О впливі дисципінації енергії в матеріалі нити на еволюцію ротаційного руху космічної тросової системи

А. В. Пироженко

Інститут технічної механіки НАНУ—НКАУ, Дніпропетровськ

ВВЕДЕНИЕ

В першому приближенні по малым параметрам внутреннее рассеивание энергии в упруговязких космических системах приводит лишь к постепенному затуханию собственных упругих колебаний и не изменяет качественно эволюцию движения системы. Поэтому влияние внутренней диссипации энергии на эволюцию ротационного движения (этап медленной замирания) для большинства реальных космических систем пренебрежимо мало. Тем не менее, вопрос о влиянии протяженных упруговязких систем в ньютоновском поле сил представляет интерес для небесной механики и для определения возможных закономерностей движения и является постоянным предметом исследований (см. например [9]). Рассматриваемая простейшая модель упруговязкой системы позволила в рамках динамики сосредоточенных систем и под контролем численных расчетов описать основные закономерности эволюции движения. Многие из этих закономерностей были ранее описаны для более сложных систем [5—8]. Вместе с тем, простота модели позволила провести более глубокий анализ относительного движения и рассмотреть в общем случае закономерности поступательно-вращательного движения. Один из основных результатов работы, как представляется, состоит в анализе закономерностей движения системы с точки зрения общей тенденции движения систем под действием диссипативных сил и выработке общих предположений.

ПОСТАНОВКА ЗАДАЧИ

Рассматривается движение в ньютоновском поле сил системы двух материальных точек, соединенных невесомой упруговязкой нитью, упругие свойства которой описываются законом Гука, а диссипативные свойства — введением "эквивалент-
ногого вязкого трения». Уравнения движения такой системы имеют вид [1, 10]
\[\ddot{r} = -(c_m(r - d) + \zeta \dot{r})e_r + F, \]
\[c_m = c \left(\frac{1}{m_1} + \frac{1}{m_2} \right), \tag{1} \]
\[\ddot{R} = -\frac{\mu R}{R^3} + F^s, \quad \delta = \begin{cases} 0, r < d, \\
1, r \geq d, \end{cases} \]
где \(e_r = r/r, \quad r = |r|, \quad R = R_2 - R_1, \quad R_1, R_2 \) — радиус-векторы материальных точек относительно ньютоновского притягивающего центра, \(m_1, m_2 \) — массы материальных точек, \(c \) — коэффициент жесткости нити, \(d \) — ее номинальная длина, \(\zeta \) — коэффициент, характеризующий вязкое трение в нити, \(R \) — радиус-вектор центра масс системы, \(\mu \) — гравитационный параметр, \(F, F^s \) — возмущающие ускорения ньютоновского поля сил. С точностью до \((r/R)^2\) включительно [10]
\[F = \frac{\mu}{R^2} \left[e_r + 3(e_r, e_R)e_R + 3 \frac{m_1 - m_2}{M} \frac{r}{R} \times \right. \]
\[\left. \times \left(e_r, e_R \right) e_r + 0.5 \left(1 - 5 \langle e_r, e_R \rangle e_R \right) \right], \tag{2} \]
\[F^s = \frac{\mu}{R} \left(\frac{r}{R} \right)^2 \frac{m_1 m_2}{M^2} \left(3(e_r, e_R)e_R + \frac{3}{2} \left(1 - 5 \langle e_r, e_R \rangle e_R \right) \right), \]
где \(e_R = R/R, \quad M = m_1 + m_2 \).

Введем приведенные координаты (рисунок). Невращающаяся система координат \(CX^*Y^*Z^* \) имеет начало в ньютоновском притягивающем центре \(C \). Ось \(CZ^* \) направлена по постоянному вектору суммарного кинетического момента системы (он постоянен, так как центральная и внутренние силы не изменяют кинетический момент.) \(CXYZ \) — «пригнанная» система координат, связанная с мгновенной орбитой движения центра масс. Ось \(SX \) направлена из притягивающего центра к периметру орбиты, ось \(CXY \) — по вектору кинетического момента орбитального движения. \(Oxyz \) — подвижная система координат с началом в центре масс системы. Ось \(Oz \) направлена по вектору кинетического момента относительного движения, ось \(Ox \) — по \(g \).

Взаимная ориентация систем \(CX^*Y^*Z^* \) и \(CXYZ \), \(CX^*Y^*Z^* \) и \(Oxyz \) определяется эйлеровыми углами \(\Omega, \ i, \ \omega, \ \psi, \ \theta, \ \phi \), где \(\Omega, \ i, \ \omega \) — долгота восходящего узла, наклонение и аргумент перицентра соответственно, и \(\psi, \ \theta, \ \phi \) — углы прецессии, нутации и чистого вращения.

Будем рассматривать режим ротационного движения системы и предполагать, что угловая скорость вращения системы относительно центра масс существенно превосходит угловую скорость орбитального движения, а именно, квадрат отношения второй к первой есть малая величина \(\varepsilon_2 \). Будем предполагать также, что отношение длин нити к расстоянию от центра масс системы до притягивающего центра есть малая величина \(\varepsilon_1 \).

Уравнения возмущенного движения системы в общем случае даны в [10]. В работе [1] показано, что в первом приближе-
нении по малым величинам диссипации энергии в материале нити приводит лишь к монотонному затуханию собственных упругих колебаний и не меняет качественно характера эволюции кинетического момента относительного движения. Процесс затухания собственных колебаний во многих случаях протекает относительно быстро, и поэтому его можно рассматривать как переходный режим к установившемуся движению, в котором амплитуда собственных колебаний нулевая. В установившемся режиме в первом приближении движение системы совпадает с движением гантеля с длинной штанги, равной равновесной длины нити r_0, а величина кинетического момента движения системы относительно центра масс постоянна.

В статье рассматривается влияние диссипации энергии в материале нити на эволюцию параметров движения системы в установившемся режиме с точностью до второго порядка малости по e_1, e_2. В этом режиме движения $\delta = 1$, т. е. нить всегда натянута.

Алгоритм исследований традиционен для такого вида задач и состоит в следующем: строятся приближенные решения для вынужденных упругих колебаний нити как функции от переменных, описывающих движение системы, а затем с помощью метода усреднения строятся уравнения первого приближения, на основе которых и проводится анализ. Таким образом, здесь не строится второе приближение по малым параметрам для движения всей системы, а лишь во втором приближении исследуется влияние диссипации энергии в материальном связях на эволюцию движения системы. Корректность такого алгоритма исследований требует, чтобы второе приближение по малым параметрам движения абсолютно жесткой системы (абсолютно твердое тело — гантель) пренебрежимо мало отличалось от движения, описываемого уравнениями первого приближения. Иными словами, необходимо, чтобы для абсолютно жесткой системы первое приближение описывало основные закономерности движения. Положительный ответ нам дает теория Колмогорова—Ариольда—Мозера, ее приложение к движению симметричного твёрдого тела на круговой орбите [3] и многочисленные расчеты.

ПЕРВОЕ ПРИБЛИЖЕНИЕ ДЛЯ ПРОДОЛЬНЫХ КОЛЕБАНИЙ

Поскольку r_0 определяется равенством центробежных и упругих сил в невозмущенном движении [11], и в рассматриваемом режиме движения отношение амплитуды упругих колебаний к длине нити пропорционально малой величине, то с точностью до первого порядка малости к введенным величинам уравнения упргых колебаний имеет вид [1]

$$\ddot{z} + k^2z + \xi \dot{z} = \frac{\mu}{R^3} r_0 \left[3(e_1, e_2)^2 - 1\right] + \frac{2L_0 L_1}{r_0^3},$$

где $z = r - r_0$, $k^2 = c_0 + 3L^2/r_0^4$, $L = |L_1|$, $L = r \times \dot{r}$ — удельный кинетический момент относительного движения, через $2L_0 L_1/r_0^3$ обозначена величина изменения центробежных ускорений при вращении системы в гравитационном поле, учитываемая с точностью до первого порядка малости из уравнения изменения L:

$$L = \frac{3 \mu}{R^3} r_0^2 (e_1, e_2)(e_1, e_2),$$

где e_1 — ось Ox. Здесь L представляет в виде $L = L_0 + L_1 + L_2$, где L_0 — началочное значение, L_1 — величина, пропорциональная первой степени малых величин, L_2 — величина более высокого порядка малости.

Таким образом, в уравнении (3) учитываются колебания длины нити, обусловленные как изменением сил, действующих вдоль линии нити, так и моментами гравитационных сил, изменяющихся с кротмы вращения связки.

Выделим в правых частях уравнений (3), (4) быструю переменную ψ. Для этого используем представления

$$(e_1, e_2)(e_1, e_2) = 0.5(\alpha_1 \cos 2\rho - \alpha_2 \sin 2\rho),$$

$$(e_1, e_2)^2 = 1 = 1.5(\alpha_1 \cos 2\rho + \alpha_2 \sin 2\rho + \alpha_3 - 2/3),$$

$$\alpha_1 = \cos^2(v - \psi) - \cos^2(\psi),$$

$$\alpha_2 = \cos^2(\psi),$$

$$\alpha_3 = \cos^2(\psi) + \cos^2(v - \psi),$$

где ν — индивидуальная аномалия.

Формально определение продольных колебаний связки в первом приближении соответствует следующему механическому соображению. Поскольку в рассматриваемом движении φ — единственная быстая переменная, то для построения приближенно- го решения можно положить ψ, θ, L, ψ постоянными за один период изменения ψ, а

$$\varphi = \frac{L_0}{r_0(t - t_0)}.$$

Действительно, решение уравнения (4) в первом приближении найдем в соответствии с методом усреднения (усреднение первого приближения даны в [11]). Тогда

$$\frac{2L_0 L_1}{r_0^3} = \frac{3 \mu}{2 R} r_0(\alpha_1 \cos 2\rho + \alpha_2 \sin 2\rho).$$

Первое приближение для вынужденных продольных
ных колебаний системы, описываемых уравнением (3), строится на основании следующего утверждения.

Утверждение. Пусть упругие колебания системы описываются уравнениями

\[
\ddot{x} + k^2x + 2\zeta \dot{x} = \varepsilon_1 F(y) \sin(\omega t + t_0),
\]

\[
y = \varepsilon_2 Y(y, \omega t),
\]
где \(\varepsilon_1, \varepsilon_2 \) — малые параметры, \(\varepsilon_1 / k^2 \ll 1, \varepsilon_2 / \omega^2 = \varepsilon_1 / \omega = \varepsilon << 1; \) величина \(k^2 - \omega^2 \) имеет порядок \(k^2 \) или \(\omega^2, \) т. е. система далека от резонанса 1:1; \(F, Y \) — достаточно гладкие функции своих переменных. Тогда вынужденные упругие колебания системы в первом приближении по малому параметру с совпадают с колебаниями, описываемыми функцией \(c_1 F(y) \arctan, \) где \(x_0 — \) вынужденные колебания линейной системы

\[
\ddot{x} + k^2x + 2\zeta \dot{x} = \sin(\omega t + t_0).
\]
Доказательство. Перейдем в (5) к безразмерному «времени» \(t = \omega t: \)

\[
x' + \frac{k^2}{\omega^2} x' + 2 \frac{\zeta}{\omega} x' = \varepsilon F(y) \sin(x + t_0),
\]

\[
y' = \varepsilon Y(y, t),
\]
i произведем замену переменных

\[
x = \varepsilon F(y) x_0 + s,
\]

\[
x' = \varepsilon F(y) x'_0 + s'.
\]

Тогда

\[
s' + \frac{k^2}{\omega^2} s + 2 \frac{\zeta}{\omega} s' = - \varepsilon^2 \frac{dF}{dy} Y x'_0.
\]

Поскольку нас интересуют вынужденные колебания, то с учётом формул для решения линейной системы (6) утверждение доказано.

Также можно утверждать, что истиные вынужденные упругие колебания системы (5) будут отличаться от \(c_1 F(y) x_0, \) на условно периодическое слагаемое, амплитуду которого имеет порядок \(\varepsilon^2. \)

Следовательно, нетрудно получить с точностью до первого порядка малости, что

\[
z = 3 \frac{\mu}{2 R} \frac{r_0}{k^2} (\text{Cos}2\varphi + \text{Sin}2\varphi + D),
\]
\[
A = \alpha_1 - \zeta_1 \alpha_2, \quad B = \alpha_2 + \zeta_1 \alpha_1, \quad D = \frac{1}{2} \frac{k_2^2}{k_1^2} (\alpha_3 - \frac{2}{3}),
\]

где \(k_2^2 = k_1^2(1 + \zeta_2^2), \) \(k_3^2 = \frac{c_m}{d} - \frac{L^2}{r_0}, \) \(\zeta_1 = \frac{2 \xi L}{r_0 k_1} \) и предполагается, что \(k_1^2, k_2^2 \) имеют порядок \(k^2 \) или \(L^2 / r_0, \) т. е. система не находится в резонансе 1:2.

АНАЛИЗ ДВИЖЕНИЯ В ОГРАНИЧЕННОЙ ПОСТАНОВКЕ ЗАДАЧИ

Предположим, что величина \((r/R)^2 \) пренебрежимо мала (\(\varepsilon_1 << \varepsilon_2 \)). Тогда траектория центра масс является невозмущенной кеплеровой орбитой, а возмущенное относительное движение связаны описывается уравнениями [1]

\[
\dot{\psi} = \frac{r F \sin \varphi}{L^2 \sin \theta}, \quad \dot{\theta} = \frac{r F \cos \varphi}{L}, \quad \dot{L} = r F_z,
\]

\[
\dot{\psi} = \frac{L}{r^2} - \psi \cos \varphi, \quad \dot{\varphi} = \sqrt{\mu / p^2} (1 + \varepsilon \cos \varphi),
\]

где \(F_x, F_y, \) — проекции \(F \) на оси \(Oz \) и \(Oy \) соответственно, \(p, \varepsilon \) — фокальный параметр и эксцентрицитет орбиты соответственно.

Подставляя в (8) найденное выражение \(r = r_0 + z + \varepsilon \) и усредняя уравнения по угловой переменной \(\varphi, \) получим уравнения первого приближения, описывающие влияние упругодиссипативных свойств системы на точность до \(\varepsilon_1^2 \) включительно:

\[
\dot{\psi} = - N_x \cos \theta \sin((\psi \theta - N_2 \times \cos \theta \sin(2(\psi \theta - N_2 \times \cos \theta)),
\]

\[
\dot{\theta} = - N_x \sin \theta, \quad \dot{\varphi} = \sqrt{\mu / p^2} (1 + \varepsilon \cos \varphi),
\]

\[
\dot{L} = - N_2 L \xi_3 (\xi_2^2 + \xi_1^2), \quad \dot{\varphi} = \sqrt{\mu / p^2} (1 + \varepsilon \cos \varphi),
\]

\[
N_1 = \frac{3}{2} \frac{\mu}{R} \frac{r_0}{L}, \quad N_2 = \frac{9}{2} \frac{\mu}{R^2} \frac{r_0}{L^2} \frac{1}{k^2}.
\]

Из уравнений (9) следует, что удельная скорость уменьшения \(L \) пропорциональна \(\xi^2 \) и ничтожно мала для большинства представляющих практический интерес случаев реализации вращающихся на орбите КТС двух тел. Нас же будет интересовать качественная сторона вопроса.

Рассмотрим воздействия на движение системы диссипативных сил. Для этого вышеприведенных уравнений изменения кинетического момента с сохранением лишь членов уравнений (9), отражающих влияние диссипации энергии в материале нити на его эволюцию:

* В доказательстве используется замена переменных, предложенная редактором статьи Н. П. Плахтиненко, сохраняющая необходимые выкладки в сравнении с авторским вариантом.
\[\psi = -0.5N_0\xi_3\sin2(\nu - \psi)\xi_3, \]
\[\dot{\theta} = 0.5N_0\xi_3\sin2\nu\sin(\nu - \psi)\xi_3, \]
\[L = -N_0L_s(\xi_2^2 + \xi_3^2), \]

Учитывая, что
\[\frac{d\xi_2^2 + \xi_3^2 = \xi_3^2}{d\theta}, \]
\[\frac{d\xi_3^2}{d\nu} = -\sin2\nu\sin(\nu - \psi)\xi_3, \]

делаем вывод, что воздействие диссипативных сил в каждый момент времени стремится располагать кинетический момент в положение, минимизирующее скорее его убывания. Причем направление воздействия диссипативных сил близко к направлению «наносерейшего спуска» для величины \(\xi_3^2 \).

Поскольку
\[\gamma^2 = (\xi_3^2 + \xi_3^2) = \sin^2\nu\sin(\nu - \psi), \]
\[\frac{d\gamma^2}{d\theta} = 2\cos2\nu\sin(\nu - \psi), \]
\[\frac{d\gamma^2}{d\nu} = -\sin\nu\sin2(\nu - \psi), \]
то в силу (10) воздействие диссипативных сил в каждый момент времени стремится совместить кинетический момент с вектором \(\mathbf{R} \), т. е. перевести вращение системы в плоскость, перпендикулярную вектору \(\mathbf{R} \). Эта ориентация вращения системы соответствует минимальному рассеянию энергии ее вращения.

Сравнение полученных результатов с выводами о воздействии на движение системы диссипативного аэродинамического момента [1] позволяет выдвинуть предположение, что воздействия диссипативных сил различной физической природы направлены на перевод движения системы в положение, соответствующее наименьшей потере энергии.

Рассмотрим удельную мощность диссипативных сил
\[N = -L_s^2, \]

Используя выражение (7), с точностью до \(\xi_3^2 \) найдем среднюю за период обращения связки вокруг центра масс удельную мощность диссипативных сил:
\[\langle N \rangle = -9 \left(\frac{\mu}{R} \right)^2 L_s \frac{L_s}{k_2} \xi_3^2. \]

Поскольку средняя удельная мощность диссипативных сил, как и скорость убывания кинетического момента, пропорциональна \(\xi_3^2 \), то в силу предыдущего анализа можно сделать вывод, что воздействие диссипативных сил стремится уменьшить абсолютную работу этих сил и в конечном счете перевести систему в положение, соответствующее возможному минимуму абсолютной величины их работы.

Уравнения основных эволюционных эффектов движения системы получим, переходя в уравнениях (9) к дифференцированию по \(\nu \) с последующим их усреднением по \(\nu \):

\[\frac{d\nu}{d\nu} = N_0\cos\theta - I_o \left[\cos^2\theta \left(\frac{1 + \frac{k_2}{k_3}}{2} \right) \beta_1 - \right. \]
\[- \left. 4 \frac{k_2}{k_3} \left(2 + 2e^2 - e^2\cos2\psi \right) \right] - \]
\[- 3\zeta_4 e^2\sin2\psi(1 + \cos^2\theta), \]
\[\frac{d\theta}{d\nu} = I_o\sin\theta \left[3e^2\sin2\psi\beta_2 + \zeta_4\cos\theta\beta_3 \right], \]
\[\frac{dL}{d\nu} = -I_sL_s \left[\frac{1}{2} - e^2 \right] \nu \left(3\cos^2\theta + 3 + 2\cos^2\theta \right) + \]
\[+ 6e^2\cos2\psi(1 - \cos^2\theta), \]
\[\beta_1 = (1 + 3e^2)(3\cos^2\theta + 1) - 6e^2\cos^2\theta\cos2\psi, \]
\[\beta_2 = \left(\frac{1 + \frac{k_2}{k_3}}{2} \right) (1 + \cos^2\theta) - \left(\frac{4}{3} \right) \frac{k_2}{k_3}, \]
\[I_o = \frac{9}{16} \left(\frac{\mu}{p} \right)^{3/2} \frac{L}{k_2}, \]
\[N_0 = \left(\frac{3}{4} \right) \frac{\mu}{p} \frac{L_s}{L}. \]

Здесь опущены члены, пропорциональные \(e^4 \), поскольку они не вносят каких-либо качественных отличий в решение уравнений.

Из уравнений (12) видно, что под действием диссипации энергии в материале нити кинетического момента системы стремится расположиться в плоскости орбиты (\(\theta \to \pi/2 \)). Интересно отметить и тот факт, что при \(\theta \), близком к \(\pi/2 \), действие
диссипативных сил отслеживает эллиптичность орбиты и стремится расположить плоскость вращения связки перпендикулярно к радиусу-вектору перицентра орбиты \(\psi \rightarrow \pm \pi /2 \). Этот эффект также соответствует тенденции системы уменьшить скорость убывания кинетического момента относительного движения.

Оценим среднюю удельную мощность диссипативных сил за один период орбитального движения. Для этого использован схему

\[
\langle N_r \rangle = \frac{1}{T} \int_0^{T} \langle N \rangle_0 dt = \frac{1}{2\pi} \int_0^{2\pi} \langle N \rangle \sqrt{\mu \rho} \, dv,
\]

где \(T_r \) — период орбитального движения. Тогда

\[
\langle N_r \rangle = -\frac{9}{8} \left(\frac{\mu}{\rho} \right)^{3/2} \frac{L}{k_2} \frac{3}{\cos^3 \theta} \times (1 + 3e^2 + 3/8e^4) + \cos^2 \psi \left(1 - \cos^2 \psi \right) (6e^2 + e^4) + 1/16 \cos^4 \psi (\cos^2 \theta + \sin^2 \theta).
\]

(13)

Полученная формула (также сохранены члены, пропорциональные \(e^2 \) и \(e^4 \), как и (11)), аналогична формуле скорости убывания кинетического момента. Другими словами, стремление системы уменьшить отдачу энергии совпадает со стремлением уменьшить абсолютную величину работы диссипативных сил в рассматриваемом случае.

О сновываясь на полученных результатах, а также результатах [4, 6, 7], можно выдвинуть предположение [11], что стремление систем избегать трения есть действующая в каждом из момент времени (текущая) тенденция, и воздействие диссипативных сил направлено на изменение параметров движения в соответствии с этой тенденцией.

Отметим, что эволюция орбиты, обусловленная, например, несцентричностью поля тяготения, во многих случаях качественно изменяет картину эволюции относительного движения. Действительно, уравнения всевозможного движения относительно эволюционирующей орбиты имеют вид [1, 3]

\[
\begin{align*}
\frac{dx}{dv} &= N_0 \cos \theta - I_0 \sin \theta \times \\
&\times \left[1 + \frac{k_2^2}{k^2} (3 \cos^2 \theta + 1) - \frac{8}{3} \frac{k_2^2}{k} \right] - \\
&- \tilde{\epsilon}_0 \cos \psi \left[\sin \psi \cos \psi_1 + \sin \psi_1 \right], \\
\frac{d\theta}{dv} &= \frac{1}{2} I_0 \sin^2 \theta (2 \cos^2 \theta + 3) + \epsilon_0 \cos \psi \sin \sin \psi_1 , \\
\frac{dL}{dv} &= -I_0 L \cos \psi (3 \cos^2 \theta + 3 + \cos^2 \theta).
\end{align*}
\]

Здесь опущены члены, пропорциональные \(e^2 \), \(e^4 \), и принято, что в вакууме движения изменяется лишь длина восходящего угла орбиты \(\Omega = -\epsilon_{\text{rev}} \cos \psi \), аргумент перигея \(\omega_c = \psi, \epsilon_{\text{rev}} \) — малый параметр.

Поскольку \(\epsilon_{\text{rev}} \) обычно значительно превосходит \(I_0 \), то из уравнений (14) следует, что проявление диссипативных эффектов в движении системы возможно лишь для орбит, близких к эвратиальной или поларной. Для других орбит плоскость орбиты эволюционирует быстрее, чем кинетический момент относительного движения стремится к ней.

ПОСУПАТЕЛЬНО-ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ

Постоянно кинетического момента системы дает три первых интеграла движения [10]:

\[
\begin{align*}
\omega_c &= \psi, \\
\sqrt{\mu \rho} \cos \psi + \frac{m_1 m_2}{M^2} L \cos (\theta - \theta_0) &= G_1 ,
\end{align*}
\]

(15)

\[
\frac{m_1 m_2}{M^2} = \frac{G_1}{G_1}, \quad G_1 = \frac{G}{M},
\]

где \(G \) — кинетический момент системы.

Внужденные продольные колебания в первом приближении по малым параметрам \(\epsilon_1, \epsilon_2 \) определяются формулой (7). Тогда с учетом (15) уравнения возмущенного движения системы суть уравнения возмущенного кеплеровского движения и уравнения изменения угла \(\phi \) [10]:

\[
\phi = \frac{L}{r^2} - \tilde{\epsilon}_0 \cos (\theta - \theta_0).
\]

Процедура построения уравнений первого приближения аналогична процедуре построения уравнений (12). Гравитационные воздействия учитываются с точностью до второго порядка малости по \((\rho / R)^2 \) включительно. Тогда уравнения, описывающие основные эволюционные эффекты поступательно-вращательного движения, имеют вид

\[
\begin{align*}
\frac{di}{du} &= I_0 \sin \theta \left[3 \epsilon \cos \theta \sin 2\omega_0 \beta_2 + \\
&+ \zeta_1 (1 + 3 \epsilon^3) (3 + 3 \cos^2 \theta) + 6 \epsilon^2 \cos 2\omega_0 \right], \\
\frac{d\Omega}{du} &= N_0 \sin \theta \sin \theta - I_0 \sin \theta \left[\cos \theta \left(1 + \frac{k_2^2}{k} \right) \beta_1 - \\
&- \frac{4}{3} \cos \theta \frac{k_2^2}{k} \right], \\
&+ \zeta_1 \epsilon^3 (1 + \cos^2 \theta) \sin 2\omega_0 ,
\end{align*}
\]
\[
\frac{dp}{du} = -2I_{sl}\beta_1 p_f^3 3e^2 \sin^3 \theta \sin 2\omega \beta_2 - \\
4c_\epsilon \cos \theta [1 + 3e^2] (1 + \cos 3\theta) + 1.5 + e^2 \sin \cos 2\omega \beta_2,
\]
\[
\frac{de}{du} = e I_{sl} \sin^2 \theta \sin 2\omega \beta_2 + \\
+ 2c_\epsilon (11 + 11 \cos^2 \theta + 7 \sin^2 \cos 2\omega \beta_2),
\]
\[
\frac{d\omega_s}{du} = \frac{d\Omega}{du} \cos \theta - \frac{3}{8} \frac{m \omega_s}{\rho} \left[\frac{r_0^2}{p} \left(\frac{1}{p} \frac{1}{k^2} \right) \right] - \\
- I_{sl} [\cdots + 6c_\epsilon \cos \sin^2 \theta \sin 2\omega \beta_2 (3 + e^2)],
\]
\[
I_{sl} = \frac{9}{16} \frac{m \omega_s}{M^2} \left[\frac{r_0^2}{p} \left(\frac{1}{p} \frac{1}{k^2} \right) \right], u = \nu + \omega_s,
\]
\[
\beta_1, \beta_2, I_{sl} \text{ — те же, что и в уравнениях (12).}
\]

Здесь опущены члены, пропорциональные \(e^2 \), поскольку они не носят никаких качественных отличий в движение системы. В уравнении изменения \(\omega_s \) также опущено громоздкое выражение, несущее в себе интересной информации.

Уравнения (16) совместно с уравнениями (15) полностью описывают эволюцию медленных переменных системы, однако неудобны для анализа, поскольку права части зависят от параметров относительного движения \(L \) и \(\theta \), выражение которых через параметры орбитального движения излишне громоздко. Остаётся открытым и вопрос о преемственности уравнений (16) по отношению к уравнениям (12).

Построим уравнения для \(L \) и \(\theta \). Дифференцируя по \(u \) в силу (16) соотношения треугольника, образованного кинетическими моментами:
\[
\sqrt{\mu} \cos \theta + \frac{m \omega_s}{M^2} \cos (\theta - i) = G_1,
\]
\[
\sqrt{\mu} \sin \theta + \frac{m \omega_s}{M^2} \sin (\theta - i) = 0,
\]
получим уравнения
\[
\frac{d(\theta - i)}{du} = I_{sl} \cos [3e^2 \sin 2\omega \beta_2 + \xi, \cos \theta, \beta_2],
\]
\[
\frac{d\omega_s}{du} = - \frac{4}{9} I_{sl} \left[(1 + 3e^2) (3 \cos^3 \theta + 3 + 2 \cos^2 \theta) + \\
+ 6e^2 \cos 2\omega \beta_2 (1 - \cos \theta) \right].
\]

Уравнение изменения \(L \) совпадает с аналогичным уравнением в (12), а уравнение изменения \(\theta - i \) совпадает с уравнением изменения \(\theta \) в (12).

Из уравнений (16), (17) следует, что действие диссипативных сил (члены уравнений, содержащие множитель \(\xi \), направлены на следующие изменения в движении системы. Кинетический момент относительного движения системы уменьшается, перераспределяясь в кинетический момент орбитального движения; увеличивается экскентрикитет орбит (\(e \neq 0 \)); уменьшается до нуля наклонение орбиты. Здесь учтено,

\[
I_{sl} \sin \theta = \frac{9}{8} \frac{\mu G_1}{p^2 \rho \kappa \xi^2} \sin \zeta_0.
\]

Угол нутации \(\theta \) стремится к некоторой величине \(\pi/2 - \alpha_c \), \(0 < \alpha_c < \pi/2 \) и поскольку \(d\theta / du \) стремится к нулю, в конечном счете стремится к \(\pi/2 \), т. е. воздействие диссипативных сил стремится пере- сти обратное вращение системы в прямом.

Рассмотрим закономерности эволюции системы, определяемые уравнениями первого приближения.

Если \(e = 0 \) уравнения (16), (17) значительно упрощаются, и эволюция параметров полностью определяется воздействием диссипативных сил. Величина \(\alpha_c \) определяется из уравнения
\[
\sin \alpha_c (3 \sin^2 \alpha_c + 1) = \frac{\sin \zeta_0}{\cos (\alpha_c + i)} (3 + \sin^2 \alpha_c).
\]

Здесь учтено (18) и соотношение
\[
I_{sl} \sin \theta = \frac{9}{8} \frac{\mu G_1}{p^2 \rho \kappa \xi^2} \sin (\theta - i).
\]

В общем случае \(e \neq 0 \), поскольку величины \(N_0, \ I_{sl}, \ I_{sl} \), характеризующие скорость эволюции параметров движения системы, имеют порядок \(\sqrt{\epsilon_2}, \ \epsilon_1^{3/2}, \ \epsilon_2^{1/2} \) соответственно, в зависимости от отношения малых величин \(\epsilon_1 \) и \(\epsilon_2 \) возможен разный характер движения системы.

Рассмотрим крайние случаи.

Предположим, что \(\epsilon_1 / \epsilon_2^{1/2} \ll I_0 \), т. е. \(\epsilon_1 \ll \epsilon_2^{3/2} \), или, что то же самое \(L / \sqrt{\mu p} \ll 1 \) (случай дальней орбиты). Тогда \(i < 1; \theta \) стремится к \(\pi/2 \), и при \(\theta \), близком к \(\pi/2 \), перикентр орбиты стремится лечь в плоскость, образованную кинетическими моментами системы, т. е. движение системы соответствует рассмотренному выше случае движения относительно невозмущенной траектории центра масс.

В другом крайнем случае, когда \(\epsilon_1 >> \epsilon_2^{3/2} \) (или \(L / \sqrt{\mu p} >> 1 \)), скорость и направление изменения аргумента перикента орбиты носят иной характер и определяются вторым членом в уравнении для \(\omega_s \). Как показывает численное интегрирование уравнений (16), (17) и неуспешенных исходных уравнений, в случае, когда кинетический момент относительного движения превосходит по модулю кинетический момент орбитального движения, возможен «вброс» системы на гиперболическую траекторию \(e \to 1 \). Для обратного вращения \(i > \pi/2 \) такая возможность «вброса» реализуется для зна-
О влиянии диссипации энергии в материале нити

чительно более широкой области начальных параметров, чем для прямого вращения системы.

В общем случае, в отличие от движения на невозвушенной орбите, эффект остановки прецессионного движения и отслеживания эллиптичности орбиты, вообще говоря, пропадает (перицентры орбит уходят значительно быстрее, чем кинематический момент стремится к нулю). В зависимости от отношения величин кинематических моментов и отношения \(\rho / \omega \) характер движения системы может иметь значительные отличия от движения системы относительно невозвушенной орбиты. Исследование возможных движений системы выводят за рамки данных исследований.

В большинстве же случаев основной эффект эволюционного движения системы, как и для движения быстрорастущих гантелей [10], заключается в вращении плоскости, образованной кинематическими моментами орбитального и относительного движений вокруг суммарного кинетического момента. Причем, при \(\theta \), не близком к \(\pi / 2 \) (\(\cos \theta \) > \(\sin \theta \) > \(\cos \theta \), \(\omega \) является быстрой переменной в уравнениях (16), (17). Поэтому исследование эволюции параметров движения в этом случае может быть выполнено путем усреднения этих уравнений по \(\omega \). Нетрудно видеть, что уравнения, получающиеся в результате этой операции, отличаются от исходных лишь тем, что все члены уравнений, зависящие от \(\omega \), обнуляются.

Анализ усредненных по \(\omega \) уравнений (16), (17), так же, как и их исследование численным интегрированием при \(\theta \), близком к \(\pi / 2 \), показывает, что эволюция движения системы определяется воздействием диссипативных сил, т. е. изменение параметров движения системы происходит в соответствии с направлением воздействия диссипативных сил, и ранее определенные эффекты их воздействия реализуются в движении системы.

Рассмотрим возможность интерпретации движения системы под действием диссипативных сил. Нетрудно видеть, что выражение средней мощности диссипативных сил (13) не изменяется. Но тогда воздействие диссипативных сил, направленное на увеличение эксцентрикситета и перевод системы к прямому вращению, вообще говоря, направлены на увеличение мощности диссипативных сил, т. е. изменение параметров орбитального движения под воздействием диссипативных сил не может быть обяснено в рамках выдвинутого предположения о стремлении систем избежать трения, как текущей тенденции. Смещение диссипативных сил увеличить эксцентрикситет орбиты и перевести вращение системы в прямое противоположно стремлению уменьшить отдачу энергию относительного движения, которое имело место в случае неизмененной орбиты.

Вместе с тем эти воздействия диссипативных сил соответствуют их стремлению уменьшить потери энергии или увеличить ее приём для орбитального движения. Действительно, этой тенденции соответствуют увеличение эксцентрикситета. Анализируя изменения в движении системы в сравнении с движением системы относительно невозвушенной орбиты, можно сделать вывод, что этой тенденции соответствуют и привнесенные отличия в изменении угла \(\theta \). Действительно, увеличение скорости его убывания при \(\theta > \pi / 2 \), замедление его увеличения при \(\theta < \pi / 2 \) и стремление к прямому вращению можно интерпретировать как стремление уменьшить (увеличить) скорость уменьшения (увеличения) кинетического момента орбитального движения.

Таким образом, общая картина воздействия диссипативных сил на движение системы складывается из их стремления уменьшить отдачу энергии (увеличить ее приём) для каждого из движений — орбитального и относительного.

В рассматриваемом случае, поскольку эволюция движения системы определяется воздействием диссипативных сил, общая картина эволюции движения складывается из стремления каждого из движений «избежать трения», т. е. из стремления каждого из движений — орбитального и относительного — уменьшить отдачу энергии (увеличить ее приём) для своего движения.

Конечно, рассмотренное движение системы есть лишь частный пример. Здесь имеет место два слабо связанных движения (орбитальное и относительное), диссипация энергии описывается внутренней силой и происходит в результате относительного движения. Но отчетливо проявляющаяся тенденция в направлении воздействия диссипативных сил на уменьшение потери энергии (ее увеличение) для каждого из движений представляет весьма интересной, поскольку возникающие противоречия между формами движений оставляют шанс развитию движений, а не только для их тривиальных форм.

ЗАКЛЮЧЕНИЕ

Использование модельных задач для исследования сложных динамических систем, когда в математической модели выделяются и сохраняются лишь существенные для исследуемого явления элементы, является удобным, а во многих случаях и единственным подходом.
венно возможным способом выработки представле-
ний, определения и анализа закономерностей в их
причинно-следственной взаимосвязи. В рассмотрен-
ной модельной задаче сохранены такие важные
элементы динамики реальных космических троло-
вых систем, как возможность упруго-диссипативных
колебаний по внутренним степеням свободы и
большая протяженность системы. Это позволило
провести исследования в рамках классической меха-
ники сосредоточенных масс, и в частности, осу-
ществить достаточно просто численную проверку
полученных результатов.

Сделанные предположения о закономерностях
ротационного движения систем под действием дисс-
сипативных сил на кеплеровской орбите относятся
лишь к определенному классу систем в гравитаци-
onном поле сил, а выводы о воздействии диссипа-
tивных сил на поступательно-вращательное движе-
ние относятся лишь к рассматриваемой модельной
задаче. Вместе с тем во многих случаях движения
систем под действием диссипативных сил (см. на-
пример, [4]) можно наблюдать аналогичные законо-
мерности, что говорит о возможной общиности сде-
ланных предположений.

Работа выполнена при поддержке INTAS, грант
N 94-0644.

1. Алефатов А. П., Белешевский А. В., Пироженко А. В., Шабохин В. А. Об эволюции ротационного движения
связи двух тел на орбите // Космич. исследования.—
1990.—28, Вып. 5.—С. 692—701.
2. Апель П. Теоретическая механика. — М.: Физматгиз,
1969.—Т. 2.—487 с.
3. Белешевский В. В. Движение спутника относительно центра
масс в гравитационном поле. — М.: Изд-во Моск. ун-та,
1975.—308 с.
4. Белешевский В. В., Группенский А. В. Эволюция вращатель-
ных движений спутника под действием диссипативного
аэродинамического момента // ИНМ. — 1994.—58, № 1.—
С. 13—20.
5. Вильке В. Г., Марков Ю. Г. Эволюция поступательно- вра-
щательного движения взвешенной планеты в центральном
поле сил // Астрон. журн.—1988.—65, № 4.—С. 861—867.
6. Марков А. П. К динамике упругого тела в гравитационном
поле // Космич. исследования.—1989.—27, Вып. 2.—
С. 163—175.
7. Марков А. П. Эволюция быстрых вращений взвешенной
цилиндрической оболочки в гравитационном поле // Изв.
АН СССР. МТТ.—1990.—№ 5.—С. 139—146.
8. Синицын Е. В. Эволюция кеплеровского движения взве-
шенной планеты // Астрон. журн.—1990.—67, № 3.—
С. 630—635.
9. Синицын Е. Н. О влиянии взвешенных свойств материала
тела на его быстрые вращения в гравитационном поле
// Изв. AN Rossiysk. MT.—1993.—№ 1.—С. 31—38.
10. Пироженко А. В. Управление движением связки двух тел в
гравитационном поле изменением длины связи // Космич.
исследования.—1992.—30, Вып. 4.—С. 473—482.
11. Dranovskii Y., Alpatov A., Khoshchilov V., Piroshenko A.,
Zakrzhevskii A. Research of dynamics of space cable systems
stabilized by rotation // 48th Internat. Astronaut. Congress,
Turin, Italy, 6—10 October, 1997.

EFFECT OF ENERGY DISSIPATION
IN THRED MATERIAL ON THE EVOLUTION
OF ROTATIONAL MOTION IN SPACE CABLE SYSTEMS

A. V. Piroshenko

Using a system of two mass points joined together by a weightless
elastic dissipative thread as the simplest model of elas-toviscous
system, we investigated the evolution of rotational motion in the
gravitational field. When such a system moves in a Keplerian orbit,
energy dissipation in the thread material causes the system to tend
to the position with the energy of relative motion. Under the effect
of dissipative forces the energy loss decreases for both the orbital
motion and the relative motion, the orbital eccentricity increases,
and the system rotates in the direct sense.