А. П. Верещак¹, П. А. Кот¹, В. А. Козлов¹,
Е. И. Махонин², К. Ф. Волех²
¹АГ Науково-дослідний інститут радіотехніки інфіровання, Харків
²Національне космічне агентство України, Київ

Система космічного навігаційно-вірменного обеспечения України: стан, розвиток і перспективи

ВВЕДЕНИЕ

Начало работ по созданию системы космического навигационного обеспечения Украины (СКНОУ) было положено п. 3 Указа Президента Украины № 202/97 от 04.03.97 г. «Про заходи щодо наступного розвитку космічних технологій»), в рамках Национального космическому агентству України (НКАУ) поставлена задача обеспечить, начиная с 1997 года, внедрение спутниковых технологий для создания и поддержки целостности государственного навигационного поля и системы единого времени. Во исполнении этого Указа в 1997 г. АО НИИ радиотехнических измерений (АО НИИРИ) поручено выполнение НИР «Навигация», в результате которой была выполнена предварительная проработка структуры системы и рассмотрены возможные пути реализации, а также подготовлено тактико-техническое задание (ТТЗ) на ее создание.

Работы по созданию СКНОУ были включены в Национальную космическую программу Украины на 1998—2002 гг., и в соответствии с Государственным контрактом № 3.3.3-98 от 30.03.98 г., заключенным между НКАУ и АО НИИРИ, начата и продолжается на настоящем времени опытно-конструкторская работа «Система космического навигационно-временного обеспечения Украины» (шифр «Навигация»).

В разработке системы кроме АО НИИРИ участвуют:НИИ «Квант-Навигация» (Кiev),НПП «Хартрон-Альфа» (Харков), ГП «Днепрокосмос» (Днепропетровск), НИИ НФПП (Кiev).

Актуальность работы по созданию СКНОУ подтверждается как мировыми тенденциями в области развития и применения спутниковых навигационных технологий, так и внутренними потребностями Украины, что нашло отражение в одном из последних Указов Президента Украины № 30/2001 от 22.01.2001 г. «Про поліпшення інформаційного забезпечення на автомобільних дорогах України».

ОСНОВНЫЕ ЦЕЛИ, НАЗНАЧЕНИЕ И АРХИТЕКТУРА СИСТЕМЫ

Основной целью создания СКНОУ является организация на территории Украины навигационно-временного обеспечения, которое бы удовлетворяло требования потребителей навигационной информации на всей территории Украины, в национальном воздушном пространстве, в акваториях прилегающих морей с требуемыми характеристиками по точности, надежности, доступности, обеспечивая при этом совместимость с международными системами навигационного обслуживания.

СКНОУ предназначена для:
— ведения непрерывного (с целью контроля целостности) мониторинга навигационных полей, создаваемых космическими навигационными системами GPS (США), ГЛОНАСС (РФ);
— формирования дифференциальной корректирующей информации (ДКИ) для уточнения этих полей, включая формирование информации об их целостности;
— распространения ДКИ средствами единой системы спутниковой передачи информации.
(ЕССПИ) на территорию Украины и на прилегающие территории.
Создаваемая СКНОУ относится к так называемым улучшающим системам и подобна европейской системе EGNOS, разработка которой ведется под эгидой Европейской трехсторонней группы (Европейского космического агентства, Европейского Союза, Евроконтроля).
СКНОУ спроектирована и строится таким образом, чтобы обеспечивалась ее совместимость с системой EGNOS. В частности архитектура СКНОУ предусматривает возможность передачи измерительной информации и данных о состоянии юносферы в один из центров управления системы EGNOS.
В процессе реализации СКНОУ должны быть созданы:
- сеть из 10—12 региональных пунктов контроля навигационного поля (РПКНП), на которых будут установлены высокоочастотные контрольно-корректирующие станции (ККС);
- центр контроля навигационного поля (ЦКНП), где должна в реальном времени выполняться обработка информации из сети РПКНП;
- наземная навигационная станция, обеспечивающая работу бортового ретранслятора геостационарного спутника связи (ГСС);
- сеть передачи данных.

Архитектура СКНОУ обеспечивает поддержку трех основных режимов функционирования:
1) осуществляет передачу навигационных сигналов, аналогичных по структуре GPS. Эти сигналы содержат в своем составе навигационное сообщение ГСС и дальномерные коды, синхронизированные с системным временем GPS;
2) обеспечивает контроль целостности навигационных полей и не более чем за 10 с сообщает пользователям сведения о качестве навигационного поля, что позволяет пользователю принимать соответствующие решения в критических режимах навигации;
3) обеспечивает формирование и транслацию потребителям широкозонных дифференциальных поправок. Эти поправки повысят точность местоопределения до величины 3—5 м в зависимости от условий формирования поправок.
В целом архитектура системы может быть представлена в виде, показанном на рис. 1. Ожидаемые точностные характеристики СКНОУ приведены в таблице.
Система функционирует следующим образом.
Навигационные сигналы (1) передаются со спутников GPS и ГЛОНАСС и принимаются потребителями (2). Эти сигналы также принимаются наземными контрольно-корректирующими станциями (3) и по сети передачи данных поступают в центр
<table>
<thead>
<tr>
<th>Виды работы СКНО</th>
<th>Используемые КС</th>
<th>Способ передачи сообщений</th>
<th>Уровень контроля целостности и достоверности информации (погрешности контроля)</th>
<th>Точность \theta по координатам / по скорости</th>
<th>Рабочая зона обслуживания</th>
<th>Доступность (вероятность беспокойной работы)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Широкозоная дифференциальная навигация</td>
<td>GPS, ГЛОНАСС</td>
<td>Через ГСС INMARSAT-3</td>
<td>Контроль осуществлен на региональном уровне (до 10 с)</td>
<td>3—5 м [1.5—2.5 см/с]</td>
<td>Региональная (2—3 тыс. км)</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>По специальным каналам связи</td>
<td>Контроль осуществлен на региональном уровне (до 3 с)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. ДКИ локальной ККС</td>
<td>GPS, ГЛОНАСС</td>
<td>По специальным каналам связи</td>
<td>Контроль осуществлен на региональном уровне (до 2 с)</td>
<td>2.7—5 м [1.5—3.5 см/с]</td>
<td>Локальная (0—180 км)</td>
<td>0.999</td>
</tr>
<tr>
<td>3. Режим RTK</td>
<td>GPS, ГЛОНАСС</td>
<td>По специальным каналам связи</td>
<td>Контроль осуществлен на региональном уровне (до 2 с)</td>
<td>5—10 см</td>
<td>Локальная (0—10 км)</td>
<td>0.997</td>
</tr>
</tbody>
</table>

Контроль навигационного поля (ЦКНП) (4). В вычислительном центре ЦКНП навигационные сигналы обрабатываются с целью формирования широкозонной ДКИ. Широкозоная ДКИ с помощью наземной навигационной станции (5) передаются на частоте С1 (6) на навигационный ретранслятор национального ГСС, а затем перераспределяются потребителям на частоте L1 (8). Идентичный сигнал передается на частоте С2 (7).

ЦКНП при необходимости может передавать навигационную информацию и информацию о параметрах ионосферы, полученную с помощью национальной сети ККС, в вычислительный центр системы EGNOS (9).

Система обеспечивает возможность приема измерительной информации от локальных КСС систем категорированной инструментальной посадки самолетов и сети ККС Азово-Черноморского бассейна.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ, ДОСТИГНЫЕ НА КОНЦЕ 2000 Г.

К основным результатам работы по проектированию СКНОУ следует отнести:

- завершение работ над эсконным проектом системы;
- разработку концепции создания и эксплуатации системы на период 2000—2005 гг.;

Определен состав функций и функциональных подсистем для всех элементов наземного сегмента системы, в том числе:

- центра контроля навигационного поля;
- контрольно-корректирующих станций;
- наземной навигационной станции;
- сети передачи данных.

Определена структура и требования к навигационному ретранслятору ГСС.

Особое внимание при проектировании было уделено той части системы, которая обеспечивает совместное функционирование наземной навигационной станции и навигационного ретранслятора ГСС. Эта часть системы является наиболее сложной и дорогой в реализации, так как должна осуществлять формирование и передачу пользователем с помощью бортового ретранслятора ГСС навигационных сообщений в структурах, принятых в системах EGNOS и WAAS.

В этом плане наземный комплекс должен обеспечивать выполнение четырех основных функций (EGNOS AOC. Требования к системе. — Европейское космическое агентство, проектное бюро GNSS-1, 1998):

1) определение параметров орбиты ГСС;
2) синхронизацию времени ГСС с временем GPS;
3) генерирование навигационного сигнала, предназначенногодля передачи на ретранслятор ГСС;
4) передачу навигационного сигнала на ГСС, управляя при этом когерентностью компонентов.
сигнала (код / несущая), и привязку внутреннего времени системы к системному времени GPS с учетом влияния петли обратной связи между навигационной станцией и ГСС (Земля—ГСС—Земля).

Вместе с тем к концу 2000 г. стала очевидной невозможность реализации системы в полном объеме в приемлемые сроки. Причиной этого является приостановка работ по созданию украинского ГСС.

В сложившейся ситуации была разработана «Концепция создания и эксплуатации системы навигационно-временного обеспечения Украины на период 2000—2004 гг.», которая предусматривает поэтапное создание системы.

Учитывая, что развертывание системы космического навигационного обеспечения Украины находится на начальной стадии, наиболее технически целесообразным и относительно дешевым проектом является реализация первого этапа — интеграция части наземного сегмента СКНОУ в состав системы EGNS путем создания на территории Украины ее «восточной ветви», по примеру Норвегии, где создана и функционирует «северная ветвь» системы с центром в г. Хенефосс (EGNOS System Test Bed User Workshop Toulouse, 6—7 July 2000).

Этот подход позволит значительно расширить мерную базу системы EGNO, что в свою очередь приведет к улучшению управления количеством и уточнению дифференциальных поправок для районов Восточной и Юго-Восточной Европы, Малой Азии и Кавказа. Присоединение к существующей наземной инфраструктуре EGNO «восточной ветви» увеличит охватенную территорию Земли с качественным навигационным обслуживанием.

Следует также отметить и то, что работы по созданию наземного и космического сегментов EGNO, которые выполняются промышленным консорциумом под руководством французской фирмы «Alcatel» по контракту с Европейским космическим агентством (ESA), значительно продвинулись вперед. Ожидается, что первая очередь системы начнет функционировать в 2004 г. (Utilization of the EGNOS System Test Bed by Civil Aviation, Edition 0.2. Edition date 01/07/2000).

В настоящей работе развернут фрагмент системы, представляющий собой полный прототип системы EGNO, имеющий испытательным стендом EGNOS (ESTB) (EGNOS System Test Bed User Workshop Toulouse, 6—7 July 2000).

В состав наземного сегмента ESTB входят:
— десять станций мониторинга навигационного поля (RIMS), собирающих данные от навигационных спутников;
— три вычислительных центра, расположенных в г. Хенефосс (Норвегия), г. Тулуза (Франция), г. Фучино (Италия);
— три станции слежения за геостационарными спутниками INMARSAT-III, расположенные во Франции, Французской Гвиане (Южная Америка) и Южной Африке;
— две наземные навигационные станции (NLES), расположенные во Франции и Италии;
— наземная сеть передачи данных между элементами наземной инфраструктуры.

В первой половине 2000 г. были проведены сеансы тестирования системы и получены оценки горизонтальных и вертикальных навигационных ошибок местоположения потребителя, подтвердивших реализуемость ожидаемых характеристик EGNOS.

ПЕРСПЕКТИВЫ РАСШИРЕНИЯ ЗОНЫ ДЕЙСТВИЯ СИСТЕМЫ EGNOS НА ТЕРРИТОРИЮ УКРАИНЫ

В настоящее время вопросы интеграции Украины в состав системы EGNOS лежат в двух плоскостях — политической и технической.

В политической плоскости сотрудничество Украина с ЕС в области использования глобальных спутниковых систем и наземной инфраструктуры контроля и управления получил новый импульс после подписания «Меморандума о взаимопонимании» между НКАУ и Европейской комиссией в области развития Европейской GNSS», который в сентябре 2000 г. был официально представлен делегацией Украины Европейской стороне в Брюсселе на заседании 5-го Подкомитета по вопросам транспорта, телекоммуникаций, науки и технологий.

Положения данного Меморандума были в 1998—2000 гг. предварительно изучены и обговорены с представителями Европейской трехсторонней группы в процессе работы действий по созданию системы Galileo, является схемом, представляющим фактором подписание указанного Меморандума.

В технической плоскости никаким принципиальным затруднений, сдерживающих создание Украинского наземного сегмента и его интеграцию в состав EGNO, нет.

В настоящее время Украина готова:
1) установить в трех городах (Харьков, Симферополь, Днепропетровск) контрольно-корректирующие станции отечественной разработки (АО НИИРИ, Харьков);
2) обеспечить сбор и передачу навигационной информации с помощью системы спутниковой связи на основе государственного спутника «Sirius-2» (Швейцария) в любой из центров управления систе-
мы EGNOS по согласованию с ESA;

Выполнение названных выше мероприятий позволит Украине развернуть также работы в соответствии с требованиями, разработанными Европейской трехсторонней группой (ETG), по следующим направлениям (Utilisation of the EGNOS System Test Bed by Civil Aviation. Edition 0.2. Edition date 01/07/2000):

— привести в рабочее состояние инструментальные средства сбора и анализа навигационной информации на своей территории, т. е. обеспечить расширение географии и увеличение количества наземных контрольных станций в соответствии с рекомендациями Европейской конференции гражданской авиации (ECAC);

— обеспечить сбор статистических данных и оценку точности навигационных определений с целью накопления практического опыта работы с системой EGNOS, включая работы по анализу различных эффектов, связанных со средой распространения сигналов и влияния ионосферы;

— обеспечить проведение испытательных полетов для оценки характеристик системы на своей территории.

ЗАКЛЮЧЕНИЕ

Таким образом, текущее состояние разработки и принятая концепция создания СКНОУ позволяют утверждать, что реализация системы обеспечит формирование на территории Украины навигационного поля, отвечающего требованиям ICAO. Это создаст предпосылки того, что в воздушном пространстве Украины воздушные суда будут обслуживаться с использованием технологии CNS/ATM.

UKRAINIAN SPACE NAVIGATION-TIME ENSURING SYSTEM: STATE AND PROSPECTS

The state of works in designing and creation of the Ukrainian Space Navigation — Time Ensuring System (USNES) is considered. The basic elements of the system architecture and topology of the ground segment placing are adduced. The expediency of the ground segment integration into EGNOS system, as the first stage of the creating USNES, is substantiated.
Mereja - Differential GPS+GLONASS reference station position