ИЗМЕРИТЕЛЬНАЯ СИСТЕМА ДЛЯ НЕПОСРЕДСТВЕННОГО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПЛАЗМЫ НА ОСНОВЕ СИММЕТРИЧНОГО ДВОЙНОГО ЗОНДА ЛЕНГМЮРА (СДЗЛ)

<u>Нокель В. П.¹</u>, Николаенко В. М.¹, Ямпольский Ю. С.¹, Мамедов К. Я.¹, Венедиктов

Ю. И.¹, Шувалов В. А.⁴ Довгаль С. Г.², Гдалевич Г. Л.³

¹Одесский Национальный политехнический университет (ОНПУ), Одесса ²СПКБ «Дискрет» ОНПУ, Одесса ³Институт космических исследований РАН, Москва

⁴Институт технической механики, Днепропетровск

Развивая положения, изложенные в докладе «Исследование эффективности алгоритмов обработки характеристик симметричного двойного зонда Ленгмюра (СДЗЛ) на основе предложенного показателя качества» настоящего сборника, и учитывая, что предлагаемый метод измерения U_Э и N должен производиться при небольшом анализирующем воздействии (с соблюдением условия U_Э>U_A(t)), преобразование сигналов будем производить для линейной развертки, поскольку при этом соответствующие выкладки упрощаются. В этом случае анализирующее воздействие записывается так:

$$U_{A}(t) = \begin{cases} at, 0 < t \le \tau_{0}, \\ 2at - at, \tau_{0} < t \le T \end{cases}$$
(1)

Здесь *а* — крутизна нарастания U_A , T — период развертки, $\tau_0 = T/2$.

Предлагаемый метод основан на фиксации значения $U_A(t)$, связанного определенным соотношением с U_{\Im} при помощи специального строб–импульса в момент времени, когда значение $U_A(t)$ с точностью до постоянного коэффициента станет равным U_{\Im} .

Исследование устройств проведем для СДЗЛ, отклик которого на анализирующее напряжение $U_A(t)$ представляется в виде

$$i_{\mathfrak{A}}(t) = i_0 \operatorname{th} \frac{U_A(t)}{2U_{\mathcal{P}}}.$$
(2)

Продифференцируем анализирующее воздействие по :

$$Z1(t) = \frac{dU_A}{dt}.$$
(3)

Перемножив (2) с (3), получим

$$Z_2(t) = i_0 \operatorname{th} \frac{U_A(t)}{2U_A} \frac{dU_A}{dt}.$$
(4)

208

Интегрируя последнее выражение, получим

$$Z_{3} = i_{0} \int_{0}^{t} \operatorname{th}\left[\frac{U_{A}(\tau)}{2U_{2}}\right] \frac{dU_{A}}{dt} d\tau = 2U_{2}i_{0} \ln\left(\operatorname{ch}\frac{U_{A}(t)}{2U_{2}}\right).$$
(5)

Выражение (5) в качестве сомножителя содержит U_{\Im} . Поэтому теперь необходимо получить второе выражение, которое содержит сомножителем $v_0U_A(t)$. Поэтому, умножив (3.2) на $U_A(t)$, получим выражение

$$Z4(t) = i_0 U_A(t) \operatorname{th} \frac{U_A(t)}{2U_{\vartheta}}.$$
(6)

Суммируя (5) и (6), предварительно произведя инверсию знака первого из этих выражений, и введя коэффициент $G = \int_{0}^{T} i(t) dt/[i(t)U_A(t)]$, получим сигнал

$$Z5(t) = i_0 U_A(t) \left[\text{th}\xi - G\frac{1}{\xi} \ln(\text{ch}\xi) \right].$$
⁽⁷⁾

Здесь $\xi = U_A(t)/2U_{\Im}$.

Коэффициент G определяет заданное соотношение между U_{\Im} и U_A , и воспроизводится эталонным источником. Каждому значению ξ соответствует определенное значение G. Выбор конкретного значения G зависит от соотношения $S = dG/d\xi$. Выбирается такое его значение, которому соответствует максимальное значение S. При этом, как нетрудно видеть, влияние нестабильности эталонного источника на погрешность измерения U_{\Im} (а следовательно и N) минимизируется.

Рассматриваемый метод основан на достижении текущего значения анализирующего напряжения некоторой величины, находящейся в определенном соотношении с U_{Э.} Так, например, если U_A = U_Э (ξ = 0.5), то G = 1.924. Фиксация U_A = f(U_Э) производится генерацией специального строб–импульса, и в этот момент времени снимается значение U_A, равное U_Э с точностью до постоянного коэффициента.

Теперь нетрудно видеть, что этому условию соответствует значение $Z_5(t) = 0$, т. е. должно быть выполнено условие

$$th\xi = G/\xi \ [ln(ch\xi)]. \tag{8}$$

Отсюда

$$G = \xi[th\xi/(ln(ch\xi))].$$
(9)

Выражение (9) позволяет определять G при принятом ξ с учетом максимального значения S=dG/d ξ . Исследования показали, что при хорошем насыщении зондовой характеристики следует брать $\xi = 0.9, ..., 1.0$. В противном случае ξ не должно быть выше 0.5 (U_A(t) = U₃).

Структурная схема измерительного устройства СУ, реализующая описанный алгоритм, изображена на рис. 1.

Анализирующее воздействие генератора подается на ДПП, аттенюаторы 1 и 3. Последний предназначен для ослабления величины воздействия до значения электронной температуры. Его коэффициент передачи определяется выбранным значением ξ... После ослабления в аттенюаторе 1 воздействие дифференцируется с инверсией и подается на первый вход умножителя 1, на второй вход которого подается отклик с выхода АП и ослабленный в аттенюаторе 2 (здесь коэффициенты передачи соответствующих блоков опущены). На выходе умножителя 1 действует сигнал (4), подаваемый на интегратор, а на выходе интегратора — сигнал (5), подаваемый на один из входов сумматора. Отклик ДПП через первый усилитель подается на первый вход умножителя 2, на второй вход которого подается воздействие с выхода второго усилителя. На выходе умножителя действует сигнал (6), являющийся входным сигналом на втором входе сумматора. После суммирования сигналов (5) и (6) появляется сигнал (7) на входе компаратора 1, состояние которого изменяется при выполнении условия (8). Из рис. 1 видно, что компараторы 1, 2, 3, схема «И» и дифференциатор 2 совместно вырабатывают стробирующий импульс. Тракт измерения концентрации обозначен укрупненным блоком N. Последний функционирует на основе использования известной температуры U_Э (выражение 3). Дополнительным условием для определения концентрации заряженных частиц является формирование сигнала Z₀, представляющего некую константу, состоящую из первых трех членов прологарифмированного выражения (3) $(\ln I_0 = 1 \ln e^{3/2} + \ln M^{-1})$ $^{1/2}$ +lnS+lnU $_{2}^{1/2}$ +lnN): Z₀ = lne^{3/2}+lnM^{-1/2}+lnS. Этот сигнал в блоке N воспроизводится в виде эталонного электрического источника.

Поскольку концентрация заряженных частиц может изменяться в значительных пределах, на выходе измерительного устройства вырабатывается сигнал равный 0.1lnN.

Результаты моделирования измерителя на ПК с использованием пакета программ NAP-2 показаны на рис. 2, где обозначено: 1 — анализирующее воздействие; 2 — строб-импульс; 3 — электронная температура; 4 — зондовая характеристика ДПП (ДЗЛ); 5 — концентрация плазмы N,

$$\mathbf{M} = 0.1 \ln \mathbf{N}.$$

Для проверки эффективности предложенного метода обработки ВАХ СДЗЛ на основе использования преобразования сигналов больших амплитуд рассмотрим одно из возможных преобразований, основанного на дифференцировании анализирующего воздействия по t:

$$Z_6(t) = \frac{i_0}{2U\Im} \left[\operatorname{ch}^{-2} \frac{UA(t)}{2U\Im} \right] \frac{dUA(t)}{dt}.$$
 (10)

Введя, как и в предыдущем случае, обозначения ξ и G, умножим выражение (10) на U_A, а отклик (6) — на dU_A/dt. В результате получим

$$Z_7(t) = i_0 \xi \left[\operatorname{ch}^{-2} \xi \right] \frac{dUA}{dt}, \qquad (11)$$

$$Z9(t) = i_0 \text{ th}\xi \frac{dUA}{dt}.$$
(12)

Сравнивая выражения (11) и (12), можно видеть, что для получения однозначной зависимости $U_A(t)$ и U_{3} , необходимо произвести инверсию знака $Z_7(t)$, а затем произвести суммирование сигналов $Z_7(t)$ и $Z_8(t)$, предварительно помножив один из них на коэффициент G. Результат указанных преобразований даст сигнал

$$Z I (t) = i_0 \frac{dU_A}{dt} \operatorname{ch}^{-2} \xi (\operatorname{sh\xi ch\xi} - G \xi).$$
(13)

Выражение (13) равно нулю при $sh\xi ch\xi = G\xi$. Отсюда:

$$G = (1/\xi) sh\xi ch\xi .$$
(14)

Пусть $\xi = 0.5$ (U_A = U_Э), тогда G = 1.1752. При иных значениях G U_A(t) и U_Э будут связаны другими коэффициентами ξ .

Структурная схема измерителя представлена на рис. 3. Анализирующее воздействие генератора подается на ДПП, выход которого подключен к АП. Его выходной сигнал подается на дифференциатор 1 и далее — на один из входов умножителя 1. На второй вход этого умножителя через аттенюатор 1 и инвертирующий усилитель 1 подается анализирующее воздействие. Таким образом, на входе умножителя 1 действуют сигналы (10) и $U_A(t)$, а на выходе — сигнал (11).

На вход второго умножителя через аттенюатор 2 поступает отклик СДЗЛ и преобразованное в дифференциаторе 2 анализирующее воздействие с инверсией знака - dU_A/dt , так что на выходе умножителя 2 развивается сигнал (12) с противоположным знаком. Выходы умножителя 1 и 2 соединены со входами сумматора 1, на выходе которого действует сигнал (13). Выход сумматора 1 соединен со входом компаратора 2. В момент выполнения условия (14) происходит изменение его состояния, причем переход входного сигнала от отрицательного значения к положительному вызывает на выходе генерацию высокого уровня — единицу. Низкий уровень на выходе компаратора генерируется при обратном переходе и сохраняется при отрицательном входном сигнале. Такая организация работы компаратора 2 позволяет фиксировать на зондовой характеристике анализирующее напряжение, равное с точностью до постоянного коэффициента U_{\Im} , как это было показано выше. Результаты моделирования измерителя показаны на рис. 4.

Основные результаты:

 Разработаны методы обработки зондовых характеристик СДЗЛ, исключающих влияние ионного тока на конечные результаты измерений базовых параметров исследуемой плазмы — U_Э и N.

- 2. Предложенные методы исключают использование малых модулирующих воздействий, ведущих к уменьшению отношения «сигнал/помеха».
- 3. На основе предложенных методов разработаны структурные схемы измерительных устройств СУ.

Рис. 1. Измерительное устройство СУ

Рис. 2. Результаты моделирования схемы рис. 1

Рис. 3. Измерительное устройство СУ

Рис. 4. Результаты моделирования измерительного устройства СУ рис. 3:

1 — анализирующее воздействие; 2 — строб-импульс; 3 — отклик СДЗЛ; 4 — электронная температура; 5 — концентрация заряженных частиц плазмы (M=0.1lnN)