 55	+04 06 23	16.918
22	22.09.2003	19 43 05	>0.248	>15.6	104.6	<97.2	3 51 00	+44 09 16	63.806	1.345	3 53 03	+43 50 09	62.833
23	22.09.2003	19 57 23	0.524	12.1	98.0	91.3	0 24 14	+05 18 59	22.910	0.419	0 31 20	+01 53 05	20.038
24	22.09.2003	19 57 48	0.718	13.6	87.3	79.2	22 41 03	-02 57 36	17.374	0.455	22 44 58	$-10\ 27\ 54$	13.352
25	22.09.2003	19 58 45	>0.400	>28.0	>114.2	99.2	4 35 18	+41 20 48	65.625	1.133	4 37 14	+40 59 06	64.681
26	22.09.2003	20 02 42	0.398	26.3	116.1	102.7	3 58 29	+40 07 54	66.970	2.798	4 00 14	+39 49 60	66.045
27	22.09.2003	20 34 29	0.123	7.5	104.0	98.5	4 24 41	+54 58 26	64.855	2.433	4 26 57	+54 45 57	63.898
28	22.09.2003	20 49 49	>0.561	>08.9	85.8	79.1	21 54 25	+06 36 04	16.932	0.175	21 47 56	+00 04 32	12.771
29	22.09.2003	21 07 41	>0.436	>32.0	116.7	103.9	5 08 11	+29 12 54	73.390	6.716	5 09 34	+28 54 06	72.547
30	22.09.2003	21 21 20	0.320	8.1	88.8	82.2	0 05 37	+08 19 17	25.361	1.617	0 07 04	+05 58 53	22.796
31	22.09.2003	21 23 59	0.602	12.4	97.8	85.8	23 02 32	+21 55 39	20.093	0.536	23 00 39	+19 17 38	16.743
32	22.09.2003	21 30 41	0.322	13.5	101.7	90.0	1 43 05	+76 31 20	43.860	1.397	1 49 02	+76 52 44	42.432
33	22.09.2003	21 39 11	>1.366	>26.0	101.5	82.4	21 36 18	+14 27 49	17.570	0.145	21 24 29	+09 19 44	13.615
34	22.09.2003	22 21 54	>0.202	>4.2	92.1	<91.0	18 51 36	+14 55 07	14.868	0.722	18 05 17	+01 29 56	9.880
35	22.09.2003	22 22 58	0.284	11.6	106.0	96.5	19 15 19	+85 01 30	36.267	0.850	18 28 59	+85 01 14	34.526

ISSN 1561-8889. Космічна наука і технологія. 2011. Т. 17. № 4

Закінченння табл. З

№ п/п	Дата	Час	Δt , c	<i>L</i> , км	$H_{\!_b}$, км	$H_{\!_e}$, км	α_{Rinf}	δ_{Rinf}	υ_{inf} , km/c	σ _υ ,км/с	α_{RG}	δ _{RG}	υ _{<i>g</i>} , км/с
36	22.09.2003	22 25 17	>0.882	>20.4	100.0	86.0	23 33 32	+01 36 30	22.078	0.157	23 30 11	-02 11 36	19.081
37	22.09.2003	22 43 17	>0.364	>8.0	98.3	<92.1	18 16 22	+62 10 04	22.156	0.297	17 50 44	+59 45 49	19.171
38	22.09.2003	22 44 04	>0.401	>27.4	117.1	<99.3	6 10 52	+47 58 40	66.128	2.624	6 12 44	+47 45 52	65.191
39	22.09.2003	22 48 54	0.165	10.3	112.8	104.4	4 50 43	+30 06 41	66.933	4.628	4 51 55	+29 52 27	66.007
40	22.09.2003	22 55 28	>0.640	>7.5	85.4	78.0	1 18 09	+44 32 26	17.983	0.436	1 19 41	+43 54 01	14.204
41	22.09.2003	22 59 33	0.487	20.9	110.6	91.7	0 10 55	+72 14 04	50.500	1.426	0 09 23	+72 29 48	49.266
42	22.09.2003	23 01 07	0.164	10.4	110.5	102.5	5 36 24	+52 50 55	60.488	4.965	5 38 33	+52 42 02	59.462
43	23.09.2003	18 09 37	>1.637	>22.7	91.8	74.9	20 14 34	+03 29 18	13.172	0.825	20 13 11	-11 15 37	7.072
44	23.09.2003	18 44 40	>0.475	>15.0	102.3	96.4	0 58 49	+03 24 50	30.996	0.678	1 05 19	+01 15 10	28.940
45	23.09.2003	19 27 51	>0.558	>17.5	106.9	92.3	23 11 31	+22 20 05	27.551	0.427	23 14 31	+20 59 22	25.216
46	23.09.2003	19 46 12	>0.321	>19.4	>114.2	104.9	5 13 16	+51 55 15	59.046	6.951	5 15 59	+51 28 34	57.995
47	23.09.2003	19 51 58	0.526	16.0	104.7	90.3	19 28 37	+74 31 43	31.631	1.184	19 16 10	+75 04 03	29.619
48	23.09.2003	20 03 26	>0.201	>9.0	106.3	<99.2	2 51 39	+78 06 60	43.578	2.981	3 04 11	+78 10 14	42.141
49	23.09.2003	20 09 42	>0.279	>5.6	94.1	88.0	21 41 40	+30 26 52	20.463	1.900	21 39 06	+28 41 49	17.185
50	23.09.2003	20 12 20	>0.874	>18.7	>96.0	93.1	0 04 44	$-27\ 52\ 57$	22.389	0.438	0 14 05	$-34\ 28\ 45$	19.439
51	23.09.2003	20 14 30	0.238	7.7	104.6	100.0	0 49 02	+09 47 30	39.174	5.020	0 51 15	+08 49 08	37.568
52	23.09.2003	20 28 22	0.363	15.5	106.6	94.6	0 56 57	+13 47 10	34.414	0.608	0 59 41	+12 38 27	32.575
53	23.09.2003	20 34 16	>0.241	>4.7	85.9	80.9	21 27 43	+19 20 32	12.373	0.742	21 06 56	+06 30 43	5.429
54	23.09.2003	20 35 58	>0.236	>16.2	114.4	114.5	5 33 56	+09 08 45	68.216	0.842	5 35 53	+08 32 37	67.308
55	23.09.2003	20 42 39	0.365	18.3	99.6	86.6	5 32 56	+79 10 25	50.786	0.727	5 43 37	+78 57 32	49.557
56	23.09.2003	20 48 36	>0.600	>12.4	92.7	<84.6	22 49 46	+03 08 18	20.260	0.153	22 49 06	-01 18 42	16.942
57	23.09.2003	20 51 30	>0.478	>25.0	>108.3	97.7	5 40 28	+43 15 35	50.432	0.990	5 43 50	+42 38 12	49.195
58	23.09.2003	20 55 52	>0.471	>28.2	<113.7	>118.4	5 36 06	$-06\ 02\ 46$	62.175	1.980	5 38 57	-06 52 35	61.178
59	23.09.2003	20 58 22	>0.208	>13.2	>98.6	94.2	4 59 58	+25 36 57	64.279	2.771	5 01 47	+25 10 53	63.312
60	23.09.2003	21 01 30	>0.993	>31.8	103.2	81.0	1 21 27	+13 00 34	28.282	0.652	1 25 22	+11 14 30	26.012
61	23.09.2003	21 12 55	0.280	8.3	105.9	99.0	18 09 20	+82 04 18	31.171	1.839	17 29 32	+81 59 44	29.128
62	23.09.2003	21 39 59	0.639	20.5	107.8	90.7	0 11 54	+14 29 05	33.430	0.484	0 12 20	+13 24 37	31.534
63	23.09.2003	21 55 29	0.364	9.3	100.2	92.0	21 57 34	+56 47 47	32.027	1.469	21 52 50	+56 51 05	30.040
64	23.09.2003	22 19 09	0.204	12.6	112.3	106.8	8 25 22	+52 13 44	58.360	2.703	8 28 05	+51 41 49	57.295
65	23.09.2003	22 39 34	0.205	13.2	111.6	102.3	5 55 52	+53 41 20	69.467	1.700	5 57 41	+53 32 40	68.575
66	23.09.2003	22 48 50	>0.162	>9.3	>105.2	97.3	3 21 45	+32 09 11	56.690	1.815	3 22 48	+31 55 45	55.593
67	23.09.2003	23 04 35	>0.642	>11.2	82.9	70.8	0 44 23	+24 58 15	14.341	2.104	0 39 26	+19 09 33	9.055
68	23.09.2003	23 20 04	0.281	13.4	109.0	97.6	3 49 50	+79 41 05	45.391	1.298	3 57 49	+80 02 34	44.013
69	23.09.2003	23 23 12	0.123	10.6	115.3	106.5	4 40 00	+37 58 04	87.229	6.303	4 40 36	+37 52 57	86.521
70	23.09.2003	23 45 48	0.881	21.7	98.0	87.9	16 01 42	+62 41 22	24.836	0.223	15 50 12	+58 54 47	22.214
71	23.09.2003	23 57 54	>0.201	>8.6	99.2	90.9	1 08 46	+14 31 37	38.428	6.149	1 07 47	+13 42 26	36.788
72	24.09.2003	0 00 10	0.442	12.0	98.9	90.2	0 43 35	+10 01 25	27.003	0.722	0 40 36	$+08\ 00\ 50$	24.613
73	24.09.2003	0 00 25	0.241	17.1	104.0	88.0	3 10 42	+32 22 04	64.174	5.203	3 11 03	+32 13 33	63.206
74	24.09.2003	0 03 07	0.159	10.1	93.8	77.4	1 09 05	+52 01 39	47.583	6.524	1 08 08	+52 02 17	46.268
75	24.09.2003	0 04 35	0.361	5.9	86.4	83.4	15 46 06	+69 36 27	16.217	0.625	15 22 55	+59 41 35	11.807
76	24.09.2003	0 06 42	>0.592	>15.1	87.1	<77.4	23 29 15	+08 36 33	24.029	0.443	23 21 45	+05 36 50	21.304
77	24.09.2003	0 16 48	>0.120	>14.6	114.6	101.0	4 05 33	+36 51 22	103.821	9.816	4 05 46	+36 48 39	103.227
78	24.09.2003	0 23 38	>0.119	>4.3	108.9	<105.2	4 46 49	+15 34 18	43.007	6.065	4 48 27	+14 53 18	41.551
79	24.09.2003	0 35 37	0.123	7.4	100.0	93.4	5 44 54	+34 15 21	63.750	2.166	5 45 57	+34 04 17	62.775
80	24.09.2003	0 51 00	0.121	7.3	110.0	104.1	3 59 07	+15 18 25	58.974	1.464	3 59 30	+14 58 41	57.921

жину метеора L, мінімальні висоти появи H_h та максимальні висоти зникнення H_e , координати радіанта метеора α_{Rinf} , δ_{Rinf} та його швидкість на нескінченності υ_{ілf}, середні квадратичні похибки швидкостей о,, координати та швидкості геоцентричних радіантів α_{RG} , δ_{RG} , υ_{G} , виправлені за гравітаційний вплив Землі. Визначення швидкості за кожним з пунктів [5, 11] базувалося на лінійній апроксимації пройденого метеором видимого з даного пункту шляху від часу, в результаті чого отримувалися середнє значення швидкості та її дисперсія. Табличні значення швидкості визначалися як середні за обома пунктами, а дисперсія — як сума дисперсій, якщо якість зображень в обох пунктів за табл. 2 була непоганою. У випадку суттєвих недоліків якості зображень у одному із пунктів швидкість та її похибки бралися з іншого пункту без усереднення.

Знаками «>» або «<» позначено ті метеори, які не поміщаються повністю в кадр. На рис. 2 показано розподіли метеорів по значеннях часу життя τ та довжини L його траєкторії окремо для кожного пункту за даними табл. 3. Через те що для пункту А, де камеру направлено в зеніт, атмосферний об'єм світіння метеорів менший, максимуми відповідних розподілів зміщені у бік менших значень. Одне з великих значень L > 60 км у пункті А не увійшло в таблицю через великі похибки обчислень, тому найдовший метеор (L > 59.3 км) існував більше секунди. Кількість же коротких в часі метеорів згідно з табл. З була досить великою: 32, або 40 % від загальної кількості для т < 0.5 с, 20 (25 %) для т < 0.3 с та 12 (15%) для т < 0.2 с.

Розподіли по висотах появи та зникнення не приведені, однак з розгляду табл. З видно, що висоти появи і зникнення через короткі метеорні траєкторії лежать приблизно в тих же межах: 90—130 км та 80—120 км відповідно.

Унікальними, з першого погляду, є метеори № 54 та № 58, де висоти появи метеорів менші за висоти зникнення, тобто метеори рухаються вгору. При цьому метеор № 54 рухається практично горизонтально — зміна висоти складає 0.1 км (похибка визначення дальності до метеора та висоти складає порядку 0.1—0.3 км), а метеор

Рис. 2. Розподіл метеорів: a — по значеннях часу життя τ , δ — по значеннях видимих довжин L траєкторій (світла штриховка — пункт A, темна — B)

Рис. 3. Розподіли метеорів по значеннях геоцентричних швидкостей (світла штриховка) та по значеннях геліоцентричних швидкостей (темна)

№ 58 піднімається вгору більше ніж на 5 км при довжині траєкторії L > 28.2 км. Однак методика визначення траєкторії метеора [4] враховує кривизну земного сфероїда, і з розгляду геометрії польоту даного метеора стає зрозумілим, що він влітає в обидва поля зору та вилітає з них після перетину ним найкоротшої відстані до земної поверхні — початкова видима зенітна відстань радіанта складає $Z_R \approx 99^\circ$. Тим не менш, даний метеор заслуговує на детальніший розгляд з міркувань фізики метеорного явища.

На рис. З наведено розподіли геоцентричних та геліоцентричних швидкостей. Видно, що розподіл геоцентричних швидкостей бімодальний з модами $\upsilon_{G1} \sim 20$ км/с та $\upsilon_{G2} \sim 57$ км/с. Враховуючи малу точність цих обчислень, можна вважати, що вони не суперечать даним радіоспостережень [1]: $\upsilon_{G1} = 32$ км/с та $\upsilon_{G2} = 54$ км/с.

ГЕЛІОЦЕНТРИЧНІ ХАРАКТЕРИСТИКИ МЕТЕОРІВ: ГЕЛІОЦЕНТРИЧНІ ВЕКТОРИ ШВИДКОСТЕЙ ТА ЕЛЕМЕНТИ ОРБІТИ

У табл. 4 наведено геліоцентричні кінематичні параметри метеорів: координати радіанта метеора α_H , δ_H та його геліоцентрична швидкість υ_H , велика піввісь *a* та обернена величина 1/a, пропорційна енергії метеора, ексцентриситет *e*, нахил *i*, довгота висхідного вузла Ω та аргумент перигелію ω .

Класичною проблемою при аналізі орбіт метеорів є пошук гіперболічних метеорів та можливості їхнього походження за межами Сонячної системи. Як видно з табл. 4 та рис. 4, a, кількість гіперболічних орбіт (a < 0, e > 1) складає 11 (14%). Основним фактором, що визначає точність оцінки великої півосі, а відтак і ексцентриситету, є похибка визначення геоцентричної, а далі і ге-

Рис. 4. Розподіл метеорів по значеннях величини 1/a(a) та ексцентриситетів орбіт e(b)

Рис. 5. Розподіл метеорів по значеннях нахилу *і* їхніх орбіт (*a*) та аргумента перигелію ω (б)

ISSN 1561-8889. Космічна наука і технологія. 2011. Т. 17. № 4

Номер	α_{H}	δ_H	υ _{<i>H</i>} , км/с	1/a, a. o. ⁻¹	<i>a</i> , a. o.	е	<i>і</i> , град	Ω , град	ω, град
1	$19^{h}50^{m}26^{s}$	+04°59′45″	35.189	0.588880	1.698140	0.619650	30.12	176.213576	266.47
2	20 36 24	+24 04 24	38.810	0.286912	3.485390	0.829004	55.60	176.262944	264.34
3	20 21 01	-25 25 14	36.825	0.456136	2.192329	0.725552	7.06	356.269083	87.60
4	14 09 41	+39 20 10	40.152	0.167494	5.970379	0.904880	77.15	176.292875	94.66
5	18 26 35	-11 37 50	37.888	0.367219	2.723174	0.642274	11.81	177.215634	203.70
6	2 44 47	+63 56 12	41.486	0.045375	22.038742	0.958526	131.96	177.321525	215.83
7	17 55 33	+24 57 25	42.125	-0.014254	-70.155547	1.014354	48.39	178.202028	180.37
8	20 26 02	-24 06 15	31.180	0.890144	1.123413	0.575348	5.78	358.210388	116.16
9	20 55 58	+11 38 44	43.418	-0.138983	-7.195109	1.074148	40.51	178.216397	264.72
10	0 40 53	+68 22 14	39.854	0.195583	5.112912	0.829578	118.06	178.229417	225.34
11	12 25 57	+60 40 54	38.222	0.339292	2.947317	0.756545	108.89	178.273751	109.43
12	19 15 01	+58 24 51	40.255	0.159403	6.273400	0.844652	83.53	178.277781	201.63
13	19 34 03	+35 20 59	42.186	-0.020056	-49.860972	1.017897	61.70	178.277460	219.27
14	4 04 00	+49 34 43	41.357	0.058027	17.233475	0.946601	150.39	178.280044	214.63
15	7 53 22	+71 38 56	40.000	0.182509	5.479193	0.821986	129.50	178.283040	158.49
16	4 13 05	-20 32 56	29.656	0.994721	1.005307	0.402461	134.34	358.310090	113.95
17	21 27 41	+51 34 26	33.756	0.701616	1.425280	0.552906	88.32	178.311611	271.80
18	17 37 08	-23 32 36	35.544	0.562484	1.777827	0.439100	0.21	359.269996	345.53
19	21 35 33	-09 38 35	34.610	0.636350	1.571462	0.833216	7.51	179.119072	308.86
20	18 06 04	+28 26 46	36.740	0.465071	2.150210	0.532513	51.91	179.137286	185.36
21	19 49 28	-16 32 40	37.224	0.424701	2.354596	0.682823	4.98	179.135771	248.68
22	1 40 59	+50 06 46	41.322	0.061882	16.159863	0.958509	133.49	179.148629	251.49
23	20 36 40	-19 25 38	33.530	0.719341	1.390162	0.645695	1.03	359.195209	107.53
24	19 27 04	-22 47 27	36.753	0.464029	2.155036	0.611966	0.91	359.200808	56.32
25	3 06 42	+50 23 04	39.736	0.206812	4.835318	0.833589	144.73	179.159692	236.05
26	2 13 07	+45 03 05	43.086	-0.105995	-9.434404	1.071849	142.52	179.162321	248.37
27	1 36 59	+68 13 52	43.481	-0.144498	-6.920533	1.130458	123.00	179.183654	216.34
28	19 10 27	-18 11 38	37.775	0.378128	2.644610	0.662856	4.43	179.183209	224.52
29	4 32 05	+31 49 44	44.087	-0.204315	-4.894401	1.188050	169.69	179.210553	212.64
30	20 42 45	$-15\ 05\ 07$	36.258	0.504786	1.981038	0.743253	3.92	179.202086	279.25
31	19 45 02	$-10\ 12\ 07$	35.454	0.569766	1.755106	0.587900	12.17	179.212840	256.14
32	19 23 40	+50 21 56	38.321	0.331310	3.018319	0.688357	75.89	179.221362	212.96
33	19 06 21	$-14\ 28\ 02$	38.446	0.320541	3.119730	0.709943	8.41	179.221015	220.86
34	18 02 32	-17 17 15	38.878	0.282876	3.535114	0.715419	6.15	179.246747	183.23
35	18 04 15	+36 46 03	37.729	0.382111	2.617043	0.615561	60.22	179.256746	183.21
36	20 10 52	-19 32 56	37.482	0.403032	2.481192	0.726862	0.56	179.149993	257.19
37	17 58 46	+07 20 20	37.197	0.427036	2.341721	0.570126	30.78	179.269372	180.88
38	6 30 57	+65 26 30	40.080	0.175881	5.685648	0.823780	137.77	179.273028	171.70
39	3 53 22	+33 07 18	38.553	0.311257	3.212777	0.754024	166.05	179.279632	240.01
40	19 29 48	-04 21 60	25.782	1.237439	0.808121	0.452300	18.81	179.276276	323.06
41	19 57 33	+49 00 12	46.603	-0.461455	-2.167059	1.422742	76.54	179.282106	212.14

Таблиця 4. Геоцентричні радіанти, модулі швидкостей та елементи орбіти метеорів

ISSN 1561-8889. Космічна наука і технологія. 2011. Т. 17. № 4

Закінченння	табл.	4

Номер	α_{H}	δ_H	υ _{<i>H</i>} , км/с	1/ <i>a</i> , a. o. ⁻¹	<i>a</i> , a. o.	е	<i>і</i> , град	Ω , град	ω, град
42	4 30 15	+75 15 40	36.696	0.468757	2.133301	0.533560	127.16	179.284330	194.81
43	18 30 25	-21 35 29	35.855	0.538145	1.858235	0.471060	1.67	180.043945	202.04
44	21 44 11	-18 05 39	35.998	0.526521	1.899260	0.839145	6.87	0.088841	121.76
45	20 26 32	-04 00 09	39.837	0.198376	5.040921	0.875944	18.43	180.111989	259.10
46	3 09 50	+71 37 56	35.361	0.577790	1.730733	0.461578	127.16	180.126920	220.05
47	18 20 46	+25 54 12	38.469	0.319137	3.133450	0.681354	49.43	180.129763	191.32
48	19 10 07	+53 09 29	36.778	0.462562	2.161870	0.555726	77.87	180.138037	209.28
49	19 19 19	-05 19 28	38.374	0.327389	3.054466	0.715236	17.77	180.140184	227.59
50	20 09 27	-36 16 25	38.566	0.310704	3.218492	0.754757	17.52	0.146609	60.10
51	22 10 49	-08 18 20	41.906	0.007775	128.610699	0.998214	5.76	180.138396	303.03
52	21 54 51	-07 16 21	37.004	0.443796	2.253287	0.896149	9.59	180.150648	308.61
53	18 33 42	-19 41 39	33.226	0.742865	1.346139	0.284286	3.55	180.146429	216.18
54	5 15 34	-02 36 59	39.730	0.207991	4.807889	0.799635	153.88	0.158828	25.35
55	18 17 12	+64 09 51	40.917	0.100124	9.987592	0.899349	87.66	180.164983	183.94
56	19 49 35	-18 29 02	38.484	0.317899	3.145652	0.750752	2.80	180.152156	241.02
57	4 40 13	+66 21 09	23.481	1.365806	0.732168	0.396058	135.80	180.171928	347.45
58	5 17 30	-29 30 30	38.854	0.285581	3.501633	0.721631	126.60	0.173425	22.33
59	4 07 35	+25 18 48	35.376	0.576669	1.734096	0.572231	175.23	180.186078	253.89
60	21 34 42	-12 32 09	31.062	0.899692	1.111492	0.786717	2.86	180.160664	317.42
61	18 00 58	+28 34 34	35.606	0.558271	1.791245	0.438171	52.02	180.185026	180.32
62	21 22 56	-06 20 55	40.691	0.120914	8.270321	0.951829	13.41	180.200190	283.82
63	19 28 47	+18 58 60	41.005	0.092043	10.864544	0.919536	43.76	180.213812	223.46
64	11 47 45	+57 59 43	39.091	0.264832	3.775978	0.816509	115.48	180.231581	107.88
65	5 41 10	+72 38 52	45.410	-0.337051	-2.966906	1.338974	130.73	180.246011	182.73
66	1 07 24	+28 49 31	36.480	0.487281	2.052204	0.884576	140.97	180.252814	308.98
67	19 18 03	-175440	28.748	1.055811	0.947140	0.319065	4.51	180.246908	299.01
68	18 49 57	+56 05 50	37.997	0.359892	2.778615	0.644461	80.14	180.272539	197.59
69	3 48 29	+43 10 25	60.383	-2.122607	-0.471119	2.902111	155.22	180.277592	211.49
70	17 26 32	+10 56 06	38.014	0.358479	2.789566	0.649166	34.51	180.288456	158.46
71	22 17 04	-04 33 58	38.884	0.283032	3.533166	0.950487	12.88	180.292805	314.06
72	21 08 30	-13 57 11	34.759	0.625487	1.598755	0.754423	3.36	180.277427	294.75
73	1 14 23	+29 30 04	44.457	-0.240484	-4.158279	1.082253	142.58	180.302094	285.67
74	21 43 39	+36 10 07	41.794	0.018405	54.334482	0.989776	75.70	180.301843	264.30
75	17 38 12	-02 53 46	32.046	0.829814	1.205089	0.192084	20.54	180.299588	142.96
76	20 20 28	$-14\ 30\ 03$	38.854	0.285682	3.500401	0.811147	5.87	180.291507	256.49
77	3 13 38	+39 32 05	78.609	-4.978133	-0.200879	5.172947	155.54	180.314542	216.81
78	2 40 00	-03 48 44	17.101	1.657781	0.603216	0.878945	150.46	0.313775	169.30
79	5 23 48	+43 05 31	34.186	0.670014	1.492505	0.344984	159.98	180.328257	207.28
80	2 25 03	+05 02 44	35.894	0.535135	1.868688	0.851446	164.94	0.329537	125.07

ліоцентричної швидкості. Якщо умовно вважати, що геоцентрична швидкість визначена добре при похибці $\sigma_v < 1$ км/с, і дуже неякісно при $\sigma_v > 2.5$ (див. табл. 3), то для наших 80 метеорів маємо: $N(\sigma_v < 1) = 36$ (45 %) і $N(\sigma_v > 2.5) = 20$ (25 %). 3 рис. 4, *а* видно, що для 1/a < 0 кількість гіперболічних метеорів досить повно покривається кількістю метеорів з великими похибками, і складає досить плавний хвіст загального розподілу. З цього можна зробити висновок про дуже низьку імовірність дійсно гіперболічних орбіт для метеорів, приведених на рис. 4, *a*.

Однак на рис. 4 не показано два метеори: № 69 (1/*a* = -2.123, *e* = 2.902) та № 77 (1/*a* = = -4.978, *e* = 5.173). Їхні геоцентричні та геліоцентричні швидкості складають відповідно υ_G = = 86.521 км/с, υ_G = 103.227 км/с, υ_H = 60.383 км/с, υ_H = 78.609 км/с.

За даними табл. 2 якість зображень обох метеорів складає найнижчий 1 бал, а позиційні кути є дуже малими: $\gamma_A = 31.6^\circ$, $\gamma_B = 15.7^\circ$ для № 69 та $\gamma_A = 29.2^\circ$, $\gamma_B = 3.8^\circ$ для № 77. Це призводить до надвеликих похибок у визначенні геоцентричних швидкостей ($\sigma_v = 6.3$ та 9.8 км/с відповідно) і до неможливості достовірно підтвердити належність даних метеорів до гіперболічних. Цікаво, що нахили їхніх орбіт і аргументи перигелію майже однакові ($i = 155.22^\circ$ та 155.54°, $\omega = 211.49^\circ$ та 216.81°). Це могло б свідчити про належность їх до одного слабкого метеорного потоку.

Розподіли метеорів по нахилах їхніх орбіт і аргументах перигелію приведені на рис. 5.

ВИСНОВКИ

Отримані результати спостережень свідчать, в першу чергу, про той факт, що опрацювання надслабких метеорів пов'язане з суттєвими похибками та зі значними ризиками зробити невірні висновки. З іншого боку, дослідження таких слабких метеорів може надати ряд цікавої інформації про маломасову складову метеорної речовини, не типову для яскравих метеорів. Приклад тому — два метеори, що рухаються вгору. Імовірно, частинки такої зоряної величини та маси лежать недалеко від межі, яка відділяє метеорну складову навколоземної космічної речовини від дрібнішої (або повільнішої) пилової складової, яка гальмується атмосферою Землі до досягнення нею температури плавлення [3]. А при дотичному до поверхні планети рухові такі частинки можуть перетворитися на її супутники.

Загалом наведені у роботі дані про кінематичні характеристики вересневих слабких метеорів можуть бути використані як у задачах фізики метеорів, так і в задачах динаміки та еволюції метеорних орбіт. Задача пошуку нових слабких метеорних потоків (чи підтвердження вже існуючих) на основі отриманих результатів виходить за рамки даної роботи.

- 1. *Волощук Ю. И., Кащеев Б. Л., Кручиненко В. Г.* Метеоры и метеорное вещество. Киев: Наук. думка, 1989. 294 с.
- 2. *Козак П. М.* Проблема ідентифікації зірок у кадрі при цифровій обробці телевізійних спостережень метеорів // Вісник Астрон. школи. — 2001. — **2**, № 1. — С. 21—24.
- 3. *Козак П. М., Кручиненко В. Г., Крученицький Г. М. та ін.* Трансформація спорадичної маломасової метеороїдної складової в аерозоль верхньої атмосфери Землі // Космічна наука і технологія. — 2010. — 16, № 4. — С. 13—21.
- 4. *Козак П. Н.* Анализ методов и точность определения экваториальных координат при цифровой обработке телевизионных наблюдений метеоров // Кинематика и физика небес. тел. 2002. **18**, № 5. С. 471—480.
- 5. *Козак П. Н.* Векторный метод определения параметров траектории и элементов гелиоцентрической орбиты метеора для телевизионных наблюдений // Кинематика и физика небес. тел. 2003. **19**, № 1. С. 62—76.
- Brown P., Weryk R. J., Wong D. K., Jones J. The Canadian meteor orbit radar meteor stream catalogue // Earth, Moon, and Planes. — 2008. — 102, N 1–4. — P. 209— 219.
- Fujiwara Y., Ueda M., Sugimoto M., et al. TV observations of the 1998 Giacobonid meteor shower in Japan // Proc. Int. Conf. Meteoroids 2001 / Ed. by B. Warmbein. — Kiruna (Sweden), 2001. — P. 123–127.
- Hajdukova M., Kruchinenko V. G., Kazantsev A. M., et al. Perseid meteor stream 1991–1993 from TV observations in Kiev // Earth, Moon and Planets. – 1995. – 68. – P. 297–301.

- Koten P., Spurny P., Borovicka J., Stork R. Catalogue of video meteor orbits. Part 1 // Publ. Astron. Inst. Czech. Republic. – 2003. – N 91. – P. 1–32.
- Kozak P. «Falling Star»: Software for processing of doublestation TV meteor observations // Advances in Meteoroid and Meteor Science / Eds J. M. Trigo-Rodrigues, F. J. M. Rietmeijer, J. Llorka, D. Janches. — Springer, 2008. — P. 277—283.
- Kozak P. «Falling Star»: Software for processing of doublestation TV meteor observations // Earth, Moon, and Planets. – 2008. – 102, N 1–4. – P. 277–283.
- Kruchinenko V. G., Kazantsev A. M., Taranukha Yu. G., et al. Catalogue of Perseid shower meteors on TV observations in Kyiv during 1991—1993 // Вісник Київ. ун-ту. Астрономія. — 1997. — Вип. 34. — С. 94—117.
- SonotaCo A meteor shower catalog based on video observations in 2007–2008 // WGN, J. IMO. – 2009. – 37, N 2. – P. 55.
- Svoren J., Porubcan V., Neslusan L. Current Status of the photographic meteoroid orbits database and a call for contributions to a new version // Earth, Moon, and Planets. – 2008. – 102, N 1-4. – P. 11–14.

 Ueda M., Fujiwara Y., Sugimoto M., Kinoshita M. Results of double-station TV observations during 1998 and 1999 // Proc. Int. Conf. Meteoroids 2001 / Ed. by B. Warmbein. — Kiruna (Sweden), 2001. — P. 325—330.

Надійшла до редакції 05.05.11

P. M. Kozak, O. O. Rozhylo, Yu. H. Taranukha, V. H. Kruchynenko

KINEMATICAL CHARACTERISTICS OF SEPTEMBER METEORS FROM DOUBLE-STATION TV-OBSERVATIONS IN 2003

We present some results of double-station TV-observations of meteors which were carried out at the observational stations of the Astronomical Observatory of the Kyiv Taras Shevchenko National University. The problem of accuracy determination for the calculations of kinematical parameters of meteors is analyzed. The tables for computed geocentric and heliocentric characteristics of 80 double-station meteors are given. Statistical distributions of main meteor parameters are plotted. Some obtained anomalous meteor characteristics are analyzed.