В. Г. Бахмутов, Ф. И. Седова, Т. А. Мозговая

Інститут геофізики ім. С. І. Субботіна Національної академії наук України, Київ

Среднеширотное проявление полярной суббури
и реализация сейсмической энергии
в зоне Вранча

Доповідь на конференції 05.09.05

На прикладі зони осередженості сейсмичності Вранча показано, що основною морфологічною ознакою у спектрі геомагнітних варіацій перед землетрусами є середньою полярна суббура, коли вона виражається найбільшою інтенсивністю та тривалістю. Суббури проявляються як на відносно спокійному фоні, так і під час бур. Головним являється різке і значне збільшення H-складової в середніх і низьких широтах. Оскільки прояв суббур чітко пов’язань з часом доби, то вони можуть збігатися з різними фазами геомагнітної бурі, що природно впливає на величину перепаду (градієнта). Саме перепади в геомагнітному полі є спусковим механізмом для реалізації сейсмичної енергії. Введено поняття “тип” градієнта, з яким можуть бути пов’язані землетруси. Перш за все це залежна середньою полярна суббура на спокійному фоні. Інші типи пов’язані з варіантами послідовності середньої суббури відносно Dist-відмінності, а також бур з рівномірним початком. На прикладі землетрусів у зоні Вранча показано, як від типу градієнта в геомагнітному полі змінюються сейсмічні характеристики.

ВВЕДЕНИЕ

Один из факторов, влияющих на процесс подготовки землетрясения является солнечная и связанная с ней геомагнитная активность. Однако до настоящего времени нет четкого представления, как именно геомагнитное поле воздействует на реализацию сейсмической энергии. Например, есть мнение, что геомагнитное поле является только “спусковым механизмом” для реализации землетрясения, не имея отношения к его подготовке [9]. Работы, в которых сделаны попытки показать, каким образом геомагнитное поле может способствовать реализации внутренней энергии, немногочисленны. Так, в работе [13] показано, что одним из механизмов воздействия магнитных бур на сейсмичность могут быть электромагнитные явления в массиве горных пород. Сделан вывод, что так как этот эффект минимальен, корреляция между вариацией магнитного поля и геотектоническими процессами будет слабой. С этим вполне можно согласиться, но только для случая, рассмотренного авторами в указанной работе. Если же исходить из представления о возможности накопления энергии в очаге, то и эффект, по-видимому, будет совершенно другим. Мы придерживаемся взглядов, высказанных в работе [12], что большинство землетрясений — следствие быстрой разрядки напряжения, которое сравнительно медленно, но постоянно накапливается в определенных участках земной коры и верхней мантии. Перед землетрясением происходит перераспределение напряжений в ограниченном объеме вещества, что и приводит к реализации сейсмической энергии.
Изначально мы ставили перед собой задачу поиска морфологических признаков в структуре геомагнитных вариаций в связи с подготовкой и реализацией землетрясений [2, 8]. Был сделан вывод о том, что реализация сейсмической энергии предшествует резкий перепад (градиент) в горизонтальной составляющей геомагнитного поля. Вывод сделан по результатам анализа вариаций ежечасных экстремальных значений \(H \)-составляющей, однако оказалось, что при таком подходе оценка связи геомагнитного поля с сейсмичностью неэффективна. В дальнейшем на примере зоны Вранча было показано, что в разрядке сейсмической энергии играют роль конкретные типы колебаний. В частности, землетрясения в этой зоне связаны со среднезиротным проявлением околосложечной полярной суббури. Энергетический класс толков коррелирует с амплитудой в максимуме развития суббури, т. е. с перепадом в \(H \)-составляющей, предшествующим толку.

За весь исследованный 10-летний период в 85-90 % случаев именно околосложечная полярная суббури предшествовала реализации сейсмической энергии. Была получена единица линейная зависимость между длительностью временного интервала от перепада до толка и глубиной очага как для подкоровых, так и для коровых толков. Цель настоящей работы — анализ выявленных закономерностей по связи полярных суббуб и их проявлений в средних широтах с сейсмичностью в зоне Вранча.

Сведения о землетрясениях были взяты из сейсмологических бюллетеней Украины. Точки рассматривались независимо от их энергетического класса. За характеристику сейсмичности приняты энергетический класс \(\mathbf{K} \) толка и глубина \(h \) очага.

Анализ геомагнитной обстановки проводился по магнитограммам геофизических станций в Корце \((\varphi = 50.6^\circ \text{ N}; \lambda = 27.2^\circ \text{ E})\) для 1977 г. и Ястребовке \((\varphi = 45.5^\circ \text{ N}; \lambda = 34.1^\circ \text{ E})\) для 1988—1996 гг.

Количественная оценка осуществлялась по анализу поведения \(H \)-составляющей. В настоящей работе перепады (градиенты) определялись, в отличие от [8], по максимуму в развитии околосложечной полярной суббури, исключая минимальное значение \(H \) на нулевом уровне, условно принятого за нормальное поле.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

На примере сильных землетрясений в зоне Вранча было показано, что в реализации сейсмической энергии основное значение имеют большие перепады геомагнитного поля в \(H \)-составляющей, наиболее четко отражающей воздействие внешних факторов [2, 8]. Между градиентом и толком всегда есть некоторый временной интервал \(\tau \). Необходимо отметить, что кроме перепада в непосредственной близости к толку, иногда следует учитывать и предшествующий сильный перепад в геомагнитном поле (по нашему определению, главный градиент), который может существенно повлиять на временной интервал. Главный градиент связан с сильными бурами, например при разрушительных землетрясениях в зоне Вранча в 1977 и 1990 гг., описанных нами в работе [8]. Магнитные бури сопровождаются развитием в магнитосфере интенсивного кольцевого тока. В эти дни преимущество суточное значение \(\Sigma K_p = 30...60 \). Если же мы считаем перепад в непосредственной близости к толку, который связан с околосложечной полярной суббури, то преобладающий \(\Sigma K_p = 20...30 \). Сами же толки (около 80 % случаев) происходят преимущественно на спокойном или слабовозмущенном геомагнитном фоне.

Результаты анализа геомагнитной обстановки в связи с землетрясениями в зоне Вранча показали, что при всей разнохарактерности геомагнитных возмущений именно с околосложечной полярной суббури связана последующая реализация сейсмической энергии в этой зоне: для глубокофокусных землетрясений в 86 %, а для коровых — 80 % случаев.

Суточное распределение суббури и связанных с ними перепадов в \(H \)-составляющей геомагнитного поля перед коровыми и глубокофокусными землетрясениями показано на рис. 1, из которого видно, что их максимум приходится на 20—24 UT (18—22 LT).

Характер геомагнитного поля нами проанализирован для глубокофокусных землетрясений и более 50 толков в земной коре. В обоих случаях градиентом перед толками в основном были разные по продолжительности \(T \) суббури. Из рис. 2, a видно, что глубокофокусным землетрясениям предшествуют суббури с \(T \geq 60 \text{ мин} \)
Среднеширотное проявление полярной суббури

Рис. 2. Преимущественные продолжительности (а) и амплитуды (б) околополюсных полярных суббури перед коровыми (штрихи) и глубокофокусными землетрясениями в зоне Вранча

а коровым толчкам с $T \leq 60$ мин. Как перед глубокофокусными, так и перед коровыми землетрясениями суббури мало отличаются по амплитуде, но диапазон амплитуд существенно шире перед глубокофокусными толчками (рис. 2, б).

Временной интервал от максимума в развитии суббури до последующего толчка (t, ч) связан с глубиной очага (h, км), что демонстрируется на рис. 3. Однако общий размер погрешности геомагнитного поля, связанная с солнечной активностью, может сказаться на величине t. Резкие перепады в геомагнитном поле во время мировых магнитных бурь могут существенно сократить временной интервал t (иногда до 4—7 ч), что сказывается на линейных соотношениях между этими величинами (рис. 3, д). Следует также иметь в виду, что разброс точек на графиках связан с целым рядом факторов, которые вносят погрешности при «привязке» перепада в геомагнитном поле к толчку. Например, эта погрешность в определении глубины землетрясений, источник в определении максимума суббури, и другие. Из рис. 3 очевидно, что большой разброс связан с повышением уровня среднегодовой геомагнитной активности ($\Sigma K_p \geq 20$). Тем не менее, близкая к линейной закономерность прослеживается.

Рис. 3. Корреляция временного интервала t с глубиной h очага последующего за перепадом в магнитном поле землетрясения в зоне Вранча для периодов низкой (а) и высокой (б) геомагнитной активности

Суббури проявляются как на относительно спокойном фоне, так и во время бури. Так как проявления суббури четко связаны со временем суток, то они могут сопровождаться различными фазами геомагнитной бури, что естественно сказывается на величине перепада (градиента).

Суббури — это комплекс магнитных и яноосферных явлений, где главным является значительное увеличение аврорального электроджета. Характер поведения суббури в высоких широтах

ХАРАКТЕРИСТИКА ПРОЯВЛЕНИЯ ПОЛЯРНЫХ СУББУРИ В СВЯЗИ С СЕЙСМИЧНОСТЬЮ
свидетельствует об индивидуальных особенностях каждого возмущения вследствие большой динамичности электроструй, ответственных за эти возмущения. Относительные величины амплитуд суббуря стабильны только в средних и низких широтах [6, 7]. С другой стороны поле геомагнитной бури представляет собой сумму апериодической вариации \(D_s \), возмущенной суточной вариацией и нерегулярных вариаций. Именно нерегулярные вариации обусловливают разнохарактерную индивидуальность бурь. Они представляют собой сравнительно медленные измения магнитного поля продолжительностью от нескольких минут до нескольких часов, на которые накладываются более быстрые колебания. Спектр частот нерегулярных вариаций не зависит от интенсивности геомагнитной бури [1]. Бури обычно определяются сильным уменьшением \(H \)-составляющей в средних и низких широтах, связанным с развитием кольцевого тока. Однако, как отмечено в работе [3], взаимодействие между физическими процессами, ответственными за геомагнитные бури и суббури, пока не имеют однозначного объяснения. Процесс взаимодействия кольцевого тока и аварольных возмущений посвящен ряд работ [1, 3—5, 10, 11]. Анализ геомагнитных вариаций за десятилетний период в связи с землетрясениями во Вранче позволил убедиться, что развитие кольцевого тока препятствует затеканию высокоширотных аварольных токов, т.е. ограничивает возможность среднесуточного проявления поля суббури, что существенно сказывается на их интенсивности. Обсуждение механизма этого явления выходит за рамки настоящей работы. Однако в связи с отмеченным выше фактом и нашим представлением, что именно со среднесуточным проявлением полярной суббури связана реализация сейсмической энергии, ниже приведены результаты анализа полярных суббюри по морфологическим признакам их проявления в средних широтах и связи с магнитными бурями. Это позволило систематизировать перепады в магнитном поле по разным типам.

Первый тип (I). Это относительно изолированная оползнувшаяся полярная суббура на сравнительно на спокойном фоне.

Второй тип (II) представляет случаи, когда суббура предшествует главной фазе бури, т.е. перед максимумом в развитии \(D_s \)-вариации.

К третьему типу (III) отнесены случаи, когда суббура проявляется на стадии затухания \(D_s \)-вариации.

Второй и третий тип перепадов нами условно названы "прямым" и "обратным" соответственно.

Четвертый тип (IV) — бура или возмущение с вспышкой в начале, на фоне которой проявляется полярная суббура.

Остальные типы геомагнитных возмущений относительно редки и в основном не связаны с суббциями.

Пятый тип (V) — резкое возмущение или разрыв колебаний внутри которой может быть возмущение с вспышкой началом или просто вспышечные импульсы, но нет суббури.

Шестой тип (VI) — вспышечные импульсы \(S_i \) изолированные или повторяющиеся. Суббури нет.

Седьмой тип (VII) — аномальное поведение суточного хода \(H \)-составляющей; \(S_i \)-вариация не выражена. Уровень поля в течение суток очень высокий или очень низкий. Суббури нет.

Восьмой тип (VIII). К этому типу отнесены случаи отрицательной полярной суббури в \(H \)-составляющей геомагнитного поля.

Примеры первых четырех типов перепадов в геомагнитном поле показаны на рис. 4. Одним из классических примеров первого типа может быть суббура, предшествующая сильнейшему землетрясению в зоне Вранча 4 марта 1977 г.

Примером "прямого" и "обратного" типа по нашему мнению может быть геомагнитная обстановка, предшествующая одному из сильнейших по разрушительным последствиям землетрясений в окрестностях города Спитак в 1988 г.

Землетрясение произошло 07.12.1988 г. \(M = 7.0, h = 10 \text{ км}, \varphi = 40.9' \text{N}, \lambda = 44.2' \text{E} \). Очаг землетрясения расположен на разломе в зоне стыка Армянской и Евразийской литосферных плит. Вот что написано в связи с этим землетрясением в работе [5]: "геомагнитное поле в первой половине декабря оставалось спокойным, за исключением малой бури с постепенным началом, продолжавшейся до второго по четвертое декабря. На фоне высокой солнечной активности интенсивные вспышки не зарегистрированы". По наблюдениям на станции Ястребкова 02—04.12.1988 г. небольшая бура завершилась суббури в 17.30—18.30 UT \(H_{max} = 62 \text{ нТл}, D = 46 \text{ нТл}, Z = 7 \text{нТл} \). Последующие дни и в день
Среднеширотное проявление полярной суббури

Рис. 4. Основные типы перепадов в H-составляющей геомагнитного поля по магнитограммам станции Ястребовка

zemлетрясения поле было совершенно спокойным ($\Sigma K_p = 5-7$). Влияющий предшествующий землетрясению максимум геомагнитной активности отмечен 30.11.1988 г. ($K_p = 32$), что, согласно нашим представлениям, является главным градиентом. По наблюдениям в Ястребовке (рис. 5) 30.11.1988 г. в 8.00—11.30 UT наблюдались первый перепад («прямой» тип), в 16.30—19.30 UT — второй перепад («обратный» тип). Завершается буря сравнительно небольшой (Т < 60 мин) суббури. По-видимому, два больших перепада за непродолжительное время с 8.00 до 19.30 UT и были причиной kataстрофического землетрясения 07.12.1988 г. (интервал от градиента до толчки $T \sim 7$ сут).

На описанную выше и показанную на рис. 5 ситуацию в геомагнитном поле зона Вранча и украинские Карпаты отреагировали следующим образом: 04.12.1988 г. был зарегистрирован коррмый толчок $K = 9.9$ в Украинских Карпатах ($t = 5$ сут); 11.12.1988 г. — глубокофокусный толчок ($h = 130$ км, $K = 9.9$) в зоне Вранча ($t = 11$ сут).

За десятилетний период нами рассмотрено порядка 150 глубокофокусных землетрясений в зоне Вранча. Для каждого из них определен перепад в геомагнитном поле, предшествующий толчку, в соответствии с выше описанной классификацией. Первые четыре типа являются основными в реализации сейсмической энергии в зоне Вранча (таблица). С ними связаны 92 % толчков. Остальные 8 % составляют случаи, когда глубокофокусному толчку предшествует либо аномальное поведение суточного хода H-составляющей, включая его очень высокий уровень с отсутствием суббубь, либо случаи с отрицательной суббубией. В периоды, когда суббуби на магнитограммах отсутствуют (типа V, IV), во Вранче вообще не было глубокофокусных землетрясений.

выводы

Детальный анализ геомагнитных вариаций в связи с землетрясениями в зоне Вранча позволил составить некоторое представление о роли магнитных возмущений в реализации сейсмической энергии и показать, что землетрясения связаны с определенными типами вариаций.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>14</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>63</td>
<td>42</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>—</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>39</td>
<td>26</td>
</tr>
<tr>
<td>III</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>IV</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>VI</td>
<td>—</td>
</tr>
<tr>
<td>VII</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>VIII</td>
<td>1</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Среднегодовые значения \(\Sigma K_p \)

17.1 18.3 22.1 20.4 24.0 20.7 19.5 21.9 17.3 15.5

Реализация сейсмической энергии, независимо от энергетического класса или магнитуды, толчка происходит по вполне определенной схеме и связана с определенным типом геомагнитных возмущений. В частности, для зоны Вранта это среднесреднепроцессульная полярная суббуер. Об этом свидетельствуют следующие выявленные закономерности:

- перепад (градиент) в геомагнитном поле, связанный с протеканием полярной суббуер, предшествует разрядке сейсмической энергии — сейсмическое событие происходит через определенное время после суббуер;
- временной интервал от максимума развития суббуер до толчка связан с глубиной очага землетрясения;
- установлена зависимость энергетического класса толчков от интенсивности проявления полярной суббуер;
- выявлены определенные морфологические признаки в спектре геомагнитных вариаций, предшествующие реализации сейсмической энергии. Признаки систематизированы по разным типам, при этом четыре из них, связанных с околоволновыми суббуерами, соответствуют более 90 % сейсмических событий.

13. Korniliev V. V., Kostrov N. P., Ratushnyak A. N., Shapiro V. A. The Influence of electro-osmotic pressure generating by geomagnetic disturbances on the evolution of
MIDLATITUDINAL MANIFESTATION OF POLAR SUBSTORM AND SEISMIC ENERGY REALIZATION IN VRANCEA

V. G. Bakhmutov, F. I. Sedova, T. A. Mozgova

Using the concentrated seismicity zone of Vrancea as an example, it is shown that the main morphological sign in the geomagnetic variations spectrum before earthquakes is the near-midnight polar substorm when it is marked by the highest intensity and longest duration. The substorms manifest themselves both at a relative quietness and during storms. The main feature is an abrupt and notable increase of the H-component at mean and low latitudes. As the substorm manifestation is clearly related to the day and night time they may coincide with different phases of geomagnetic storm, which naturally affects the difference (gradient). It is the geomagnetic field difference that provides a trigger mechanism for seismic energy realization. We introduce the conception of the gradient «type» to which the earthquakes may be related. First of all, it is an isolated near-midnight polar substorm against a quiet background. The other types are associated with the version of the order of the midnight substorm with respect to the D_s-variation as well as the sudden commencement storm. On the example of the Vrancea earthquakes it is shown how the gradient type in the geomagnetic field changes the seismic characteristics.