УДК 550.385.37:550.388

Д. А. Дзюбанов¹, Л. Я. Емельянов¹, Л. Ф. Черногор²

¹Інститут іоносфери Національної академії наук і Міністерства освіти і науки України, Харків ²Харківський національний університет імені В. Н. Каразіна

ДИНАМИКА ПЛАЗМЫ ИОНОСФЕРЫ НАД ХАРЬКОВОМ В ПЕРИОД СОЛНЕЧНОГО ЗАТМЕНИЯ 1 АВГУСТА 2008 г.

Описано результати спостереження за динамічними процесами поблизу максимуму іонізації шару F2 та у зовнішній іоносфері, які були викликані частковим (близько 0.42) сонячним затемненням (C3) 1 серпня 2008 р. поблизу м. Харкова. Продемонстровано, що під час C3 відбувалася характерна (2—3 год) перебудова іоносфери та іоносферно-плазмосферних процесів спочатку до нічних, а потім до денних умов. Оцінено потоки плазми із плазмосфери в іоносферу та у зворотному напрямку. Концентрація електронів у шарі F2 зменшувалася на 32 ± 3 %. Результати цього експерименту узгоджуються з результатами наших попередніх досліджень.

введение

В последнее время стало понятным, что качественно новое понимание наблюдаемых процессов во всех геосферах, и в околоземной космической среде в частности, а также построение физико-математических моделей этих процессов невозможно без представлений о том, что Земля — атмосфера — ионосфера — магнитосфера (ЗАИМ) является единой системой [15— 19]. Важно, что эта система — открытая динамическая и нелинейная. Между подсистемами есть прямые и обратные, положительные и отрицательные связи. Воздействие на систему ЗАИМ источников высокой энергии приводит к перестройке характера взаимодействия подсистем.

Солнечное затмение (СЗ) относится к источникам высокой энергии. Оно приводит к существенному изменению параметров околоземной среды и взаимодействий между подсистемами. Изучению воздействия СЗ на среду посвящено значительное количество работ. В работах [1, 7, 8, 14, 20, 23] использовались методы наблюдений, дающие ограниченный объем информации о процессах, сопутствующих СЗ. Более полную информацию в широком диапазоне высот получают при помощи метода некогерентного рассеяния (НР) [2—6, 8, 9, 13, 24]. Этот метод позволяет получить сведения о параметрах плазмы и ее движениях, а значит, открывает возможности изучения взаимодействия подсистем в системе ЗАИМ, в частности взаимодействия ионосферы и плазмосферы.

Цель работы — изложение результатов наблюдения за переносом плазмы из плазмосферы в ионосферу и в противоположном направлении в период частного C3 вблизи г. Харькова.

ОБЩИЕ СВЕДЕНИЯ О СОЛНЕЧНОМ ЗАТМЕНИИ

Солнечное затмение началось 1 августа 2008 г. в 08:04 (здесь и далее мировое время) в северной части Канады, а закончилось в 12:38 в Китае. Центральная линия затененной области пересекла Гренландию, Арктику, Новую Землю, Центральную Россию (города Надым, Нижневартовск, Барнаул и др.), Монголию и Китай. Ширина этой области составляла 237 км, а скорость ее движения — около 900 м/с. Максимальное по продолжительности полное затмение имело место в 10:21 UT.

[©] Д. А. ДЗЮБАНОВ, Л. Я. ЕМЕЛЬЯНОВ,

Л. Ф. ЧЕРНОГОР, 2009

В месте проведения измерений (вблизи г. Харькова) покрытие диаметра диска Солнца достигало 0.42. При этом максимальная затененная площадь диска составляла около 0.31. СЗ началось в 09:11, а закончилось в 11:17, главная фаза имела место в 10:15.

Вид функции $A(t) = S(t) / S_0$ покрытия диска Солнца приведен на рис. 1 (*S* — площадь покрытой части диска, S_0 — площадь диска). Видно, что в момент главной фазы $A_{max} = 0.31$.

СОСТОЯНИЕ КОСМИЧЕСКОЙ ПОГОДЫ

Состояние космической погоды удобно описывать в терминах временных вариаций плотностей потоков протонов и электронов, межпланетного магнитного поля, H_p -компонента геомагнитного поля, а также индексов авроральной и магнитной активностей (*AE*, K_p и D_{st}).

Охарактеризуем кратко состояние космической погоды в период с 29 июля по 4 августа 2008 г. Затмению предшествовало малосущественное магнитное возмущение (индекс *K_p* из-менялся от 0 до 2). Незначительными были вариации плотности потока протонов. Плотность потока электронов изменялась по квазипериодическому закону с периодом около 1 сут в пределах (2—5) $\cdot 10^6$ м⁻²с⁻¹стер⁻¹. Компонент B_z хаотически варьировал в пределах ±(2-3) нТл. Малосущественными были флуктуации уровня B_t (около ±1 нТл). Достаточно упорядоченными с периодом в 1 сут были вариации H_n-компонента геомагнитного поля (в пределах 50 нТл). Значения индекса D_{st} также хаотически флуктуировали в пределах ±(3-5) нТл. Вариации индекса АЕ были незначительными, но в отдельные временные интервалы достигали 300 нТл.

Таким образом, день затмения 1 августа 2008 г. был спокойным. Это обстоятельство существенно облегчало выделение возмущений, связанных с затмением.

СРЕДСТВА И МЕТОДЫ

Радар некогерентного рассеяния. Радар расположен в Ионосферной обсерватории Института ионосферы (49°36′ с.ш., 36°18′ в.д.). Основные параметры радара следующие: частота 158 МГц,

ISSN 1561-8889. Космічна наука і технологія. 2009. Т. 15. № 3

Рис. 1. Временные изменения функции *A*(*t*) покрытия диска Солнца

диаметр зенитной параболической антенны 100 м, эффективная площадь антенны 3700 м², коэффициент усиления антенны — около 10⁴, ширина основного лепестка диаграммы направленности около 1°, импульсная и средняя мощности радиопередающего устройства достигают 3.6 МВт и 100 кВт соответственно, длительность импульса $\tau_p \leq 800$ мкс, частота следования импульсов F = 24.4 Гц. Полоса пропускания фильтра радиоприемного устройства составляет 5.5... 9.5 кГц.

Погрешность получаемых параметров ионосферы обычно не превышает 5—10 % в дневное время и 15—30 % в ночное время.

Ионозонд. Ионозонд «Базис» предназначен для общего контроля состояния ионосферы и калибровки мощности НР-сигналов. Ионозонд расположен в Ионосферной обсерватории рядом с радаром НР. Погрешность отсчета частоты на ионограммах не хуже 0.1 МГц, а критической частоты — 0.05 МГц.

Определение скорости движения плазмы. Скорость движения плазмы определяется по измеренным квадратурным составляющим комплексной корреляционной функции (КФ) $\rho_{Im}(t_j, \tau_k)$ и $\rho_{Re}(t_j, \tau_k)$ некогерентно рассеянного сигнала, спектр которого переносится в область низких частот с помощью синхронного детектирования.

Высотный профиль вертикальной составляющей скорости $V_z(z)$ может вычисляться по измеренным квадратурным составляющим комплексной КФ НР-сигнала на основе следующего соотношения [21]:

$$V_z = -\frac{\lambda}{4\pi} \frac{d\varphi}{d\tau} , \qquad (1)$$

63

где λ — длина радиоволны,

$$\varphi = \arctan \frac{\rho_s(\tau)}{\rho_c(\tau)}$$

 $\rho_s(\tau)$ и $\rho_c(\tau)$ — синусная и косинусная составляющие коэффициента корреляции.

При численном дифференцировании вместо (1) используется соотношение

$$V_z \approx -\frac{\lambda}{4\pi} \frac{\Delta \varphi}{\Delta \tau} , \qquad (2)$$

где $\Delta \tau$ — величина шага дискретизации, $\Delta \phi$ — изменение функции $\phi(\tau)$ на интервале $\Delta \tau$.

Для повышения точности оценки скорости целесообразно применять усреднение V_z по *n* значениям, т. е. вместо (2) вычисления проводить по формуле

$$V_{z} = -\frac{\lambda}{4\pi n} \sum_{k=1}^{n} \frac{\Delta \varphi_{k}}{\Delta \tau} .$$
 (3)

Однако и после усреднения при n = 9 оценка (3) остается неустойчивой. Поэтому здесь мы использовали методику, описанную в работах [10, 11]. В этом случае

$$V_{z}(z_{j}) = -\frac{1}{n} \frac{\lambda}{4\pi} \sum_{k=k_{\min}}^{k_{\min}+n-1} (\varphi_{jk} - \varphi_{j0}) / \tau_{k}, \quad (4)$$

ИЛИ

$$V_{z}(z_{j}) = -\frac{\lambda}{4\pi} \frac{\sum_{k=k_{\min}}^{k_{\min}+n-1} (\phi_{jk} - \phi_{j0}) \rho^{2}(t_{j}, \tau_{k}) \tau_{k}}{\sum_{k=k_{\min}}^{k_{\min}+n-1} \rho^{2}(t_{j}, \tau_{k}) \tau_{k}^{2}}, (5)$$

$$\phi_{jk} = \operatorname{arctg} r_{jk}, \ \phi_{j0} = \operatorname{arctg} r_{j0},$$

$$r_{jk} = \rho_{\text{Im}}(t_j, \tau_k) / \rho_{\text{Re}}(t_j, \tau_k),$$

$$r_{j0} = \rho_{\text{Im}}(t_j, 0) / \rho_{\text{Re}}(t_j, 0),$$

$$\rho^2(t_j, \tau_k) = \rho_{\text{Im}}^2(t_j, \tau_k) + \rho_{\text{Re}}^2(t_j, \tau_k),$$

где $\tau_k = k\Delta \tau$, при используемом в данной работе режиме зондирования ионосферы длинным импульсом $\Delta \tau = 61$ мкс, k = 1...9 (чаще всего $k_{\min} = 1$).

Преимущество варианта (5) по сравнению с (4) состоит в уменьшении статистической пог-

решности измерения V_z за счет учета веса каждой ординаты КФ сигнала. Отметим, что в выражениях (4), (5) в качестве $\rho(t_j, \tau_k)$ фигурируют оценки коэффициентов корреляции, получаемые в результате обработки случайных сигналов.

Ненормированные КФ и мощности сигнала НР, используемые для определения коэффициентов корреляции, вычисляются в виде разности оценок статистических параметров выходных сигналов приемника (мощности и корреляционной функции аддитивной смеси сигнала и шума) для каждой выборки *j* и соответствующих параметров шума, усредненных по множеству замеров в конце развертки дальности, где уровень НР-сигнала пренебрежимо мал.

Обработка данных включает в себя определение значений мощности и корреляционной функции НР-сигнала для каждого дискретного времени запаздывания t_j , соответствующего высоте $z_j = ct_j/2$, при фиксированных задержках τ_k в виде разности оценок статистического параметра смеси сигнал+шум и соответствующего параметра шума, коррекцию результатов обработки и нормирование КФ.

В результате первичной обработки в реальном времени для каждой высоты $z_j = ct_j/2$ определяются базовые оценки статистических характеристик HP-сигнала при временном накоплении, равном 1 мин.

Вторичная обработка включает в себя отбраковку данных, подверженных искажениям, усреднение статистических характеристик HPсигнала по высоте (с учетом трапецеидального усреднения КФ HP-сигнала, описанного в работе [22]) и, при необходимости, по времени, вычисление скорости V_z согласно выражениям (4) или (5). Отметим, что отбраковка данных осуществляется преимущественно при наличии помех, вызванных отражением зондирующего сигнала от летающих объектов (космические аппараты, космический мусор, метеороиды и т. п.). Интервал усреднения по времени для определения V_z устанавливается в зависимости от условий измерений и обычно равен 15 мин.

Погрешность оценки скорости движения плазмы. Эта погрешность зависит от отношения сигнал/шум q, количества n дискретных интервалов времени, количества *n*₁ значений, по которым производится усреднение.

При ряде упрощающих предположений нами получена оценка сверху относительной погрешности определения V₇:

$$\tilde{\sigma}_V = \frac{\sigma_V}{\overline{V_z}} = 2\sqrt{\frac{2(2+\sqrt{2})}{nn_1q}}$$

где σ_V^2 — дисперсия оценки V_z , $\overline{V_z} \neq 0$ — среднее значение скорости.

При n = 9, $n_1 = 45$ (интервал усреднения 45 мин) имеем

$$\tilde{\sigma}_V \approx \frac{0.25}{\sqrt{q}}$$

Значения оценок $\tilde{\sigma}_V$ приведены в табл. 1. Видно, что получение V_z с приемлемой относительной погрешностью (меньше 50 %) возможно лишь на тех высотах, где $q \ge 0.25$. В данных измерениях такие значения q имеют место при $z \le 470$ км.

Абсолютная средняя квадратичная погрешность измерения V_z на высотах области F при 15мин накоплении составляет 5—20 м/с при q > 0.2. В районе максимума ионизации она может быть снижена до 2 м/с за счет оптимизации работы аппаратуры радара и методов обработки.

РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ

Вариации концентрации электронов. Измерения временной зависимости критической частоты f_0F2 на ионограммах, получаемых при помощи ионозонда «Базис», позволило проследить за временными вариациями концентрации электронов N. Зависимость $f_0F2(t)$ приведена на рис. 2. Видно, что до затмения f_0F2 изменялась от 4.5 до 4.85 МГц. Уменьшение критической частоты началось примерно за 45 мин до первого контакта небесных тел.

По мере покрытия диска Солнца значения f_0F2 уменьшались от 4.85 ± 0.05 до 4.00 ± 0.05 МГц.

Рис. 2. Временные вариации функции B(t) = 1 - A(t) и критической частоты f_0F2 для обыкновенной составляющей следа на ионограммах: 1 — значения, полученные с 15-минутной дискретизацией, 2 — сглаженные при помощи скользящего среднего на интервале 75 мин

Им соответствовало уменьшение концентрации электронов от $N = 2.84 \cdot 10^{11}$ до $N_{\min} = 2.00 \times \times 10^{11}$ м⁻³. Максимальное значение $\delta f_0 F2 \approx 0.8$ МГц. При этом уменьшение концентрации электронов $\Delta N = 8.4 \cdot 10^{10}$ м⁻³, $N_{\min} / N = 0.68 \pm \pm 0.03$ и $\delta_N = \Delta N / N \approx 32.0$ %. С учетом погрешности измерения $f_0 F2$ имеем $\delta_N = 32 \pm 3$ %.

Примерно после главной фазы C3 значения f_0F2 изменялись по квазипериодическому закону. Величина квазипериода $T \approx 70$ мин, а амплитуда $\delta f_0F2 = 0.2$ МГц. При этом $\delta_N = 10$ %. Продолжительность этого процесса была не менее 2 ч.

Временные вариации скорости движения плазмы. На рис. 3 показаны временные вариации вертикальной составляющей скорости движе-

Таблица 1. Зависимость относительной погрешности оценки скорости движения плазмы от отношения сигнал/шум (интервал усреднения — 45 мин)

				-							
q	0.1	0.25	0.5	0.75	1.0	2.5	5	7.5	10	15	20
$ ilde{\sigma}_V$	0.79	0.50	0.35	0.29	0.25	0.16	0.11	0.09	0.08	0.06	0.056

ISSN 1561-8889. Космічна наука і технологія. 2009. Т. 15. № 3

Рис. 3. Временные вариации функции B(t) (верхняя панель) и вертикальной составляющей V_z скорости движения плазмы на различных высотах (результаты скользящего усреднения по 45 мин)

ния плазмы V_z для ряда высот ионосферы в диапазоне 200—470 км (отношение мощности некогерентно рассеянного сигнала на этих высотах к мощности шума q > 0.2). Видно, что временной ход $V_z(t)$ на всех высотах практически повторяет ход функции B(t) = 1 - A(t), где A(t) функция покрытия. На высотах *z* ≈ 250...360 км модуль скорости (здесь $V_{z} < 0$, плазма движется вниз) увеличился от 10-25 до 50 м/с, а на высотах, близких к $z \approx 200$ км, он изменился незначительно: от 38 до 50 м/с. В то же время в диапазоне высот 360-470 км модуль скорости увеличился на 35-40 м/с. До СЗ на высотах 400-470 км $V_{z} = 10...50$ м/с, а вблизи главной фазы затмения $V_{z} \approx -35...-40$) м/с. Это означает, что в верхней части изучаемой области ионосферы затмение соответствует переходу от дневных условий к ночным. На этих высотах в ночное время поток плазмы направлен из плазмосферы в ионосферу. Плазмосфера «подпитывает» ночную ионосферу плазмой. Подобные процессы наблюдались вблизи главной фазы СЗ. После окончания затмения в диапазоне высот 400-580 км скорость снова стала положительной и достигла значений 25-55 м/с на высотах 470 и 580 км соответственно. Поток плазмы, как и до СЗ, здесь направлен вверх: ионосфера «подпитывает» плазмосферу.

Переход к дневной ионосфере завершился к 12:15, т. е. через 1 ч после окончания затмения.

Высотные вариации скорости движения плазмы. Высотные профили $V_z(z)$ для различных моментов времени показаны на рис. 4. Видно, что до СЗ переход от отрицательных значений скорости к положительным осуществляется на высоте $z \approx 390...420$ км. Примерно через 20 мин после наступления затмения на всех высотах $V_z < 0$. Это продолжалось около 90 мин. После 10:50 на высоте $z \approx 530$ км и выше скорость стала положительной. Постепенно высота, где $V_z = 0$, опускалась вниз. В 12:00 она составила около 400 км, а в 12:15 — 360 км. К этому времени эффекты СЗ практически закончились.

Отметим, что высотный профиль скорости V_z , полученный вблизи главной фазы C3 в 10:15, несколько отличается от ожидаемого на высотах 400—530 км из-за уменьшения модуля V_z на 20— 50 м/с в этом диапазоне высот, тем не менее знак скорости не изменяется. Этот эффект подлежит более тщательному анализу. Добавим, что на графике высотного профиля $V_z(z)$, полученного в 10:30, штриховой линией показан про-

Рис. 4. Высотные зависимости вертикальной составляющей V_z скорости движения плазмы для различных временных интервалов (усреднение по 15 мин). Штриховой линией показана высотная зависимость V_z для вечернего времени (20:00) 18 августа 2008 г.

филь $V_z(z)$, измеренный 18 августа 2008 г. в 20:00. Видно сходство высотных вариаций скорости движения плазмы в вечернее время и днем вблизи главной фазы C3.

обсуждение

Динамика ионосферной плазмы при помощи харьковского радара HP изучалась нами в течение C3 11 августа 1999 г. (функция покрытия около 73 %), 31 мая 2003 г. (64 %), 3 октября 2005 г. (13 %), 29 марта 2006 г. (70 %) и 1 августа 2008 г. (31 %) [2—9, 11—14, 24]. Для всех затмений качественная картина была сходной. После покрытия диска Солнца на высотах, больших 400—500 км, скорость плазмы постепенно уменьшалась и становилась отрицательной. Минимальные (т. е. наибольшие по модулю) значения V_7 достигались вблизи главной фазы

СЗ. После этого скорость постепенно увеличивалась (изменялась в сторону положительных значений) и достигала своего дневного значения, равного 30—50 м/с. Иначе говоря, затмение сначала вызвало переходные процессы, подобные тем, которые имеют место в вечернее время, а затем процессы, свойственные утреннему времени. Отличие состояло лишь в том,

Таблица 2. Плотность потока частиц плазмы для характерных моментов времени (высота — 470 км)

Время, UT	<i>V_z</i> , м/с	<i>N</i> , 10 ¹⁰ м ⁻³	Π , $10^{12} \mathrm{m}^{-2} \mathrm{c}^{-1}$
08:45	33	5.7	1.9
09:15	1	5.4	0.05
10:30	-31	4.6	-1.4
11:15	-10	4.4	-0.4
12:15	10	5.2	0.5

что такие переходы от «светлого» времени к «темному» и наоборот длились около 1 ч. В вечернее и утреннее время аналогичные процессы имеют длительность по несколько часов.

Изменение знака скорости свидетельствует об изменении направления движения плазмы. Результаты расчета плотности потока частиц плазмы $\Pi = V_z N$ для z = 470 км приведены в табл. 2. Видно, что до затмения величина Π составляла около $1.9 \cdot 10^{12}$ м⁻²с⁻¹, вскоре после начала C3 плотность потока уменьшалась до нуля, далее она становилась отрицательной. Максимальное значение ее модуля составляло около $1.4 \cdot 10^{12}$ м⁻²с⁻¹ и примерно приходилось на главную фазу затмения. Затем значение этого модуля уменьшалось. После окончания эффектов C3 плотность потока стала положительной и достигла почти таких же значений, которые были накануне затмения.

Примерно такие же параметры динамических процессов, описывающих ионосферно-плазмосферное взаимодействие, получены и для C3 1999, 2003, 2005 и 2006 гг.

выводы

1. Обнаружено, что в период C3 в диапазоне высот 200—470 км скорость движения плазмы направлена вниз, в то время как до затмения она была направлена вниз лишь на высотах $z \le 360$ км.

2. Установлено, что затмение привело к изменению скорости движения плазмы на 10—45 м/с на высотах 200—470 км соответственно.

3. Получено, что продолжительность вызванных СЗ вариаций скорости составляла около 3 ч.

4. Продемонстрировано, что направленный вверх до затмения поток частиц в течение C3 стал направленным вниз, а после его окончания — снова вверх.

5. Показано, что плотность потока частиц в период затмения изменялась от $1.9 \cdot 10^{12}$ до $-1.4 \cdot 10^{12} \text{ м}^{-2} \text{c}^{-1}$, и далее до $0.5 \cdot 10^{12} \text{ м}^{-2} \text{c}^{-1}$.

6. Обнаружено, что СЗ привело к уменьшению критической частоты области F_2 на 0.85 МГц, или на 17.5 %, и концентрации электронов на 8.4 · 10¹⁰ м⁻³, или на 32 %. Авторы благодарны И. Б. Склярову, С. В. Черняеву и А. Ф. Кононенко за организацию и проведение измерений на радаре HP.

- 1. Акимов А. Л., Акимов Л. А., Черногор Л. Ф. Параметры турбулентных процессов в атмосфере, сопровождавших затмения Солнца // Радиофизика и радиоастрономия. — 2007. — **12**, № 2. — С. 117—134.
- 2. Акимов А. Л., Боговский В. К., Григоренко Е. И. и др. Атмосферно-ионосферные эффекты солнечного затмения 31 мая 2003 года в Харькове // Геомагнетизм и аэрономия. — 2005. — **45**, № 4. — С. 526—551.
- 3. Акимов Л. А., Григоренко Е. И., Таран В. И. и др. Комплексные радиофизические и оптические исследования динамических процессов в атмосфере и геокосмосе, вызванных солнечным затмением 11 августа 1999 года // Зарубеж. радиоэлектроника. Успехи современной радиоэлектроники. — 2002. — № 2. — С. 25—63.
- Акимов Л. А., Григоренко Е. И., Таран В. И., Черногор Л. Ф. Особенности атмосферно-ионосферных эффектов солнечного затмения 31 мая 2003 года: результаты оптических и радиофизических наблюдений в Харькове // Успехи современной радиоэлектроники. — 2005. — № 3. — С. 55—70.
- 5. *Бурмака В. П., Григоренко Е. И., Емельянов Л. Я. и др.* Радарные наблюдения эффектов в геокосмосе, вызванных частным солнечным затмением 29 марта 2006 г. // Успехи современной радиоэлектроники. 2007. № 3. С. 38—53.
- 6. Бурмака В. П., Лысенко В. Н., Ляшенко М. В., Черногор Л. Ф. Атмосферно-ионосферные эффекты частного солнечного затмения 3 октября 2005 г. в Харькове. 1. Результаты наблюдений // Космічна наука і технологія. — 2007. — **13**, № 6. — С. 74—86.
- 7. *Гоков А. М., Черногор Л. Ф.* Результаты наблюдений процессов в нижней ионосфере, сопутствующих затмению Солнца 11 августа 1999 г. // Радиофизика и радиоастрономия. — 2000. — **5**, № 4. — С. 348—360.
- 8. *Григоренко Е. И., Ляшенко М. В., Черногор Л. Ф.* Эффекты в ионосфере и атмосфере, вызванные солнечным затмением 29 марта 2006 г. // Геомагнетизм и аэрономия. — 2008. — **48**, № 3. — С. 350—364.
- 9. Григоренко Е. И., Пазюра С. А., Пуляев В. А. и др. Динамические процессы в ионосфере во время геокосмической бури 30 мая и затмения Солнца 31 мая 2003 года // Космічна наука і технологія. — 2004. — 10, № 1. — С. 12—25.
- Емельянов Л. Я., Григоренко Е. И., Скляров И. Б. Радиофизические наблюдения вертикального дрейфа плазмы в области *F* ионосферы на харьковском радаре некогерентного рассеяния // Радиотехника: Всеукр. межвед. науч.-техн. сб. — 2004. — Вып. 136. — С. 102—108.

- Емельянов Л. Я., Дзюбанов Д. А. Особенности определения скорости переноса плазмы среднеширотной ионосферы // Радиотехника: Всеукр. межвед. науч.техн. сб. — 2006. — Вып. 145. — С. 5—13.
- Костров Л. С., Черногор Л. Ф. Результаты наблюдения процессов в средней ионосфере, сопутствующих затмению Солнца 11 августа 1999 г. // Радиофизика и радиоастрономия. — 2000. — 5, № 4. — С. 361—370.
- Ляшенко М. В., Черногор Л. Ф. Атмосферно-ионосферные эффекты частного солнечного затмения 3 октября 2005 г. в Харькове. 2. Результаты расчетов и обсуждение // Космічна наука і технологія. — 2008. — 14, № 1. — С. 57—64.
- 14. *Черногор Л. Ф.* Высыпание электронов из магнитосферы, стимулированные затмением Солнца // Радиофизика и радиоастрономия. — 2000. — **5**, № 4. — С. 371—375.
- Черногор Л. Ф. Физика Земли, атмосферы и геокосмоса в свете системной парадигмы // Радиофизика и радиоастрономия. — 2003. — 8, № 1. — С. 59—106.
- Черногор Л. Ф. Земля атмосфера геокосмос как открытая динамическая нелинейная система // Космічна наука і технологія. — 2003. — 9, № 5/6. — С. 96—105.
- Черногор Л. Ф. «Земля атмосфера ионосфера магнитосфера» как открытая динамическая нелинейная физическая система (часть 1) // Нелинейный мир. — 2006. — 4, № 12. — С. 655—697.
- Черногор Л. Ф. Тропический циклон как элемент системы Земля атмосфера ионосфера магнитосфера // Космічна наука і технологія. — 2006. — 12, № 2/3. — С. 16—36.
- Черногор Л. Ф. «Земля атмосфера ионосфера магнитосфера» как открытая динамическая нелинейная физическая система (часть 2) // Нелинейный мир. – 2007. – 5, № 4. – С. 198–231.

- Черногор Л. Ф. Эффекты солнечных затмений в приземной атмосфере // Изв. РАН. Физика атмосферы и океана. — 2008. — 44, № 4. — С. 467—482.
- Evans J. V. Ionospheric movements measured by incoherent scatter: A review // J. Atmos. Terr. Phys. – 1972. – 34. – P. 175–209.
- Holt J. M., Rhoda D. A., Tetenbaum D., van Eyken A. P. Optimal analysis of incoherent scatter radar data // Radio Sci. 1992. - 27, N 3. - P. 435-447.
- Jones T. B., Wright D. M., Milner J., et al. The detection of atmospheric waves produced by the total solar eclipse 11 August 1999 // J. Atmos. Sol.-Terr. Phys. 2004. 66, N 5. P. 363-374.
- 24. *Taran V. I., Bogovsky V. K., Lysenko V. N., et al.* Investigation of circumterrestrial space by means of incoherent scatter radar // Космічна наука і технологія. Додаток (Space Plasma Physics). — 2001. — 7, № 2. — C. 36—41.

Надійшла до редакції 18.03.09

D. A. Dzyubanov, L. Ya. Emelyanov, L. F. Chernogor

PLASMA DYNAMICS OF THE IONOSPHERE ABOVE KHARKIV DURING THE SOLAR ECLIPSE OF 1 AUGUST 2008

We present the results of observations of dynamic processes nearby the F2-layer maximum and in the topside ionosphere, which were caused by the partial (about 0.42) solar eclipse on 1 August 2008 near Kharkiv. It is shown that during the solar eclipse there was characteristic (from two to three hours) reconstruction of ionosphere and ionosphere-plasmasphere processes at first to nightly, and then to daily conditions. The plasma fluxes from plasmasphere to ionosphere and in return direction are estimated. The electron density decreased by $32 \pm 3\%$ in the F2-layer. The results of this experiment agree with the results of our previous researches.