УДК 523.9

А. А. Логинов¹, Н. Н. Сальников¹, О. К. Черемных¹, В. Н. Криводубский², Н. В. Маслова¹

¹ Інститут космічних досліджень Національної академії наук України

та Національного космічного агентства України, Київ

²Астрономічна обсерваторії Київського національного університету імені Тараса Шевченка, Київ

ГИДРОДИНАМИЧЕСКАЯ МОДЕЛЬ ГЕНЕРАЦИИ ГЛОБАЛЬНОГО ПОЛОИДАЛЬНОГО ТЕЧЕНИЯ СОЛНЦА

Запропоновано напівемпіричну гідродинамічну модель генерації глобальної полоїдальної течії Сонця, обумовленої його диференціальним обертанням. Знайдено просторові моди та інкременти нестійкої полоїдальної течії.

введение

Одной из фундаментальных проблем солнечной физики является вопрос о происхождении и пространственно-временных вариациях магнитной активности Солнца. Главными периодами временных вариаций солнечной активности служат периоды в 11 лет (по числам Вольфа) и 22 года (магнитный цикл Хэйла) [7], которые носят колебательный циклический характер. Наибольшего распространения среди исследователей Солнца получили представления, что задающим механизмом солнечных циклов служат динамо-процессы усиления первоначально слабого магнитного поля движениями проводящей среды с положительной обратной связью, приводящей к самоподдержанию или дальнейшему росту поля. Кинетической энергии гидродинамических движений на Солнце, как правило, достаточно для усиления поля. Представления о том, что солнечные магнитные поля генерируются в результате динамо-процессов, получили наибольшее распространение [2], хотя продолжаются исследования и в других направлениях. Роль «динамо-машины» на Солнце играет конвективная зона, где поле скоростей естественно разделено на крупномасштабную (регулярную) тороидальную скорость V, которая отвечает солнечному дифференциальному вращению [8] (впервые на основании наблюдения перемещения пятен на солнечной поверхности на него обратил внимание еще в 1863 г. Кэррингтон [10]) и мелкомасштабную скорость v из-за турбулентной конвекции, которая на поверхности проявляется в виде грануляции [3]. Со временем прояснилось, что полный вектор регулярного поля скоростей V, кроме тороидального дифференциального вращения содержит также полоидальную циркуляцию [16]. Наблюденные на поверхности Солнца доплеровские смещения в спектральных линиях указывают на слабую крупномасштабную полоидальную циркуляцию солнечного вещества [16]. Во внешних приповерхностных слоях (до 15 % радиуса Солнца) это полоидальное течение направлено от экватора к полюсам [14, 15]. На средних широтах его амплитуда составляет всего ≈ 5—10 м/с, что значительно меньше, чем поверхностная регулярная скорость тороидального вращения (2 км/с) [1]. Исходя из закона сохранения вещества, исследователи пришли к выводу, что возле нижнего основания солнечной конвективной зоны (СКЗ) должно существовать полоидальное течение противоположного направления от полюсов к экватору. В таком случае вещество возле полюсов должно опускаться вниз, тогда как возле экватора оно должно подниматься к поверхности, чтобы таким образом обеспечить замкнутый цикл циркуляции вещества в СКЗ. Недавно было предложено несколько численных моделей солнечного динамо-цикла с учетом полоидаль-

[©] А. А. ЛОГИНОВ, Н. Н. САЛЬНИКОВ, О. К. ЧЕРЕМНЫХ,

В. Н. КРИВОДУБСКИЙ, Н. В. МАСЛОВА, 2011

ной циркуляции [13, 17]. Однако большинство исследователей достаточно осторожны относительно привлечения в модели динамо-цикла полоидальной циркуляции, поскольку пока нет общепринятой теоретической модели, которая бы объясняла направленное к экватору глубинное течение. Поэтому актуальная проблема полоидальной циркуляции на Солнце ждет своего дальнейшего решения, и именно этому вопросу посвящено наше исследование.

В первой работе авторов [5] была предложена и обоснована гидродинамическая модель генерации глобального полоидального течения на Солнце. В этой работе на основе данных гелиосейсмологии о дифференциальном вращении Солнца была найдена область, в которой тороидальное течение теряет устойчивость, что приводит к возникновению полоидального течения.

Для нахождения пространственного вида и эволюции во времени возникающего полоидального течения нами предлагается полуэмпирическая модель, входными параметрами которой являются данные гелиосейсмологии о дифференциальном вращении Солнца [18] и распределение плотности плазмы внутри Солнца согласно стандартной модели [11].

ПОСТАНОВКА ЗАДАЧИ НАХОЖДЕНИЯ ВИДА НЕУСТОЙЧИВОГО ГЛОБАЛЬНОГО ПОЛОИДАЛЬНОГО ТЕЧЕНИЯ СОЛНЦА ПО ДАННЫМ ГЕЛИОСЕЙСМОЛОГИИ

Модель состоит из двух уравнений: уравнения динамики и уравнения неразрывности

$$\rho \left[\frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \cdot \nabla) \mathbf{V} \right] = -\operatorname{grad} \left(P + U \right) + \eta \Delta \mathbf{V},$$

div (\rho \mathbf{V}) = 0, (1)

где P — давление, U — гравитационный потенциал, η — коэффициент вязкости. Предполагается, что скорости течения настолько медленные, что они не приводят к заметному изменению равновесных параметров Солнца. Уравнения будут записаны в сферической системе координат (R, θ , φ), в которой полярная ось направлена вдоль оси вращения Солнца. Предполагается независимость всех параметров и решений задачи от координаты φ . Решение задачи ищем в виде

$$\mathbf{V} = \mathbf{V}_{\varphi} + \mathbf{v}, \ \left| \mathbf{V}_{\varphi} \right| >> \left| \mathbf{v} \right|, \tag{2}$$

где V_{ϕ} — скорость вращения Солнца, а **v** — малая поправка, описывающая полоидальное течение. Это вполне соответствует наблюдательным данным об азимутальной и меридиональной скоростях Солнца. Так, скорость вращения экватора Солнца составляет 2000 м/с, а меридионального течения — около 10 м/с [1].

Подставляя (2) в уравнение неразрывности, получаем

$$\operatorname{div}[\rho(\mathbf{V}_{\varphi} + \mathbf{v})] = \operatorname{div}(\rho \mathbf{V}_{\varphi} \mathbf{e}_{\varphi}) + \operatorname{div}(\rho \mathbf{v}) = 0. \quad (3)$$

Поскольку $\mathbf{V}_{\varphi} = \mathbf{V}_{\varphi} \mathbf{e}_{\varphi}$ не завит от φ , то решение уравнения (3) будет иметь вид $\rho \mathbf{v} = \operatorname{rot} \mathbf{A}$, где $\mathbf{A} = \mathbf{A}(\mathbf{R}, \theta, t) \cdot \mathbf{e}_{\varphi}$. Таким образом, гидродинамическая скорость солнечной среды \mathbf{v} ищется в виде

$$\mathbf{v} = \left\{ \frac{1}{\rho R \sin \theta} \frac{\partial}{\partial \theta} (\mathbf{A} \sin \theta), -\frac{1}{\rho R} \frac{\partial}{\partial R} (R\mathbf{A}), \mathbf{v}_{\varphi} \right\}, \quad (4)$$

т. е. векторный потенциал **A** полностью определяет полоидальную соствляющую скорости \mathbf{v}_{R} и \mathbf{v}_{0} .

Подставим в первое уравнение системы (1) соотношение (2). Представив *P* и *U* в виде $P = P_0 + p$ и $U = U_0 + u$ и группируя члены уравнения по порядкам малости, получим с точностью до первого порядка включительно систему из двух уравнений:

$$\rho(\mathbf{V}_{\varphi} \cdot \nabla)\mathbf{V}_{\varphi} = -\operatorname{grad}\left(P_{0} + U_{0}\right),$$
$$\rho\left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{V}_{\varphi} \cdot \nabla)\mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{V}_{\varphi}\right] = -\operatorname{grad}\left(p + u\right). \quad (5)$$

В системе (5) мы пренебрегали вязкостью, поскольку для солнечной плазмы отношение динамических сил к силам вязкости (число Тейлора) равно $Ta = 4V_{\phi}^2 R^2 / \eta^2 \approx 10^7$ [4]. В первом уравнении (5) нет производной по времени, поскольку мы считаем вращение Солнца стационарным. В дальнейшем мы будем полагать, что V_{ϕ} является решением первого уравнения системы (5), а равенство между левой и правой частями уравнения обеспечивается за счет вариации гравитационного потенциала и давления, что сопряжено с изменением формы Солнца и его отличием от сферы. Поскольку Солнце является сфероидом со сплюснутостью порядка 10^{-5} , то этого вполне

достаточно, чтобы уравновесить центробежную силу вращения, однако недостаточно для того, чтобы вносить какие-либо поправки в нашу модель.

Используя векторное уравнение

$$(\mathbf{V}_{\varphi} \cdot \nabla)\mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{V}_{\varphi} =$$

= grad($\mathbf{V}_{\varphi} \cdot \mathbf{v}$) - $\mathbf{V}_{\varphi} \times \operatorname{rot} \mathbf{v} - \mathbf{v} \times \operatorname{rot} \mathbf{V}_{\varphi}$,

преобразуем второе уравнение системы (5) следующим образом:

$$\frac{\partial \rho \mathbf{v}}{\partial t} + \rho \operatorname{grad}\left(\frac{\mathbf{V}_{\varphi}}{\rho} \rho \mathbf{v}\right) - \rho \mathbf{V}_{\varphi} \times \operatorname{rot} \frac{\rho \mathbf{v}}{\rho} - \rho \mathbf{v} \times \operatorname{rot} \mathbf{V}_{\varphi} = -\operatorname{grad}(p+u).$$
(6)

Подставляя в (6) вместо **v** выражения (4) для его составляющих, получаем

$$\frac{\partial \operatorname{rot} \mathbf{A}}{\partial t} + \frac{\partial \rho v_{\varphi}}{\partial t} \mathbf{e}_{\varphi} + \rho \operatorname{grad} \left(\frac{V_{\varphi}}{\rho} \rho v_{\varphi} \right) - \rho \mathbf{V}_{\varphi} \times \operatorname{rot} \left(\frac{\operatorname{rot} \mathbf{A}}{\rho} + \frac{\rho v_{\varphi}}{\rho} \mathbf{e}_{\varphi} \right) - \operatorname{rot} \mathbf{A} \times \operatorname{rot} \mathbf{V}_{\varphi} - \rho v_{\varphi} \mathbf{e}_{\varphi} \times \operatorname{rot} \mathbf{V}_{\varphi} = = -\operatorname{grad}(p+u).$$
(7)

Применяя к уравнению (7) операцию гот и вводя новое обозначение $v_{\phi}^* = \rho v_{\phi}$, получаем

$$\frac{\partial \operatorname{rot}(\operatorname{rot}\mathbf{A})}{\partial t} + \frac{\partial \operatorname{rot}(\mathbf{v}_{\phi}^{*}\mathbf{e}_{\phi})}{\partial t} + \operatorname{rot}\left[\rho \operatorname{grad}\left(\frac{\mathbf{V}_{\phi}}{\rho}\mathbf{v}_{\phi}^{*}\right)\right] - \operatorname{rot}\left[\rho \mathbf{V}_{\phi} \times \operatorname{rot}\left(\frac{\operatorname{rot}\mathbf{A}}{\rho} + \frac{\mathbf{v}_{\phi}^{*}}{\rho}\mathbf{e}_{\phi}\right)\right] - \operatorname{rot}(\operatorname{rot}\mathbf{A} \times \operatorname{rot}\mathbf{V}_{\phi}) - \operatorname{rot}(\mathbf{v}_{\phi}^{*}\mathbf{e}_{\phi} \times \operatorname{rot}\mathbf{V}_{\phi}) = 0.$$
(8)

Записав векторное уравнение (8) в сферических координатах, окончательно получаем систему из двух уравнений:

$$\frac{\partial(\Delta \mathbf{A})_{\varphi}}{\partial t} + \frac{1}{R} \frac{\partial}{\partial R} \left[\frac{\mathbf{V}_{\varphi}}{\sin \theta} \frac{\partial(\mathbf{v}_{\varphi}^{*} \sin \theta)}{\partial \theta} \right] - \frac{1}{R} \frac{\partial}{\partial \theta} \left[\frac{\mathbf{V}_{\varphi}}{R} \frac{\partial(R\mathbf{v}_{\varphi}^{*})}{\partial R} \right] - \frac{1}{R^{2}} \frac{\partial(R\mathbf{V}_{\varphi})}{\partial R} \frac{\partial \mathbf{v}_{\varphi}^{*}}{\partial \theta} - \frac{-\frac{\mathbf{v}_{\varphi}^{*}}{R^{2} \sin \theta} \frac{\partial(\mathbf{V}_{\varphi} \sin \theta)}{\partial \theta} + \frac{1}{R} \frac{\partial(\mathbf{V}_{\varphi} \sin \theta)}{\partial \theta} \frac{\partial \mathbf{v}_{\varphi}^{*}}{\partial R} + \frac{\mathbf{v}_{\varphi}^{*} \text{ctg}}{R^{2}} \frac{\partial(R\mathbf{V}_{\varphi})}{\partial R} = 0, \quad (9)$$

ISSN 1561-8889. Космічна наука і технологія. 2011. Т. 17. № 1

$$\tilde{\mathbf{v}}_{\varphi}^{*} = \frac{1}{\gamma} \frac{1}{R^{2} \sin \theta} \times \\ \times \left[\frac{\partial}{\partial R} (R\tilde{\mathbf{A}}) \frac{\partial}{\partial \theta} (\mathbf{V}_{\varphi} \sin \theta) - \frac{\partial}{\partial R} (R\mathbf{V}_{\varphi}) \frac{\partial}{\partial \theta} (\tilde{\mathbf{A}} \sin \theta) \right]. (10)$$

Величины $\tilde{\mathbf{A}}$, $\tilde{\mathbf{v}}_{\phi}^{*}$ и γ определены выражениями $\mathbf{v}_{\phi}^{*}(\boldsymbol{R}, \theta, t) = \tilde{\mathbf{v}}_{\phi}^{*}(\boldsymbol{R}, \theta)e^{\gamma t}$, $\mathbf{A}(\boldsymbol{R}, \theta, t) = \tilde{\mathbf{A}}(\boldsymbol{R}, \theta)e^{\gamma t} =$ $= \mathbf{e}_{\phi}\tilde{\mathbf{A}}(\boldsymbol{R}, \theta)e^{\gamma t}$, а $(\Delta \tilde{\mathbf{A}})_{\phi} - \phi$ -я составляющая лапласиана вектора $\tilde{\mathbf{A}}$.

После подстановки \tilde{v}^*_{ϕ} в (9) получается линейное уравнение второго порядка с переменными коэффициентами, зависящими от *R* и θ. Приближенное решение последнего ищем методом Галеркина в виде

$$\tilde{\mathbf{A}} = \sum_{k,l} \frac{C_{kl}}{\sqrt{R}} \times \left[\mathbf{J}_{(2k+1)/2} \left(\lambda_{kl} \right) \mathbf{J}_{-(2k+1)/2} \left(\lambda_{kl} \mathbf{R} \right) - \mathbf{J}_{-(2k+1)/2} \left(\lambda_{kl} \right) \mathbf{J}_{(2k+1)/2} \left(\lambda_{kl} \mathbf{R} \right) \right] \mathbf{P}_{k}^{\mathrm{I}} \left(\cos \theta \right), \quad (11)$$

где $J_{\pm(2k+1)/2}(\lambda_{kl}R)$ — функции Бесселя первого рода полуцелого порядка, а $P_k^1(\cos\theta)$ — присоединенные полиномы Лежандра первого порядка. Граничные условия на дне тахоклина (R = 0.67) и внешней поверхности Солнца (R = 1) предполагают обращение в нуль радиальной составляющей скорости

$$\mathbf{v}_{R} = \frac{1}{\rho R \sin \theta} \frac{\partial}{\partial \theta} (\tilde{\mathbf{A}} \sin \theta) = 0,$$

что позволяет найти значения λ_{kl} , k = 1, 2, 3, ..., l = 0, 1, 2, ..., Bеличина индекса l указывает, сколько раз функция

в (11) обращается в 0 на интервале 0.67 < R < 1. Таким образом, сумма (11) построена так, что каждый ее член удовлетворяет граничным условиям. Поэтому, величина \tilde{A} также удовлетворяет граничным условиям. Величина γ находится из условия существования нетривиального решения ($C_{kl} \neq 0$) вида (11) уравнений (9), (10). Подробное описание этого решения методом Галеркина можно найти в работе [6].

РЕЗУЛЬТАТЫ ЧИСЛЕННОГО РЕШЕНИЯ УРАВНЕНИЙ

В ходе решения было установлено, что базисные функции, входящие в формулу (11), отличающиеся по четности индекса k, — ортогональны. При этом четные по k решения описывают векторный потенциал А, функция тока которого $\Phi = \tilde{A}R\sin\theta$ антисимметрична относительно плоскости экватора (рис. 1, 3), а у нечетных по $k - \phi$ ункция тока симметрична относительно экватора (рис. 2, 4). Отметим, что полоидальное течение, как это следует из (4), проходит вдоль линий постоянного значения функции тока Ф. Для нахождения векторного потенциала А из уравнений (9), (10) для обоих классов решений в сумме (11) бралось по 9 слагаемых. Для четного класса k = 2, 4, 6, для нечетного класса k = 1, 3, 5, 5и для обоих классов l = 0, 1, 2.

В результате моделирования для обоих классов получены нарастающие по времени и колебательные с нарастающей по времени амплитудой решения, и затухающие решения. Из них отобраны те решения, у которых максимально значение $\text{Re}\gamma > 0$. Вид этих решений представлен на рис. 1—4.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В рамках первого приближения, которым мы ограничились, ни абсолютные значения полученных мод, ни даже относительные их значения определены быть не могут. Для этого в модели нужно учесть механизмы, ограничивающие рост амплитуд полученных неустойчивых мод. Такими механизмами могут быть, например, эффекты нелинейности или силы вязкости, которые мы опустили. Поэтому можно говорить только о качественном поведении полученных решений и сравнивать их с процессами, наблюдаемыми на поверхности Солнца, а также с картиной поля скоростей в подповерхностных слоях, построенной в результате решения обратной задачи внутреннего вращения Солнца на основе данных гелиосейсмологических экспериментов.

Рис. 1. Антисимметричная мода (четные k); $\gamma = 4641.3316 \cdot 10^{-9}$ с⁻¹. Постоянная времени нарастания полоидальной компоненты скорости течения $\tau = 1/\gamma \approx 2.5$ сут. a — линии уровня функции тока Φ , δ — 3D-график функции тока, e — поле скоростей от поверхности до глубины порядка 1.4 тыс. км

Рис. 2. Симметричная мода (нечетные k); $\gamma \approx 4533.6260 \cdot 10^{-9} \text{ c}^{-1}$. Постоянная времени нарастания полоидальной компоненты скорости течения $\tau = 1/\gamma \approx 2.6$ сут: a — линии уровня функции тока Φ , δ — 3D-график функции тока, e — поле скоростей от поверхности до глубины порядка 1.4 тыс. км

Рис. 3. Антисимметричная колебательная мода (четные k); $\gamma = (3667.9440+1.5353 \cdot I) \cdot 10^{-9} c^{-1}$. Постоянная времени нарастания амплитуды колебаний полоидальной компоненты скорости течения $\tau = 1/\text{Re}\gamma \approx 3.2$ сут. Частота колебаний $\omega = \text{Im}\gamma = 1.5353 \cdot 10^{-9} c^{-1}$. Период колебаний $T = 2\pi/\omega \approx 130$ лет. a — линии уровня функции тока Φ , δ — 3D-график функции тока, e — поле скоростей от поверхности до глубины порядка 1.4 тыс. км

ISSN 1561-8889. Космічна наука і технологія. 2011. Т. 17. № 1

Рис. 4. Симметричная колебательная мода (нечетные k); $\gamma = (1232.1661 + 10.1049 \cdot I) \cdot 10^{-9} c^{-1}$. Постоянная времени нарастания амплитуды колебаний полоидальной компоненты скорости течения $\tau = 1/\text{Re}\gamma \approx 9.4$ сут. Частота колебаний $\omega = \text{Im}\gamma = 10.1049 \cdot 10^{-9} c^{-1}$. Период колебаний $T = 2\pi/\omega \approx 20$ лет. a — линии уровня функции тока Φ , δ — 3D-график функции тока, e — поле скоростей от поверхности до глубины порядка 1.4 тыс. км

На рис. 1, *в*, 2, *в*, 3, *в*, 4, *в* показано рассчитанное нами поле скоростей до глубины 1.4 тыс. км. (Глубже этого уровня величина скорости настолько мала, что отобразить картину поля скоростей в выбранном масштабе не предоставляется возможным). Видно, что скорость полоидального течения быстро уменьшается с глубиной. Это обусловлено тем, что в формулу скорости полоидального течения (4), на основании которой построены изображения, плотность входит обратно пропорционально, а последняя, согласно стандартной модели Солнца [11], быстро увеличивается с глубиной.

В результате численного решения уравнений (9), (10) получены симметричные и антисимметричные относительно плоскости экватора моды, как постоянно растущие, так и колебательные с растущей амплитудой. Поскольку все они независимы, то одновременно присутствуют в объеме Солнца и аддитивно формируют полоидальную скорость. Расчеты показали, что для случая антисимметричной моды (четные k, рис. 1) до глубины 12 тыс. км полоидальное течение сохраняет свое направление от экватора к полюсам.

Полученные нами результаты согласуются с картиной циркуляции вещества в подфотосферных слоях до глубин 12 тыс. км, построенной на основе данных гелиосейсмологических экспериментов — спектральных наблюдений поля скоростей на всем солнечном диске с помощью прибора Michelson Doppler Imager, установленного на борту космического аппарата SOHO (методика «кольцевых диаграмм») [9]. Согласно работе [9] подповерхностное полоидальное течение Солнца в основном антисимметрично относительно экватора, т. е. происходит от экватора к полюсам. При этом полоидальные течения северного и южного полушарий оказались асимметричными, что свидетельствует о наличии в циркуляции вещества симметричного компонента. Кроме того, в этой работе воспроизведен также колебательный компонент полоидальной скорости.

Таким образом, предложенная нами гидродинамическая модель полоидального течения Солнца качественно совпадает с картиной циркуляции вещества в подфотосферных слоях, построенной на основе расшифровки данных гелиосейсмологических экспериментов [9]. При этом полученные нами пространственные структуры мод значительно сложнее тех, которые предложены другими исследователями [4, 12].

- 1. *Аллен К. У.* Астрофизические величины. М.: Мир, 1977. 448 с.
- 2. Вайнштейн С. И., Зельдович Я. Б., Рузмайкин А. А. Турбулентное динамо в астрофизике. — М.: Наука, 1980. — 352 с.
- 3. *Гибсон Э*. Спокойное Солнце. М.: Мир, 1977. 408 с.
- 4. *Кичатинов Л. Л.* Дифференциальное вращение звезд // Успехи физ. наук. — 2005. — **175**, № 5. — С. 475— 494.
- Логинов А. А., Сальников Н. Н., Черемных О. К. и др. О гидродинамическом механизме генерации глобального полоидального течения на Солнце // Кинематика и физика небес. тел. — 2011. — 27, № 4.
- 6. Логинов А. А., Самойленко Ю. И., Ткаченко В. А. Возбуждение меридионального течения дифференциальным вращением в жидком ядре Земли // Космічна наука і технологія. — 2000. — **6**, № 2/3. — С. 53—68.
- 7. *Монин А. С.* Солнечный цикл. Л.: Гидрометеоиздат, 1980. 68 с.
- Тассуль Ж.-Л. Теория вращающихся звезд. М.: Мир, 1982. — 472 с.

- Basu S., Antia H. M. Characteristics of solar meridional flows during solar cycle 23. // Astrophys. J. – 2010. – 717, N 1. – P. 488–495.
- Carrington R. C. Observations of the spots of the Sun. London, 1863. – 264 p.
- Christensen-Dalsgaard J., Däppen W., Ajukov S. V., et al. The current state of solar modeling // Science. – 1996. – 272, N 5266. – P. 1286–1292.
- Dikpati M. Simulating solar 'climate' // Climate and Weather of the Sun-Earth System (CAWSES): Selected Papers from the 2007 Kyoto Symposium / Eds T. Tsuda, R. Fujii, K. Shibata, M. A. Geller. – Tokyo, 2009. – P. 171–199.
- 13. *Dikpati M., Gilman P.* Flux-transport dynamos with α -effect from global instability of tachocline differential rotation: a solution for magnetic parity selection in the Sun // Astrophys. J. -2001. -559. P.428-442.
- Ferriz-Mass A., Schmitt D., Schüssler M. A dynamo effect due to instability of magnetic flux tubes // Astron. and Astrophys. – 1994. – 289. – P. 949–956.
- Giles P. M., Duval T. L. Jr., Scherrer P. H., Bogart R. S. A subphotospheric flow of material from the Sun's equator to its poles // Nature. – 1997. – 390. – P. 52–54.
- Hathaway D.H. Gilman P., Harvey J. W., et al. GONG observations of solar surface flows // Science. – 1996. – 272. – P. 1306–1309.
- Nandy D., Choudhuri A. R. Explaining the latitudinal distribution of sunspots with deep meridional flow // Science. – 2002. – 296. – P. 1671–1674.
- Thompson M. J., Christensen-Dalsgaard J., Miesch M. S., Toomre J. The internal rotation of the Sun // Annu. Rev. Astron. and Astrophys. – 2003. – 41. – P. 599–643.

Надійшла до редакції 17.12.10

A. A. Loginov, N. N. Salnikov, O. K. Cheremnykh, V. N. Krivodubskij, N. V. Maslova

HYDRODYNAMIC MODEL FOR GENERATION OF GLOBAL POLOIDAL FLOW OF THE SUN

We propose the semi-empirical hydrodynamic model for global poloidal flow generation caused by the instability of the solar differential rotation. Spatial modes and increment of poloidal flow are determined.