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UNSTABLE AXTALLY SYMMETRIC MHD FLOW
BETWEEN ROTATING BOUNDARIES
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For cylindrical and spherical liquid layers confined between two rotating axially symmetric shells the
conditions for azimuth flow instability creating meridional component rise were obtained. Methods for
solution of nonlinear equation describing steady-state flow for large Reynolds numbers were proposed.

This report is related with hydromagnetic dynamo problem in the geophysics. It is supposed that
magnetic field of the Earth appears due to differential rotation in electroconductive liquid core caused by
difference between angular velocities of inner core and mantle [1]. In order to clarify general mechanisms
and specific features of such processes it is purposeful to investigate some model examples in simplified
formulation. First of all we should explain how flat differential rotation can excite poloidal component of
the flow, for example, between coaxial surfaces.

In this section the flow of incompressible viscous liquid is examined that in the fixed frame of
reference is described by Navier-Stokes equation

W vy = — L i vy =
o T (v Vv= pmgrad(p +U) + pmAV, divv=0, (1

where v, p, U, p,,, # are respectively velocity, pressure, gravitation potential, mass density and viscosity
coefficient. This equation in the frame of reference rotating together with the Earth at angular velocity
2 takes for total velocity Vs the following form:
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— [VyXrotVy] + 2 [QXV,] = —grad{ — %[er]z} + piAVZ 2)

where r is radius vector of observation point. Application of rotor operator to (2) results in Helmholtz
equation

oy 7

where I's = rotVy. If z — axis is directed along vector € and accepted system of units is such that Q=1
and characteristic length r, = 1 this equation takes a compact dimensionless form

ar,
ot

av
= rot [VyXI'y] + Za_; +yAT. 3

Differential rotation in the liquid is characterized by dependence of circular velocity V (p) on radius
p. Density of the pulse moment in flow is connected with rho by relation

Hip) =pV (p).

Application of the energetic principle makes possible to express increment y of local instability (for
unstable profiles) with (o) by simple formula
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For our purposes small increments are of specific interest. If increment is rather small and constant
in definite interval of rho then we have situation which is called below overcritical regime. The neutral

stability takes place if V' (p) in rotating frame of reference has profile

1
Vv =——p. (&)
olP) P P
The overcritical regime can be expressed by additional term
_1=p ©)
Voz(f)) - Zp

and subsequently total velocity for this regime can be represented as
Vy = (V,+d'V,) e, +V, )

2 .y
where ¢~ <1 — overcritical parameter,

V=Vpep+Vy,ep+VzeZ

is small perturbation of the flow velocity to be found, €, €, €, — vector basis of cylindrical coordinate
system.
Substitution of (7) in (3) brings equation for V
aF _ 2 2 28 V 2 1
i rot[VXI'] — ?Fpep— —a“|2p Py 4pVPeZ + [p + ?) Fpe¢:| %)

with I'=rotV by divV = 0.
Linearization of (8) allows to obtain sufficiently simple system for V , V_, V, depending on time

¢t according to &
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Elimination avy,/ dz from the first and second equations yields
av, 20\ %9V,
ap_{l_[y)}az' 10

Taking this into account we obtain wave equation for V :

v v,V o'V
P+l—’3——§+ {1— [2—05)} F=0,

apt  p ap y az*
which allows separation of variables by substitution
V,= X(p)Y(z).
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Finally an explicit expressions for increment and modal column are obtained:
N A
Vo = O~ ———r. an
b k'
A2+ -

2 knz
(P) — arpkt 22 2 —_— 12
V nk c nk/ P Zl(lrp)cos[ / ) 5 12

V® =~} —ZO(/I r)sin (kyljz)

Here A2 (n = 1, 2, 3, ..) are eigenvalues of characteristic equation system Z,[(1 —a)i,] = O,
Z/ (1 +a4d,] =0 for tube domain 1 -a<p <1+4a 0= z=<VPp).

It can be seen that V¥ and V® are larger in order than V. This exhibits resonance nature of
poloidal component generation by azimuth differential rotation. Another important subsequence of this
analysis consists in specific dependence of increment on axial £ and radial » wave numbers. The largest
increment is observed in short wave part of axial spectrum but in long wave of radial one. This general
features take place for spherical layers also as we show further.

Starting analysis of the sphere let us pay attention to one obstacle which prevents application of
V (p) expressed by (6). The sense of this caution consists in circumstance that neighborhood of axis

does not belong to the tube domain in cylindrical case but is present in polar zones in spherical layer.
So one should change the form of overcritical additional term by V (o) = —p.

For azimuth component F of vector potential we obtain the following equation:

2a* d F
AF +=5= —=0, (13)
y2p2 g(p)

where

1 a( a a1
AI_Eap(pap)+ E -2

1 a
I =——[pV =-2.
oz(f)) p ap [p oz(f))]
Correspondingly for potential
fir,0) = F(p, z) ‘

Expressed in spherical coordinates r, €, ¢ equation (13) takes the form

p = rsing, z = rcost

4ot~
S L O (14
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which is inhibitory to separation of variables. Thereby eigenfunction f, = f,(r, 6) and corresponding
cigenvalues y = y_ are represented as linear combination

1= EC;”m("’ 0) an
nl
1 =
of normalized in metric {f, g) = [ [ fr, 0)g(r, O)r’sinfdrd? spherical harmonics
a 0
Rn(knlr) PnI(COSQ)
Uy = (a<r=<1,0<0<m,
IR, TP L]
where
Rn(knlr) = Rt('lﬂ(knl)Rt(;)(knlr) - Rt('li)(knl)Rt('lJr)(knlr)’ (18)

IR, 1=

1 1/2
) Rﬁ(kmr)rzdr) ,
”P1”=1 /ann-i- 1) ,

a 2n + 1
RO =V 42 T i),

RO = (~1"V £o7_ 2 i(x),

Since the Bessel function of half-integer index can be expressed via trigonometric function it is
possible to fulfil calculations by means of recurrent procedure as follows
R{(x) = A, (x)cosx + B,(x)sinx,
R{7(x) = —A,(x)sinx + B,(x)cosx,
where

Ay L) = ZA(0) = A(x) — BL(),
By () = 2B,(x) = By(x) + A4,(x)

with initial data A,(x) = —1/x, B/(x) = 1/x".

The construction (18) satisfies boundary condition u,(1, ¢) = 0 which expresses the fact of
impenetrability of the liquid through external sphere. The same demand at inner sphere of radius r, =
a leads to characteristic equation

_ B(b)A(ka) — A(k)B,(ka)
ek = 1 =3 04, (ka) + B, 0B, (ka)

For every index n = 1, 2, 3 ... the infinite sequence of wave-numbers &, corresponds. Finally we
obtain u, = u, (r, 0) and k,, satisfying standard demands:

n'l'"nl

(Uorrs Dytt) = —KyikoOpr, a5 Uors ) = dyr, s Uyl sp = 0, Ui | s = 0.

The next step consists in resolution of infinite system
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> (m,, = A )L=00,v"=1,2,..,

where

1/={n,l1 V’={n’,l’}, m,, =-——, [ =kC

J’ 0
Mo = L) .
0l ol Uy 250 Up)

The method applied consisted in cutting off (N X N) matrix from the infinite one and subsequent
step by step raise of number N. Ordering in sequence of v = {n, [} by raise of k, according to table 1 we
obtain as a result of calculations table 2 representing dependence of 4,,, on N.

Finally we are going to obtain governing equation for stationary axial symmetric MHD flow in
conductive liquid. Initial equations are taken in form

[VXT'] — [HXJ] + enAV = gradW,
rot[VXH] + en, AH=0 0 <e<D),
[VXH] — en,J =grady,

rot[VXT'] — rot[HXJ] + eyAl' =0.

(19

where gradW — generalized potential force, I' = rotV, J = rotH, divV = 0, divH = 0, AH = —rotJ, v —
scalar potential of electric field. In cylindrical system all components of V , H, I', J can be expressed
via four scalar functions A, V, B, H according to

H, = —;‘zlj, Hp=%)H, H;ﬁ%,
r, = —;aaz, r,= —%/A\A, r, =é%,
where //§ = p% [%) %) + ;—:2 in cylindrical system and //§ = aa—:z + Slrizea%[ﬁ(% in spherical one.

Taking into consideration that grad, = 0 in axial symmetric flow one can represent (19) as follows:

Table 1. The wave numbers kni of elementary harmonics

1

1 2 3 4 5 6 7 8

1 5.37 6.16 7.16 8.25 9.38 10.52 11.62 12.60
2 10.08 10.60 11.32 12.22 13.24 14.34 15.45 16.71
3 14.91 15.27 15.80 16.48 17.30 18.24 19.22 20.35

Table 2. Dependence of Anax on number N of involved elementary harmonics

Evenness of number N

n 1 2 3 4 5 6

even 2.06 3.92 4.66 4.67 5.25 5.56
odd 3.29 4.34 4.92 4.97 6.12 6.39
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[VxH], —en,J,=0,
[VXI'], — [HXJ], + enA,V =0,
rot, [VXH] + evymAIHy) =0, 20
rot, [VXT'] — rot, [HXJ] + enAL', =0.
By means of bilinear skew symmetric differential form

af dg  df dg
| =908 0708
e =59 e @b

equations (20) can be expressed via introduced scalar functions:

[4, B} + evymp//{B =0,

200 (VY
[4,V) = (B, H) + enpA, [;) —0,

(22)
H V H
A, =SV = IB, =\ e, A= =0,
{ pz} { pz} en I[p)
Ad) [, AB AdY 190 o
{A, pz} {B’ pz } +'977A1[p ) _ps az(V H”).

Here ¢ is small parameter which in the case of ideal liquid becomes zero.
Due to property of brackets (21) the first of three equations of the system (22) is satisfied if

B=B(A), V=V(4), H=BAV(A), (23)

where B(A) and V(A) are some smooth functions of A and B’ = JLAB(A). Substituting B, V, H into the

fourth equation of (22) accordingly (23) enables us to rewrite it in the form of commutative relationship

{4,152 RA 4 VAW (0]~ o OB gt + Vi1 0.

In its turn it is satisfied if the second term in brackets is some smooth function § = S(A). Taking
this into consideration one can obtain the following quasilinear equation

AA + Q(A)grad®A = p2W(A) + D(A), Q4
where
_ _B(AB(A) __ S
o= -EEE v = o

D(4) = —V(AIV'(A) + V(AHQA)].
For sufficiently nonlinear problems it is useful to transform (24) into integro-differential form

A() = [ G(E,&){QIAE ) grad®A(E") — p*(ENWIAEN] — PLAEN €,

with application the Green function G(&,¢&’) for D — domain of meridional cross-section and boundary
condition of impenetrability Al g, = 0.

If a* <1 then equation (24) can be linearized and obtain representation

d (LaAy oA
Pl ) S VWA= - - e,

9z
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where notations

B(A) = B, + B,A (Bi<1, Q(A)=0),
V(A) =V, +V A, W(A) =W, + WA,
D(A) = D, + P, A= —V(AV'(A), O, = -V .V, O, =-V:

are applied. For example, let us determine stationary resolution for tube domain where the Green
function takes the form

" Zi(u,p) Z, wm
2 gzk— 1)%2

and finally

8

[N EI
A= Alp,z)=— 2 2 )
STk {u MR-

PZ (up)sin(2k — 1)%.

Mentioning that if ¢ = 0 the system (22) is invariant relatively simultaneous interchange A < B,
V < H one can write equation for B = B(p, z) being equivalent to (24), where

o) = ~ABAB)

1—A%B)’
At last in the case of linear dependence A = A(B) if A”*(B) # 1 we obtain
Q(B)=0
and equation
AB = p2W(B) + O(B),

which is well known in plasma equilibrium theory as the Grad—Shafranov equation.

COMMENTS

Situation mentioned above is concerned only one of possible scenarios which may occur in real planetary
evolution. Another case may appear if differential rotation has subcritical level. Then alternative
technique should be applied consisting in asymptotic resolution of boundary layer problem. So one should
take into account both Coriolis, Lorentz and viscous forces simultaneously. This makes the problem much
more difficult than in cases explored above. But some results obtained in this paper will be necessary on
subsequent steps.
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