ISSN 1561-8889. Kocmiuna nayka i mexnoaoeis. 2007. T 13. Ne 4. C. 40—48.

UDC 629.056.6

V. Kortunovl, L Dybskal, G. Proskural, T. Trachsel®

"National Aerospace University «Kharkiv Aviation Institute»
%Swiss Federal Institute of Technology, Zurich

Accuracy Analysis of Strapdown Inertial

Navigation Systems

Received January 26, 2006

This paper discusses correction methods of INS/GPS systems. Different schemes are considered:
open loop correction scheme, scheme with estimated instrumental errors feedback, scheme with state
space feedback and scheme with navigation parameter errors feedback INS correction is considered
as the process of control on the base of combined method. Nonlinear equations of INS angular errors
in quaternion form are obtained. Nonlinear and linear equations of navigation and orientation
parameters errors are presented. Observability and detectability of linear equations of INS errors at
different component combination of error vector are evaluated. Precision analysis of instrumental
errors compensation is carried out. The results of testing INS/GPS systems on laboratory bench and

car are presented.

1. INTRODUCTION

Integrated INS/GPS systems with microelectro-
mechanical sensors (MEMS) are widely used for
different moving plants because these inertial sys-
tems are small-sized and low-cost.

The development of integrated INS/GPS sys-
tems with MEMS gyros and accelerometers in-
cludes solving the problems to provide the required
accuracy of navigation parameter calculation.

Correction of INS errors is realized using both
internal loops without external information and
adaptive optimal filtrating in close loop compensa-
tion scheme. In monograph [8], the informational
equivalence of open loop and closed loop correction
schemes under a certain ratio of coefficients in
observation feedback was proved. The problem of
correction becomes of great importance especially
at development of INS, which is corrected using
GPS receiver data, with low-cost miniature solid-
state sensors, for example, MEMS — gyro and
accelerometer sensors [10]. Development of low-
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cost integrated systems with this type of sensors,
in our opinion, requires solving the following tasks.

1. Because of low precision of inertial sensors,
accelerometers and gyros, which are determined
by stability of scalar factor, stability of “zero”
(bias) and parameters of random component of
sensor error (noise), navigation parameters are
formed (calculated) with low accuracy. The ex-
perience of practical use of the sensors demon-
strates significant increase of fluctuating com-
ponents of «zeros», such as Markovian processes
with a correlation time from 10 to 50 s. These
properties of sensor errors specify some additional
requirements to compensation methods.

2. Inaccurate geometric placing sensors on axes
of measurement trihedron because even proper
orientation of the sensor element in the microchip
is specified with an accuracy of 1°, and further
placing the sensors on board, and board in the
case results in additional errors. So, geometric
calibration with high precision is required. But test
bench for this type of calibration is expensive, and
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total cost will increase. In our opinion, it is
necessary to develop a new procedure on inexpen-
sive test benches.

3. Temperature dependence of sensor para-
meters and significant deviations of temperature
from pointed in specification narrows exploiting
conditions of such a system and requires to carry
out exact temperature calibration for not only
systematic errors of sensors, but scale factor as
well. This problem can be solved only by metrol-
ogy. That means carrying out thorough tempera-
ture calibration.

4. Level of MEMS errors results in such naviga-
tion parameter errors when linear models can not
be used. It is necessary to choose equations of INS
errors thoroughly and validate all range of errors
value.

5. Using the extended Kalman filter for evalua-
tion of INS errors does not allow one to estimate
all the errors, because precision of evaluation is
decreased and calculable loading of processor is
increased with extension of state vector. To
achicve the necessary precision of error estimation,
it is required conducting test motions of INS, not
characteristic for the used object of navigation.

6. At disconnecting the GPS of the receiver at
object shading or disappearing navigation satellites
autonomous application of INS is not allowed more
than a few minutes. The improvement of such
performance indexes is possible due to the use of
adequate mathematical models of sensor errors
that requires the decision of identification of
transformation processes of navigation information.

Basic methods of INS multidimensional correc-
tion of open loop type and closed loop type were
offered and described in [8, 5]. Moreover, closed
correction scheme is called compensation scheme
or scheme of correction as controlled process. In
this case control object is computational process of
forming navigation parameters using measure-
ments from sensors (controlled input actions), and
control actions or signals are signals for compen-
sation of sensor instrumental errors. Let us con-
sider the compensation of uncontrolled disturban-
ces (instrumental errors) as the purpose of control.
Then control problem can be considered as the
task of selective invariant control [9]. This ap-
proach is based on the use of the model of
disturbances as in [8] where it is named wave
approach. This approach is often applied to the

tasks of INS errors, for example as in [4], using
in the extended Kalman filter the model of sensor
instrumental errors, although it does not correlate
with invariant control. In this case the question is
about the selective invariance of control or correc-
tion, and the precision of correction is determined
by adequacy of the models used.

Other approach [5, 2] is based on the procedure
of evaluation of the uncontrolled input signal of the
dynamic system in the real time with the use of
asymptotic observers of the state and disturbance.
The disadvantage of this approach is high sen-
sitivity of the system to information delay in the
channels. Neglect of this fact results in instability
of calculation process of navigation parameters.
The approach under consideration is used at
presence of INS hardware synchronization with
external information sources.

It is possible to obtain high precision of in-
tegrated INS only at the comprehensive analysis of
the closed computational process of navigation
parameter calculation. Investigations into INS cor-
rection specify the actuality of improvement of
compensation schemes of INS errors [10].

Let us consider the properties of correction
schemes for type solutions of instrumental error
compensation problem.

2. CORRECTION METHODS

2.1. Classification of correction methods. In
recent years a number of INS correction methods
using external measurements has been developed.
Let us classify them according to the following
features:

+ according to integration level (tightly coupled /
loosely coupled correction scheme, low level of
integration / high level of integration);

* according to feedback (open-loop / closed
correction scheme);

+ according to functioning criterion (optimal / non-
optimal).

2.2. Open loop correction with filtration (M1).
This correction method is based on the evaluation
of navigation parameter error vector and subtract-
ing errors from the INS formed.

The condition for application of this correction
scheme is saving smallness of navigation para-
meters errors in relation to supporting or basis
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point of linearization of navigation equations. With
violating the condition of relative smallness of INS
error estimation it is possible to change the sup-
porting point of linearization and reduce estimation
errors to zero, that is realized by connection of
type Feedback with initial condition in the certain
time moments. This type of correction is used for
the high-precision systems with precise sensors,
when the period of correction can last tens of
minutes.

The equations for this correction scheme are
described as:

AY() = Yaps(D) — Yins(D)s
AX(f) = AAX(1) + Ly(Ay(7) — CAX(7),

X0l 1) = Xps(0) — AX(D),

where L, is matrix of feedback on an observation
and x,,(7) is corrected vector of navigation
parameters.

2.3. Correction scheme with feedback on es-
timation of sensor instrumental error (M2). For
this scheme of correction, the requirements to the
sensors can be significantly reduced, because the
linearity of errors is valid for long time of the
operation of the system. Adding direct connections
as for the scheme M1, we have the scheme of the
type M1 + M2,

The equations for this correction scheme are
described as:

AY(1) = Ygps(D) — Yins(D>

AX(1) = A(DAX(?) + Lig(D(AY(7) — CAX(2)),
u, () = — Aw(),

(1) =— Aw(D),

u(?) = [ug(t) uy() 1,

iINS(t) = fINS(XINS(t)’ u(t)’ VINS(t))’

Vins(2) = hyng(X(9), u(?)),

X(1) = Xps(1) — Axg(2),

where u,(?) and u,(7) are the correction signals
(control signals) on angular rate and accelerations
sensors and vy (?) denotes disturbances (sensor
errors).

2.4. Correction scheme with feedback on es-
timation of navigation parameter error (feedback

on the Kalman filter state vector), M3. This
scheme of correction corresponds to the classic
method of control using the state vector that can
provide given dynamic properties of scheme by the
matrix coefficient K,. The matrix coefficient can be
calculated by solving the optimal control task using
quadratic criterion (LQ) for the non-stationary
system. However, the specificity of the matrix of
the state allows one to get simplified solutions, for
example as in [3]. The authors used the method
of synthesis of stationary matrix coefficient by
decomposition on autonomous channels. This
method provides the required dynamics of adjust-
ment on instrumental errors and, hence, ability of
INS to operate.

The equations of this correction scheme are
described as:

AY(?) = Yeps(D) — Yins(1)s
AX(f) = A(DAX(1) + L(H)(AY(7) — CAX(1)),
u(?) = K,AX(0),
Xivs(D) = Fins(Xens(), 0(2), Vis(D)),
Yins(?) = hies(x(0), (1)),
X(1) = Xpus(1) — AX(D).

2.5. Correction scheme with feedback on
navigation parameter error (M4). The scheme of
correction corresponds to the method of control
with the use of output vector that can not always
provide given dynamic properties of the scheme by
the calculated matrix coefficient K,. The authors
developed the procedure for synthesis of stationary
matrix coefficient by decomposition on autonomous
channels that provides the required dynamics of
adjustment on the instrumental errors of sensors.
The advantage of this correction scheme is defined
by the fact that it does not use the multidimen-
sional observer of the state and, hence, the INS
software is simplified.

The equations for this correction scheme are
described as:

u(t) = Ky(YGPS(t) — Yins(D),
iINS(t) = fins(Xins(9), (), Vins(9),
Yins(8) = s (X(9), u(?)).
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3. INS ERROR EQUATIONS

3.1. The equations of orientation parameter er-
rors (the Euler angles). Let us introduce the
following designation:

e A is direction cosine matrix, which transforms
vector from the body coordinate system to the
inertial coordinate system, determined by
quaternion A and A@);

* AA denotes the rotation matrix from calculated
frame to navigation frame, then the relationship
between the matrices is A = AAA;

* Aw, is the vector of instrumental errors of gyros
in the body frame.

The general equation of orientation parameter

errors can be written as [7]:

Ad = 0.5AAR1RAw,®1", 1)

where Aw, = [0, @,,, w,, o, ] is quaternion of
absolute angular rate in the body frame.
If the following representation is allowed:

Ad = [1,0.5¢,, 0.5¢,, 0.5¢_1",

AA=T1+ P,
0 —a, a,
= a, 0 -a,|,
—a a, 0

the simplified equations of orientation parameter
errors are used in the form:

i = Ad)Aw,, @

where vector ¢ = o, a,, a, 1" is angular errors of
vertical and course.

3.2. The equations of navigation parameter
errors. If AV is the vector of velocity errors in the
inertial frame, and AR is the vector of position
errors, the complete equation of errors can be
written as [7]:

AV =
= — (AA(AL) — DA(D)w, + AA(AD)AW, + g(AR) ,
AR = AV, AR = |ARI, 3)

where w, is the vector of acceleration in the body
frame and Aw, is accelerometer bias.

The linear equations of errors can be repre-
sented in the form:

AV=®(0)w,,
AR = AV,

+ A(A)Aw, + Ag(AR),
AR = IARI, (4)

Ag(AR) = [0, w;AR, OT",

where w,,, is the vector of acceleration in the

navigation frame and w, denotes Shuler’s frequen-
cy.
3.3. General equations of INS errors. Let us
combine equations (1) with (3) and write non-
linear system:

X(1) = F(x(1), u(®), v(1)), y(1) = G(x(9), u(?)), (5

where:

x(1) = [AA(Y), AV(D), AR(?), x,(1), x,() 1" is the
vector of INS errors;

u(?) = [u,(9), u(1), u )1 is the vector of input;

v(t) = [, (), p (01" is the vector of disturbance
(sensor errors).

To investigate the observability and precision of

instrumental error restoration, the equations of
errors are used in linearized form:

X(1) = A(DX(1) + B(Hu()) + B()v(D),

Aty = ZECL0: 00, ) |-
B (- FOOUO VD ot g

B (1) = 2P0, U0, W(0)

where x°, u°, V' denote working point of lineari-
zation.

For the Kalman filter realization, nonlinear
system of equations (5) is used.

4. OBSERVABILITY AND DETECTABILITY
OF INSTRUMENTAL ERRORS

Observability is fundamental concept of dynamic
system identification theory, which is charac-
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terized by the ability to estimate state variable
using system output measurements. In the case
under consideration it is necessary to solve the
problem on testability of sensor instrumental er-
rors and navigation parameters using measure-
ments of velocity and position (attitude).

Linear system (6) is considered as observable on
finite time interval, if all the coordinates of state
vector at initial moment of this time interval can
be determined with the use of information on
system input and measurcments of system output
at this time interval.

Criterion of Observability

In order to system (3) would be observable, it is
necessary and sufficient that the matrix of obser-
vability K, (A, C) = [CT, A'C", ..., (AN)"'C"] of
dynamic system has rank(K,) = n equal to state
vector dimension.

But in practice the situation may take place
when criterion of complete observability is not
satisfied, while error evaluations are converged
and correction is possible. This situation cor-
responds to the detectability of state vector.

If the system is unobservable and rank(K,) =
=y, < n, using the Kalman structure transforma-
tion, system (6) can be expressed as:

10 10
{i@} {An } {i@} { }“@

¥(1) = [C,, 01X(1) = C,x, (1), ™

where

x(1) = [x,(1), %) T,

ny = Vs, ny =N — Vs,

rank [C], A],C], ..., (AT 'CT 1=, .

The pair {A;, C,} is observable. If at the same
time A,, matrix is Gurwitz maftrix, the system is
called detectable. This means that the possibility
exists of evaluating all the components of state
vector.

If the system is undetectable, principal pos-
sibility to calculate estimations of some INS errors
is missed [6].

4.1. Observability of instrumental errors in one
channel of INS. The equations of INS error model
for this case take the form:

a(f) = Aw,
V(t) = a(H)g + Aw(p), ®

R(1) = (1),

where the state variables a(?), V(7), R(?), Aw(?)
and Aw(?) are attitude error, velocity error, posi-
tion error, gyro sensor error, and accelerometer
error, respectively. Let us suppose that measurable
coordinates of error vector are velocity error and
position error. Then matrices of the system can be
written as:

0 0 0
A, =1g 0 0],
0 1 0
10
B,= |0 1],
0 0
o 1 o
CG=1o o 1|
0 0
Dy=1o0 ol

where g is gravity.

Using the R. Kalman criterion, determine the
observability of system (8). The condition of
observability is satisfied because rank(K}) = 3.
Let us verify condition of observability for
extended system with matrices {A,, B,, C,;, D},
which is obtained by adding to system (8) the
models of INS instrumental errors of INS in the
form:

Aw (1) = a,Awy (1) + &,

AwM(t) = c5wAWM(Z‘) + gw’

where £ and &, are “white noise” components.

Then condition of observablhty can be written as
rank[C], AIC], ... , (A9)'Cy 1 =4 < n, which means
that the components of state vector of extended
system are unobservable. It should be mentioned
that condition of observability of accelerometer
errors and condition of observability of gyro sensor
errors are satisfied separately.

Let us check condition of detectability of the
extended system represented in the form similar to
(7). Pair {A,,, C,} is completely observable
because

~T XT RT AT \3AT
rank [Cy;, Ag; Cyps -oes (Agr)Cop 1=4
Matrix :&022 is Gurwitz matrix, which allows one

to conclude detectability of extended system and
evaluation of all the components of space vector.
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Transformed to the new basis, extended system
can be written as:

;I(t) = xs(t),
(1) = %,(0),
X,(1) = %,(0), CN

X,(0) = a,%,(0),

X5(1) = a,%5(1).

From this it is clear that the fifth equation
extracts unobservable component

%00 = — L) - 22 Aw(r) + Awn),
g g

which includes accelerometer bias Aw(?), while the
other variables contains are included in block of
observable variables.

4.2. Observability of INS instrumental errors in
multidimensional case. The first case. If space
vector of error equation (6) consists of INS
parameter errors x(f) = [AA({), AV({), AR({)]" and
matrix of observations determines only measure-
ments of position and velocity errors

C - |:03><3 13x3 03><3:|
03><3 03><3 13x3 ’
the system is unobservable. Moreover, error of
course angle ¢, remains an unobservable variable.
It is determined that this system is undetectable as
well.
When this variable is considered as measurable

(for example by external course system), the
matrix of observation

([0 00 ]
010

00 0| Osxs 05

C=10;,, L 05

0;.; 0;5 | B

is changed and system (6) becomes observable.
The second case. If space vector of error equa-
tion consists of INS parameter

x(1) = [AL(1), AV (D), AR(D), x,(1), x,() I

and A

observable on observation of velocity and position
errors.

The third case. Let us consider the state of the
navigation system for which A , A, mairices are

A, are nonzero mairices, the system is

w?

w?

zero matrices and instrumental errors are constant.
In this case the rank of constructed matrix of
observability appeared to be smaller than the
dimension of system space vector rank(Kf?) = 14,
which shows that the observability is missing
completely from dynamic system. In that case let
us verify detectability and determine unobservable
components of navigation system error vector.

Selecting S basis correspondingly, let us trans-
form the system to the view similar to (6).
Condition of observability of pair {A,,, C;} is
satisfied because rank[C], A, C], ..., (AT)"C]=
= 14 = y,. Morecover, matrix A,, is Gurwitz one
that allows one to conclude on detectability of the
system, which corresponds to evaluation of all the
components of system (6) state vector.

The transformed system (6) consists of two
parts: the part of dimension with v, = 14 in which
output y(f) is observable and the unobservable part
including the components of INS instrumental
errors, Aw, and Aw.,.

The results obtained demonstrate the following:
when the parameters of both gyro and ac-
celerometers error models are equal to zero, sys-
tem (6) losses its observability. It should be noted
that the availability at least, of rotation sensor or
just accelerometers error model in the system
provides the observability of the system. However,
even if dynamic system losses its observability, the
possibility exists of evaluating system space state,
which means the detectability of the system.

5. ANALYSIS OF CORRECTION METHOD PRECISION

To analyse the precision of correction methods let
us assume the following:

1. Unit of navigation parameters formation using
inertial sensors is continuous and ideal system.

2. Unit of velocity vector and position measure-
ments by correcting system is ideal.

3. It is analysed only influence of instrumental
errors of inertial sensors on precision of navigation
parameters in asymptotic mode (time tends to
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infinity, ¢ = o).

Let us characterise the system precision by order
of astaticism with respect to disturbance. The
analysis of system astaticism can be performed
through the structural method (using multidimen-
sional transfer functions), at which the order of
power of variable s is determined in numerator of
transfer function, or by examining special matrices
in state space.

5.1. Analysis of system astaticism in state
space. Let us consider a controllable dynamic
system (a closed system corrected for instrumental
errors) in the form:

AX(f) = AAX() + Byv(1),

AY(f) = CAX(D), 10

where A, is the matrix of state in fixed time, v(7)
denotes disturbance in the system (instrumental
errors), Ax(?) is vector of INS errors.

If the component of the vector of navigation
parameter error AX, (=) does not depend on the uth
component of disturbance, the system has the first
order of astaticism type (v, 1), [11.

For the linear system in form (10) astaticism
type (v, #), is equivalent that the element of the
uth row and vth column of matrix A, IBO is equal
to zero. For astaticism of the second order type (v,
1),, the corresponding element of A,’B, matrix
has to be equal to zero etc. If matrix A, is singular,
the astaticism order can be determined through
structural method using matrix transfer function.

5.2. Analysis of correction scheme type M1. Let
us introduce the extended state vector consisting of
estimations of INS errors and estimations of error
observer of state type Kalman filter Az = [AX",
AX" 1'. For this case matrices of state, control and
observation are described in the form:

i\ {AU 0

b

= 10 A, - L,C,

an
Bz= |:](3)0:| ? Cz= [Inxn’ _Inxn]'

It is impossible to specify the order of system
astaticism in state space, so we apply structural
method and determine matrix transfer function in
the form W (s) = C(sl — A,)B, and matrix gain
K, = lirgl WAs).

-

The values of static gains of multidimensional

transfer function show that coefficients of errors on
coordinates are zero and the system is astatic.
Respectively, the errors of velocity and errors of
angles are limited, and the system remains static.

5.3. Analysis of correction scheme type M2.
For this case the matrices of state, control and
observation are described in the form:

W[ A “BK,,
© |GLy Ay — LG, — B K, |”

B B
B = 0 = 0
- {Boe } ’ BZV { O } ’

C = Inxn 0
z 0 1 )

HEeXne

where

0,
K, = { 33

03 x3 03 x3 13 x3

03><3 03><3 03><3 03><3

03><3
13x3
is matrix of feedback.

It is impossible to specify the order of system
astaticism in state space, so we apply the structural
method and determine matrix transfer function in
the form W (s) = C(sI — A))B, and matrix gain
K, = lim W(s).

s=0

The values of static gains of multidimensional
transfer function show that the coefficients of
errors on angles are nonzero, hence the system is
static. Respectively, the errors of velocity and
errors of coordinates are unlimited. Similarly, from
accelerometers errors we obtain unlimited coeffi-
cients, and system is even not static.

Let us analyse scheme M2 + M1, the matrix of
observation will be changed:

C — IHXH _IHL)XHL)
=10 I )

HeXne

The values of static gains of multidimensional
transfer function show that the coefficients of
errors on angles are zero and system is astatic.
Respectively, the errors of velocity and errors of
coordinates are limited, and system remains static.
From accelerometers errors we obtain limited coef-
ficients, and system become static.

5.4. Analysis of correction scheme type M4.
For this case the matrices of state, control and
observation are described in the form:

A= [A, - BK,],
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Bzu = [BU]’ Bzv = [B[]]$ C = I,

z

where

~

I
coococoo
coocoxo
coococoo
coxmoo
oxococoo
Nooocoo
cooxoo
oxococoo
coococolx

Using matrix A]'B,, gives the possibility to
determine the order of astaticism of scheme in
state space. The elements of the given matrix show
that the system is static as a whole, and is astatic
with respect to some navigation parameters. If we
supplement the system with the new variable,
integral from error of course, the coefficients of
staticism will be changed.

In this case the system remains astatic with
respect to the angular variables from errors of
gyros, and static with respect to the angular
variables from errors of accelerometers.

6. EXPERIMENTAL RESULTS

Testing of the INS was carried out. The INS is
built on the basis of microelectromechanical sen-
sors (the accelerometer ADXL311 and gyros
ADXR150) and the microcontroller of C8051F133
type. The INS correction was conducted with the
use of GPS receiver of EM-406 type (GlobalSat,
Taiwan) which provides a positioning accuracy of

Fig. 1. Velocity of INS/GPS (north and east components)

10 m (RMS) and a speed accuracy of 0.1 m/s from
datasheet. The system was located on the land
vehicle driven on a given trajectory. The results of
testing are shown in Fig. 1 and Fig. 2.

The conclusions made on the basis of the testing
are the following:

1. Noticeable increase of the error of yaw occurs
at turning when an intensive change of yaw takes
place. This error results in increasing the error in
projection velocity, which produces increasing the
estimate of gyro drift (Fig. 2, part 1—3). The
effect is caused by low accuracy of determination
of velocity and course by increment of coordinate.

2. Noise components of inertial sensors were
within the limits specified in technical data.

3. Values of gyro drifts were evaluated within
the limits specified in technical data, but the errors
of drift evaluation significantly depended on error
of course GPS. The best result was obtained
through the method of correction type M1+M2.

4. The coincidence of INS and GPS navigation
parameters did not exceed 20 m, which is suffi-
cient for INS with microelectromechanical sensors.

CONCLUSIONS

In the majority of the correction schemes applied
the accuracy of INS is determined by the property
of staticism from instrumental errors and just in
some cases the property of astaticism exists. To
increase the precision of correction schemes it is

Y, m (north)
300 T T T T T T T

200

100

-100

Fig. 2. Test trajectory: 1 — GPS, 2 — INS
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necessary to increase the order of astaticism, to
extend vector of control by integral variables and
to apply combination. To provide selective in-
variance of instrumental errors it is sufficient to
include models of errors into general model of INS.
For low cost INS, we conclude that sufficient
accuracy of the system is reached with the use of
correction scheme with navigation parameter errors
feedback, which does not require high specification
to CPU. We consider that perspective direction of
further research is the examination of the precision
of two sample discrete system and the development
of some methods for the enhancement of astaticism
in discrete systems.
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AHAJI3 TOYHOCTI BE3ILJIATOOPMHUX
THEPLIAJTbBHUX HABITAIIIMHUX CUCTEM

B. I. Kopmynos, I. 0. [Juécoka, I'. A. Ipockypa,
T. Tpaucen

Haseneno meropu kopekuii B inrerposanux ITHC/GPS-cuc-
TeMax. Po3risHyTO ¢XeMu KOpekuii po3iMKHEHOrO M 3aMKHYTOTO
TUITY 3i 3BOPOTHUMHM 3B’SI3KAMU 34 OI[IHKAMHU iHCTPYMEHTAJIBHUX
MIOMUJIOK, 31 3BOPDOTHUMH 3B’SI3KAMH 34 OIIHKAMHU BEKTOpa CTaHy
MOMWJIOK Ta 3i 3BOPOTHHUMH 3B’SI3KAMM 3a MOMMJIKAMM HaBira-
nifianx napamerpis. Kopekniss THC posriasmaerscs 9K MPOIEC
yOpasiiHHs OGUMCAEHHAM HABIrAlifiHUX TapaMeTpiB i BUpi-
IIYETHCS 3a7ada CEJIEKTUBHOTO iHBapiaHTHOro ympasiinHsg. Ot-
pumano JiniiiHi piBasaHg oMok THC y kearepuionniit dhop-
mi. IIpencrasieHo JiHiNHI piBHSHHY mapaMmeTpiB opicHTauii Ta
Hagirauii. QOUiHEHO CMIOCTEPEXYBAHICTh i BiTHOBIIOBAHICTD JIiHIN-
Hux piagHb noMwiok IHC ang pisumx komOiHauiit BekTopa
noMwiok. IlposeneHo aHami3a TOUHOCTI KoMIeHcauii iHCTPY-
MEHTAJbHUX MOMWJIOK JUIS IIPUBEACHUX cxeM kopekiii. Hasene-
HO pesyabratu TectyBanHg IHC/GPS-cucreMu Ha aBTOMOGLI.



