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In this work some problems of dynamics of magnetospherical charged particles of high energies
(1—1000 MeV) are considered. The coefficients of a pitch-angular and radial diffusion of protons
and electrons in a dipole magnetic field are defined. The calculations were grounded on the basic
kinetic equation with use of a method by G. M. Zaslavsky [1]. Our calculations were based on the
results of the modern theory of nonlinear oscillations in dynamic systems [1, 2]. The aim of the work
was to define a role of the mechanism of the breaking down of the first adiabatic invariant in shaping
pitch-angular distribution of particles in the magnetosphere. It is shown, that the considered
mechanism of scattering reduces in a strong pitch-angular diffusion of protons and heavier ions, while
the beams of polar electrons are very stable, can be long-lived in time and oscillate between points of
reflection, which are in the polar zones. On the basis of the obtained results it is possible to explain
and to interpret origin and stability of auroras, and also radio-frequency radiation from magneto-
spheres of planets as secondary effect of a stability of polar electron beams.

1. INTRODUCTION

In work [3] on the basis of exact equations of motion two sharply distinguished one from other regimes
of motion of particles, entrapped by magnetic field of dipole were explored.The first, basic regime is a
condition of gyrorotation and corresponds to the well known Alfven approximation, based on the drift
theory of guiding centre motion of a particle. The second regime of motion arises in an equatorial zone
for particles with small pitch-angles in a magnetic field of a dipole, and closely corresponds to the central
Stormer’s trajectory. The trapped particles have only a gyrorotational trajectory, or have elements as
Stormer’s central trajectory in an equatorial zone, and elements of a trajectory with fast gyrorotation in
polar zones. In work [3] the conditions of transition between these modes of motion are defined. Such
transitions are characteristic for motion of particles in nonuniform magnetic fields with distinct from zero
curvature of force lines. For plane-parallel magnetic fields this appearance is missed.

The transition from a mode of gyrorotation to a mode of a central trajectory actually corresponds
to break down of the first adiabatic invariant, and subsequent inverse transition, i.e., its restitution. Such
phase conversions on a trajectory of a particle correspond to saddle points on phase portraits of a
nonlinear oscillator [2]. The saddle point arises from a point of a type centre at a change of motion
parameter, which is in our case a pitch-angle of a particle.

In work [3] it was marked, that the transitions between regimes of motion occur for values of
gyrophase equal 7/2 and 37/2. This deduction is well correlated with outcomes of work [4], where it
was shown, that the bifurcations in Hamiltonian systems take place in saddle points at the mentioned
above values of phases.

The existence of regions of parameters and phase space with the destroyed integrals of motion, in
particular, of the first adiabatic invariant, is a typical physical situation, which is accompanied by
occurrence of random dynamics. For one bouns-period a particle with high-latitude points of reflection
and the high energy four times transits near saddle bifurcation points on the trajectory. The trajectories
of such particles in an equatorial zone between these points go close to a separatrix, where the parameters
of trajectories also gain stochastic properties [1,2].

In this work we do not consider in detail modification of a trajectory of a particle at transitions
through bifurcation points. We shall be restricted, basing on the strongest assumption about a possibility
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of averaging casual phases for an evaluation of diffusion coefficients as in the case of good phase
intermixing. The intermixing on phases occurs much faster than slow evolution on a variable action [1].
Basing on this, we suppose, that the operation of averaging phases can be carried out irrespective of
evolution of action not only for a regime of fast gyrorotation, but also for a unstable regime of a slow
gyrorotation at transiting bifurcation points and stochastic layers in an equatorial zone by a particle.

2. BASIC KINETIC EQUATION

Motion of a charged particle, entrapped by magnetic field of a magnetosphere is in many respects similar
to the behaviour of a nonlinear oscillator. The basic kinetic equation for a distribution function f(1, ¢) of
nonlinear oscillator is as [1]
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where D, is coefficient of a diffusion on a variable action I, D, = {(AI)*)/T, where AI is change of action
on interval of time T, the angular brackets mean averaging for this interval, which by virtue of our
supposition about ergodicity of process is equivalent to average on phases. According to this the change
of the action AI should be determined for the same interval of time. We find the magnitude dI/dt from
the Hamilton equation
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For calculations we use expression for a precise Hamiltonian H(I, ¢), obtained in work [5]. Let’s
obtain expression for derivative dI/dt within the first order of accuracy

d1/dt = EVI1 — 1% uy(sing — cosp), @

Where E = const is the complete kinetic energy of a particle, L is a parameter of the Mc-Ilvain drift, ¢
is cosine of an pitch-angle of a particle, u, is normalized relative to a velocity v magnitude of a cross
velocity of a drift of a particle [3, 6]
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g is charge of a particle, L is the parameter of the Mc-Ilvain drift envelope, € is polar angle in a spherical
frame, bound with a magnetic dipole, g, is the radius of a planet, €, is gyrofrequency on equator of a
planet.

Using (2), (3), obtain expression for D, as

D, = ((ﬂ) 2)T =2TE*(1 — % — u)u 4
m— dt d/“d.

In work [3] we have shown, that for a polar group of particles with small pitch-angles in an
equatorial region, i.e. for a quasiconstant phase mode the relation 1 — (u*) = 2u§ is valid. Due to a strong
dependence of D, on a polar angle 9 an essential value of a diffusion coefficient on a variable action is
maintained only near an equatorial plane. As an interval for average T for the Stormer mode with a slow
phase we select bouns-period T, = 27/w, for particles with zero equatorial pitch-angle. Here w, is
bouns-frequency, for which we take the expression obtained in [6] for these particles: w, =
=vcos'A,/ (r.Isind, 1), where A, = 45° is the effective geomagnetic latitude of reflection for such particles,
r, is distance from center of the dipole to a cross point of an equatorial plane along a force line, on which
the particle is located.
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3. PITCH-ANGULAR DIFFUSION OF PARTICLES IN A MAGNETOSPHERE

The diffusion reduces on a variable action to pitch-angle and radial diffusions of particles. However, as
tentative estimation of coefficients of a radial diffusion shows, the path length of an entrapped particle
on a drift envelope and before complete scattering is about 10'® ¢m, and reference time for scattering is
more than one year. So, the radial diffusion at the expense of violation of the first adiabatic invariant is
incidental. It is known [7], that for process of a radial diffusion the most essential mechanism is the
betatron, which effectively works at sudden impulses of a field during geomagnetic disturbances.

Thus, further we consider only process of a pitch-angular diffusion occurring at the expense of
violations of the first adiabatic invariant. Passing from a variable of action to a variable & = u*, i.e.,
quadrate of a cosine pitch-angle of a particle, we shall obtain the following equation instead of (1)
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where v, is the effective collision frequency. For a polar group of particles with small equatorial
pitch-angles (mode of a slow phase) we have obtained expression

Ve, = 4V 20 L2/ (456). (6)

4. CONCLUSION

The estimate of an effective collision frequency v, and reference time of scattering 7° for a polar group
of particles having small equatorial pitch-angles and a velocity v ~ 10" ¢cm s™ on an envelope L = 5
gives: for electrons v;, =~ 2- 107 s, 2 = 5-10° s, and for protons vp = 1 s', 7 = 1s.

On the basis of these estimates it is possible to make the conclusion that beams of polar protones
are scattering fast, because of an operation of the mechanism of equatorial break down of the first
adiabatic invariant. At the same time electron beams of polar particles are very stable relative to the
mechanism of scattering. The considerable selectivity of an operation of the surveyed mechanism of
scattering relative to polar electrons and protons reduces in the important physical consequences for
dynamics of trapped radiation in a magnetosphere. In particular, it can explain why the emptying of
electrons is the basic reason of auroras.

The dynamic stability of electron beams in magnetospheric plasma can play the important role in
origin of collective plasma effects such, as a beam instability and swing of plasma oscillations with all
following from this physical consequences well known in the theory of plasma [8].
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