ФІЗИКА ЗІР І МІЖЗОРЯНОГО СЕРЕДОВИЩА

КІНЕМАТИКА І ФІЗИКА НЕБЕСНИХ ТІЛ том 36 № 4 2020

doi: https://doi.org/10.15407/kfnt2020.04.019 УДК 524.31

В. А. Захожай, С. І. Забуга

Харківський національний університет ім. В. Н. Каразіна пл. Свободи 4, Харків, Україна, 61077 e-mail: szabuga52@gmail.com

Тривалість горіння гелію у зір населень І...ІІІ

Отримано узагальнені апроксимаційні формули, які описують залежність «час горіння гелію — маса зір нульового віку» для інтервалів мас і елементного складу зір, які відносять до населень І...ІІІ. Апроксимацію проведено як з урахуванням осьового обертання зір, так і без його урахування. Досліджено закономірності, що проявляються у отриманих залежностях від вмісту важких хімічних елементів Z (у межах від 0 до 0.1), які включають характерні значення для зоряних населень І...ІІІ, і наявності/відсутності осьового обертання зір. Ключові слова: горіння гелію, осьове обертання зір, апроксимаційні

формули, зорі населень І...Ш, маса зір нульового віку.

вступ

Ядерне горіння гелію в надрах зірок відбувається на стадії гігантів. Це одна з основних стадій зірок, в якій відбувається генерація важких ядер хімічних елементів. Згідно з даними [5] її тривалість _{не} з точністю до 10 % на порядок менша від часу горіння водню _н. Цей час може з такою ж точністю визначати час життя зірок-гігантів, оскільки тривалість горіння інших хімічних елементів з більш масивними ядрами ще на порядок менша, ніж _{не}.

Виявлення залежності часу ядерного горіння в надрах зірок-гігантів від початкових мас зірок, вивчення впливу на цю залежність виродження електронів у речовині зоряних надр, наявності осьового обертання магнітного поля — одна з актуальних проблем астрофізики. При цьому закономірності ядерного горіння гелію вивчено набагато гірше, ніж особливості горіння водню в надрах зірок, що належать до різних поколінь Галактики. У різних дослідженнях отримано напівемпіричні залежності, що дозволяють оцінювати положення зірок на стадії головної послідовності [2—6, 8, 9, 36], аналізувати вплив зоряного вітру [5] і навіть обчислювати максимальну масу зірок диска Галактики [3].

Для вирішення такого роду завдань необхідні моделі зірок різних мас, їхнього елементного складу і віку, а останнім часом — і наявності осьового обертання. Такі моделі зірок почали розраховувати з другої половини минулого століття. Однак далеко не у всіх роботах наводяться необхідні табличні дані про час горіння хімічних елементів, які б дозволили обчислювати обговорювані залежності.

Метою цієї роботи було одержання залежності часу горіння гелію від початкових мас зірок, що належать населенням І, ІІ (Галактики) і ІІІ, без обліку і з урахуванням їхнього осьового обертання, для досягнення якої було виконано такий комплекс робіт:

— виконано пошук необхідних досліджень (серед близько 2000 літературних джерел) в базі даних SAO/NASA ADS [http://adsabs.har-vard.edu/abstract_service.html], в основному результатів досліджень Падуанської і Женевської груп;

 — отримано вираз для знаходження в явному вигляді відповідності між вмістом металів зірок і вмістом у них важких хімічних елементів для визначення приналежності зірок до певного населення Галактики;

 проведено пошук апроксимаційних залежностей часу ядерного горіння від початкової маси зірки без урахування і з урахуванням їхнього осьового обертання;

— виконано аналіз отриманих результатів.

АПРІОРНА ІНФОРМАЦІЯ ДЛЯ РОЗВ'ЯЗУВАННЯ ПОСТАВЛЕНИХ ЗАВДАНЬ

До середини 1980-х рр. було розраховано велику кількість еволюційних моделей зірок, що дозволяють зробити їхні перші узагальнення. Моделі зірок були отримані для мас від $0.7m_{\odot}$ до $150m_{\odot}$ і значень вмісту важких хімічних елементів Z від 0.00001 до 0.04 (при вмісті гелію Y = 0.1...0.4). Серед них виділялися три основних інтервали мас для побудованих моделей: $(0.7...2-3)m_{\odot}$, $(2-3...10)m_{\odot}$ і понад $10m_{\odot}$. Для першого діапазону мас у той час найбільш повні відомості про чисельні розрахунки моделей зірок представлено в роботах [27, 42]. Огляди про результати чисельного моделювання зірок помірних мас (2-3... $10)m_{\odot}$ можна знайти в роботах [23, 34, 41], а масивних зірок (> $10m_{\odot}$) у роботах [1, 15, 16, 24, 33]. Узагальнення і систематизація цих даних виконані в монографії [5].

У цей період досліджень було з'ясовано, що тривалість ядерного горіння гелію у межах 10 % збігається з часом перебування зірок на стадії гігантів [5]. Таку оцінку можна отримати на основі обчисленої

тривалості ядерного горіння гелію, яка, як виявилося, на порядок менша від часу ядерного горіння водню на стадії головної послідовності, а загальний час горіння вуглецю, кисню і кремнію не перевищує 1000 років. Там же, на основі еволюційних моделей зірок з початковими масами (10...100) m_{\odot} , приведено залежність часу горіння гелію _{не} від їхніх мас у вигляді

_{не} 1.6
$$10^7 M^{-1}$$
 років, (1)

де $M = m/m_{\odot}$ — маса зірок, виражена в сонячних одиницях.

У 1990-ті рр. були виконані систематичні однорідні розрахунки еволюційних моделей зірок, які, як правило, не враховували їхнє осьове обертання. Вони охоплювали увесь діапазон початкових мас, які можуть проходити стадію зірок-гігантів (M = 0.5...120 для зірок населення I, II) з елементним складом Z = 0.0004...0.1 [11, 13, 19—21, 32, 38—40].

З початку 2000-х рр. з'явилися перші результати моделювання зір з нульовим вмістом металів (Z = 0 і M = 0.7...1000), які було віднесено до населення III [25, 26], а також спершу поодинокі, а з 2012 р. — і систематичні однорідні результати розрахунків масивних зірок (M > 9) без урахування і з урахуванням їхнього осьового обертання [14, 17, 18, 22, 28—30, 35, 37]. Моделям з сонячним елементним складом масивних зірок з масами в діапазоні *M* = 13...120, обчисленим з урахуванням осьового обертання та без нього, присвячено роботу [14]. У таблицях наведено значення тривалості горіння водню (Н), гелію (Не), вуглецю (C), неону (Ne), кисню (O) і кремнію (Si) як функції основних характеристик зірок. Згідно з проведеними розрахунками у моделях обертових зірок маси утворюваних Не- і СО-ядер виявилися більшими від тих, які формуються у зірках без осьового обертання. Аналіз впливу обертання на моделі зірок і проблем опису еволюційних процесів на стадії після головної послідовності зроблено у роботах [31] і [12] відповідно. Вказується, що обертання впливає на профіль еволюційних треків і тривалість ядерного синтезу [31]. Відзначається, що на стадії зірок-гігантів має бути критична маса, яка залежить від їхнього загального елементного складу, вище якої в ядрі гелій спалюється спокійно [12]. Але ні аналітичних, ні графічних залежностей описаних процесів від початкових мас зірок не наводиться.

Як і в роботі [14], тривалість горіння H, He, C, Ne, O, Si отримано при розрахунку необертових еволюціонуючих зірок, речовина надр яких описується сучасними моделями зоряної речовини [35]. Інтервали початкових мас $M \in ф$ ункціями вмісту металів: M = 15...25 для Z == 0.01 і M = 15...25 для Z = 0.02; значення тривалості горіння наведено у табличному вигляді.

Таким чином, найбільш інформативними і зручними для отримання залежності «час ядерного горіння гелію — маса зірок нульового віку» для моделей зірок різного вмісту важких хімічних елементів, у яких не враховувалося осьове обертання, доцільно виділити роботи [11, 13, 19—21, 32, 38—40], а для з'ясування впливу осьового обер-

тання — результати робіт [14, 17, 18, 22, 25, 26, 28—30, 35, 37], які і були використані для досягнення мети, сформульованої в роботі.

МЕТАЛІЧНІСТЬ І ДОЛЬОВІ ВМІСТИ МЕТАЛІВ У ЗІРОК НАСЕЛЕНЬ І...ІІІ

Для розрахунку моделей зірок з вмістом металів Z в інтервалі Z = 0...0.1 були використані дані робіт [11, 13, 19—21, 32, 38—40]. Зіркам населення III і сонячного вмісту металів відповідають значення $Z_{III} = 0$ і Z = 0.02 [10]. Щоб виділити з інтервалу Z ті значення, що відповідають зіркам населень I і II, використовувалися функція металічності для зірок гало Галактики і зв'язок між індексом металічності [Me/H] та вмістом металів Z. (Тут і далі індекс металічності будемо позначати [Me/H], якщо тільки мова не буде йти про конкретні елементи (наприклад C/H, O/H, Ne/H, [Fe/H] і т. д.).

За типові індекси металічності для зірок населення I і II доцільно прийняти характерні значення [Me/H], у межах яких вони зустрічаються в диску й гало Галактики відповідно. Згідно з функцією металічностей, побудованою для галактичного диска і гало [7], інтервали для індексу металічності такі: [Me/H]_I = -0.5...0.3; [Me/H]_{II} = -2.2... -0.5.

Зв'язок між [Me/H] та вмістом металів Z можна отримати з визначення індексу металічності:

$$[Me/H] = \lg \frac{Z/X}{Z_{\odot}/X_{\odot}} , \qquad (2)$$

де X и Z — сонячний вміст водню і важких хімічних елементів відповідно.

Розв'язуючи це рівняння відносно Z/X Z/H і приймаючи, що це відношення в даній задачі відповідає значенням індексу металічностей певної популяції зірок Галактики [Me/H]_{Pop}, після ряду перетворень, і з урахуванням того що Z/H = 0.027 (для Сонця X = 0.73, Z = 0.02 [13]), отримаємо:

$$\lg(Z/X) \quad \lg(Z_{\odot}/X_{\odot}) \quad [Me/H]_{Pop}, \tag{3}$$

$$(Z/X)_i \quad \text{dex } \lg(Z_{\odot}/X_{\odot}) \quad [\text{Me}/\text{H}]_{Pop} \quad . \tag{4}$$

Після підстановки індексів металічності [Me/H]_{Pop} у (3) дольовий вміст металів у зірок населення І та II дорівнює

$$Z_{i} \quad X_{i} \text{dex } \lg(Z_{\odot} / X_{\odot}) \quad [\text{Me} / \text{H}]_{Pop} =$$

$$= \begin{array}{c} 0.006...0.04, & \text{для популяції I,} \\ 0.0001...0.006, & \text{для популяції II,} \end{array}$$
(5)

де для вмісту водню прийнято значення $X_{\rm I} = 0.73$ і $X_{\rm II} = 0.74$.

ЗАГАЛЬНІ АПРОКСИМАЦІЙНІ ВИРАЗИ ДЛЯ ЗАЛЕЖНОСТІ «ЧАС ГОРІННЯ ГЕЛІЮ — ПОЧАТКОВА МАСА ЗІРОК»

Залежності «час горіння гелію — початкова маса зірок» шукалися за результатами робіт [11, 13, 14, 17—22, 25, 26, 28—30, 32, 35, 37—40] не для розрахованих дольових вмістів металів Z, а для зірок населення І...ІІІ, значення Z яких (від 0 до 0.04) потрапляють в інтервали, що відповідають виразу (5). Обчислення виконувалися методом найменших квадратів з використанням певних кусково-неперервних функцій, кожна з яких вибиралася для певного інтервалу початкових мас зірок. Вибір класу функцій здійснювався з урахуванням якісної поведінки аналізованих залежностей на визначеному інтервалі. Для пошуку рішень у загальному випадку використовувалися три класи логарифмічних функцій:

$$\lg_{\rm He} = a_{ijk}, \tag{6}$$

$$\lg_{\text{He}} = a_{ijk} + b_{ijk} \lg M, \tag{7}$$

$$\lg_{\text{He}} = a_{iik} + b_{iik} \lg M + c_{iik} \lg^2 M, \qquad (8)$$

де a_{ijk} , b_{ijk} , c_{ijk} — вільні члени (i = 1...3 — номер популяції, j = 1...3 — номер у послідовності обраного інтервалу мас M, на якому шуканій залежності відповідає одна із функцій (6)—(8); k — номер апроксимаційної моделі); $M = m/m_{\odot}$ — маса зірок нульового віку у сонячних одиницях.

Також враховувався той факт, що зі збільшенням початкових мас зірок час горіння гелію не може збільшуватися, як і час горіння водню [3—6].

Для пошуку рішень, як і в роботі [4] (де будувалися аналогічні апроксимаційні залежності для часу горіння водню), використовувався стандартний пакет програм Microsoft Excel «Пошук рішення», що дозволяє методом ітерацій реалізувати метод найменших квадратів і обчислювати суму квадратів відхилень риманих таким чином вільних членів.

Розв'язки шукалися у два етапи: для бази моделей необертових зірок на основі робіт 1990-х рр. [11, 13, 19—21, 32, 38—40] і досліджень, виконаних після 2000-х рр. [14, 17, 18, 22, 25, 26, 28—30, 35, 37], у яких представлено моделі обертових і необертових зірок. Результати розв'язування таких завдань представлено в табл. 1...3, де для визначених інтервалів мас наведено значення констант і вільних членів апроксимаційних функцій (6)—(8) і міра їхньої достовірності для зірок без осьового обертання (табл. 1, 2) і при його наявності (табл. 3). Моделі зірок були згруповані у популяції І...ІІІ, значення вмісту металів яких потрапляють в інтервали Z згідно з результатами їхнього зв'язку з відповідною металічністю, що визначається виразом (5) для популяцій І, ІІ і Z = 0 для популяції III.

Таблиця 1. Коефіцієнти апроксимацій (6)—(8) на різних інтервалах мас *M* для часу горіння гелію, отримані без урахування осьового обертання за даними 1990-х рр. [11, 13, 19—21, 32, 38—40]. Підкреслені значення відповідають мінімуму величин на досліджуваному інтервалі мас *M*

Номер моделі	Апрокси- мація	$M = m/m_{\odot}$	a_{ijk}	$b_{_{ijk}}$	c_{ijk}	2 k k		
Популяція І								
1.1	(6)	0.51.7	8.0772	0	0	0.0907		
1.2	(6)	0.51.8	8.0772	0	0	0.0907		
1.3	(6)	0.51.9	8.0772	0	0	0.0907		
1.4	(6)	1.72.5	8.2630	0	0	0.4246		
1.5	(6)	1.82.5	8.2844	0	0	0.3440		
1.6	(6)	1.92.5	8.2970	0	0	0.2951		
1.7	(8)	2.525	10.4140	-6.2391	2.1077	0.6044		
1.8	(8)	2.530	10.3464	-6.0477	1.9889	0.6521		
1.9	(8)	2.5120	10.0122	-5.2090	1.5383	2.0416		
1.10	(7)	25120	5.8029	-0.0492	0	1.1063*		
1.11	(7)	30120	5.5606	0.0775	0	1.0421		
Популяція ІІ								
1.11	(6)	0.51.7	8.0790	0	0	0.0475		
1.12	(6)	0.51.8	8.0934	0	0	0.1131		
1.13	(8)	1.725	9.3887	-4.2426	1.1806	0.4679		
1.14	(8)	1.730	9.3845	-4.2274	1.1697	0.4685		
1.15	(8)	1.7120	9.3204	-4.0368	1.0647	0.5934		
1.16	(8)	1.825	9.4903	-4.4823	1.3068	0.2780		
1.17	(8)	1.830	9.4802	-4.4464	1.2815	0.3345		
1.18	(8)	1.8120	9.3727	-4.1233	1.0961	0.4337		
1.19	(7)	25120	6.3586	-0.4366	0	0.0881		
1.20	(7)	30120	6.1747	-0.3408	0	0.0624		

* Вибрано рішення, при якому сума квадратів відхилень не мінімальна, однак виконується умова негативного градієнта

В усіх наведених таблицях підкреслені значення сум квадратів відхилень (остання графа) відповідають їхнім мінімальним значенням на аналізованому або всіх інтервалах мас зірок. Кращі апроксимаційні залежності представлено на рис. 1...3 (точки — вихідні дані). На рис. 4 наведено згладжені залежності, представлені на рис. 1...3.

АНАЛІЗ ОТРИМАНИХ РЕЗУЛЬТАТІВ ТА ВИСНОВКИ

Результати систематичних розрахованих моделей зірок, серед яких наводяться часи ядерного горіння гелію, опубліковані в 1990-х рр. [11, 13, 19—21, 32, 38—40] і після 2000-х рр. [14, 17, 18, 22, 25, 26, 28—30, 35, 37], взаємно доповнюють і уточнюють одне одного. Це видно з результатів табл. 1—3, де наведено дані про інтервали мас, зміст металів, врахування (неврахування) осьового обертання модельованих зірок. Базовими є моделі зірок, у яких не враховується осьове обертан-

Номер моделі	Апрокси- мація	$M = m/m_{\odot}$	a_{ijk}	b_{ijk}	c_{ijk}	2 k k		
Популяція І								
2.1	(8)	2.525	10.3140	-5.4952	1.6234	0.1352		
2.2	(8)	2.530	10.2800	-5.4061	1.5722	0.1415		
2.3	(8)	2.532	10.2980	-5.4531	1.5989	0.1426*		
2.4	(8)	2.5120	10.0450	-4.8971	1.3274	0.2478		
2.5	(7)	25120	6.2627	-0.3633	0	0.0756		
2.6	(7)	30120	6.0918	-0.2734	0	0.0453		
2.7	(7)	32120	6.1219	-0.2890	0	0.0438*		
Популяція II								
2.8	(8)	2.525	9.6270	-4.5297	1.2716	0.0219		
2.9	(8)	2.532	9.6570	-4.4871	1.2451	0.0019**		
2.10	(8)	2.5120	9.5162	-4.131	1.0554	0.0112		
2.11	(7)	25120	6.5348	-0.5421	0	0.0044		
2.12	(7)	32120	6.4055	-0.4738	0	0.0016**		
			Популяц	ія III				
2.13	(6)	0.71	8.0483	0	0	0.0011		
2.14	(8)	125	8.3267	-2.4366	0.3859	0.1325**		
2.15	(8)	140	8.3410	-2.5245	0.4694	0.1404		
2.16	(8)	160	8.3528	-2.5913	0.5277	0.1493		
2.17	(8)	25200	7.5049	-1.8082	0.3835	0.0048**		
2.18	(8)	40200	5.9803	-0.2678	-0.0006	0.0017		
2.19	(8)	60200	4.791	0.8857	-0.2781	0.0013		
2.20	(8)	251000	6.9748	-1.2225	0.2265	0.0069		
2.21	(8)	401000	6.4861	-0.8064	0.1407	0.0023		
2.22	(8)	601000	6.4683	-0.7917	0.1377	0.0023		
2.23	(7)	2001000	5.476	-0.0494	0	0.0145**		

Таблиця 2. Те ж для даних, отриманих після 2000 р. [14, 17, 18, 22, 25, 26, 28—30, 35, 37]

* Відібрано розв'язок, при якому сума квадратів відхилень не мінімальна, однак виконується умова негативного градієнта

** Відібрано розв'язок з мінімальною загальною сумою квадратів відхилень для всього інтервалу мас зірок, а не тільки зазначеного у графі «М». Нижче ці значення також підкреслено

ня. Встановивши для них певні закономірності, другим кроком є виявлення впливу на них осьового обертання. Таку схему було вибрано для аналізу.

Закономірності горіння гелію в необертових зірках шукалися за табл. 1, 2 і рис. 4*a*, 4*б*. Порівняння моделей, отриманих до і після 2000 р., проводилося за відносним відхиленням

$$_{hijk} \quad \frac{(\lg_{He})_{hi} \quad (\lg_{He})_{jk}}{(\lg_{He})_{hi}}, \qquad (9)$$

де h, j — приналежність до значення певної популяції (I, II, III); i, k — приналежність до найкращої апроксимаційної залежності (зазначеної у табл. 1...3), розрахованої до і після 2000 р. відповідно; при h = j - i k, при h = j — можуть приймати значення i = k або i k.

and a jpa		CEBOBOIO COL						
Номер моделі	Апрокси- мація	$M = m/m_{\odot}$	a_{ijk}	b_{ijk}	c_{ijk}	2 k		
Популяція I								
3.1	(8)	2.525	10.0030	-4.9228	1.3833	0.0445		
3.2	(8)	2.530	10.0330	-5.0024	1.4304	0.0471		
3.3	(8)	2.532	10.0200	-4.9689	1.4108	0.0476**		
3.4	(8)	2.5120	9.8589	-4.6054	1.2308	0.0902		
3.5	(7)	25120	6.3368	-0.3985	0	0.0629		
3.6	(7)	30120	6.1293	-0.2884	0	0.0386		
3.7	(7)	32120	6.0173	-0.2297	0	0.0249		
Популяція II								
3.8	(8)	2.525	9.4401	-4.1168	1.1068	0.0020		
3.9	(8)	2.530	9.4385	-4.1114	1.1032	0.0021		
3.10	(8)	2.532	9.4328	-4.0932	1.0912	0.0022**		
3.11	(8)	2120	9.3588	-3.8922	0.9842	0.0189		
3.12	(7)	25120	6.4697	-0.4884	0	0.0216		
3.13	(7)	30120	6.3831	-0.4423	0	0.0174		
3.14	(7)	32120	6.3101	-0.4041	0	0.0150		
			Популяц	ія III				
3.15	(8)	940	10.1740	-5.5420	1.6814	0.0003**		
3.16	(8)	960	9.4686	-4.3574	1.1994	0.0033		
3.17	(8)	985	9.1737	-3.8827	1.0166	0.0049		
3.18	(8)	9200	8.6229	-3.0494	0.7190	0.0114		
3.19	(8)	91000	7.8932	-2.0571	0.4072	0.0344		
3.20	(8)	40200	7.9641	-2.2718	0.4998	0.0003		
3.21	(8)	60200	7.0077	-1.344	0.2766	0.00002		
3.22	(8)	85200	7.6171	-1.9166	0.4105	1.1527e-7		
3.23	(8)	401000	6.8408	-1.1022	0.2004	0.0018		
3.24	(8)	601000	6.4158	-0.7531	0.1304	0.0002		
3.25	(8)	851000	6.3488	-0.6998	0.1199	0.0002		
3.26	(7)	2001000	5.5348	-0.0712	0	0.0004		

Таблиця 3. Те ж для даних, отриманих після 2000 р. [14, 17, 18, 22, 25, 26, 28—30, 35, 37], але з урахуванням осьового обертання

** Відібрано розв'язок з мінімальною загальною сумою квадратів відхилень для всього інтервалу мас зірок, а не тільки зазначеного у графі «М». Нижче ці значення також підкреслено

У діапазоні мас зірок $M = 0.5 \dots 1.7$ залежності Ід _{не} — ІдM моделей для населення І, ІІ до 2000 р. збігаються (| _{І-ІІ}| = 0.02 %) і мають постійне значення, що не залежить від M (див. рис. 4a). Для популяції І в області $M = 1.7 \dots 2.5$ значення Ід _{не} постійне, але на 3 % більше. Значення константи таких залежностей Ід _{не} — ІдM зв'язується з властивістю речовини, рівняння якої відповідає стану виродженого електронного газу, де відбувається 3 -реакція [5]: M < 2.5 для популяції І і M < 1.7 для популяції ІІ. Нові моделі зірок для популяцій І, ІІ у діапазоні мас M < 2.5 після 2000 р. не будувалися (див. табл. 2).

Як видно з рис. 4*a*, значення lg _{не} для зірок I популяції систематично перевищують аналогічні значення для зірок II популяції, а в об-

Рис. 1. Модельні залежності часу lg _{не} ядерного горіння гелію від маси lg*M* зірок нульового віку населення I (*a*) та II (δ), отримані без урахування осьового обертання на основі даних 1990-х pp. [11, 13, 19, 20, 21, 32, 38, 39, 40] (див. підкреслені номери моделей у табл. 1). Точки — вихідні дані

Рис. 2. Модельні залежності часу Ід _{не} ядерного горіння гелію від маси ІдM зірок нульового віку населення І (*a*), ІІ (*b*) і ІІІ (*b*), отримані без урахування осьового обертання на основі даних 2000-х рр. [14, 17, 18, 22, 25, 26, 28—30, 35, 37] (див. підкреслені номери моделей у табл. 2). Точки — вихідні дані

Рис. 3. Модельні залежності часу \lg_{He} ядерного горіння гелію від маси $\lg M$ зірок нульового віку населення І (*a*), II (*б*) і III (*b*), отримані з урахуванням осьового обертання на основі даних 2000-х рр. [14, 17, 18, 22, 25, 26, 28—30, 35, 37] (див. підкреслені номери моделей у табл. 3). Точки — вихідні дані

ласті M = 10...50 вони збігаються з точністю до 2 %. Така ж поведінка (і з такою ж точністю) залежності lg _{He} — lg*M* відповідає новим моделям, побудованим після 2000 р. (див. рис. 46). Залежності lg _{He} — lg*M*, отримані на інтервалі мас M = 2.5...120 для популяцій I і II, збігаються між собою у межах 2...3 %. Для цієї ж області отримано також аналогічну залежність для зірок популяції III. Вона лежить систематично нижче попередніх залежностей, значення lg _{He} яких відрізняються від таких для зірок популяції I на 11 % (для M = 2.5) і 6 % (для M = 5). Для інтервалу мас M = 10...120 відмінності становлять 2 % і менше. Постійне значення lg _{He} спостерігається на інтервалі мас M = 0.7...1, і воно всього на 0.4 % менше, ніж для зірок популяцій I і II. Далі після стрибка (при M = 1) на 3.4 % залежність lg _{He} — lg*M* можна описати функцією (8) на інтервалі мас M = 1...25, найкращі коефіцієнти якої представлено у табл. 2.

Закономірності горіння гелію в обертових зірках відображають табл. 3, рис. 3 і рис. 4*в*. Вони дозволяють врахувати вплив осьового обертання на час горіння гелію на стадії зірок-гігантів. Для цього може бути використана також формула (9), в якій під індексами *i*, *k* слід розуміти приналежність до найкращої апроксимаційної залежності (вказаної у табл. 2 і 3), розрахованих для зірок, які не мають або мають осьове обертання. В даному випадку доцільно обійтися без даних

Рис. 4. Згладжені модельні залежності часу \lg_{He} ядерного горіння гелію від маси $\lg M$ зірок нульового віку населення I, II і III без урахування (*a*, *б*) і з урахуванням (*в*) їхнього осьового обертання (*a* — дані 1990-х рр., *б* і *в* — дані 2000-х рр.)

табл. 1, оскільки у табл. 2 і 3 наведено дані, що грунтуються на однорідних нових моделях зірок.

Як видно з рис. 46, так само, як і для моделей зірок без урахування їхнього осьового обертання, для побудованих залежностей lg _{не} lgM час горіння гелію систематично більший для популяції І, менший для популяції II і найменший — для популяції III (на 2 % порівняно з популяцією І на інтервалі мас M = 10...90 і на 3 % — на інтервалі M = = 90...120). У межах 0.2 % залежності lg $_{\rm He}$ — lgM для зірок з осьовим обертанням населення популяції І і популяції ІІ на інтервалі мас M = = 20...50 можна вважати однаковими. Найбільший вплив осьового обертання, згідно з критерієм (9), проявляється у збільшенні часів горіння гелію для зірок населення І і II (> 0.4 % на інтервалі мас M < 5). Натомість урахування осьового обертання призводить до зменшення значень lg _{не}: більш ніж на 0.4 % для зірок популяції I з масами M == 100...120, на 0.4...0.9 % для зірок популяції II з масами *M* = 20...120 і на 0.5 % — для зірок популяції III з масами порядку 10. У порівнянні з зірками населення популяції І тривалість горіння гелію більша у зірок популяції III — на 2 % (M = 10...90) і трохи більша — на інтервалі мас M = 90...120.

- 1. Де Ягер К. Звезды наибольшей светимости. М.: Мир, 1984. 493 с.
- 2. Еволюція зір. *Астрономічний енциклопедичний словник*. За ред. І. А. Климишина, А. О. Корсунь. Львів, 2003. С. 142.
- Захожай В. А. Время жизни звезд на главной последовательности и максимальная масса звезд диска Галактики. Кинематика и физика небес. тел. 2013. 29, № 4. С. 61—72.
- 4. Захожай В. А., Забуга С. И. О времени горения водорода в недрах звезд. Новые аппроксимационные формулы. Вісн. астрон. школи. 2017. 13, № 2. С. 81—84.
- 5. Масевич А. Г., Тутуков А. В. Эволюция звезд: теория и наблюдения. М.: Наука, 1988. 280 с.
- 6. Сурдин В. Г. Рождение звезд. М.: УРСС, 2001. 262 с.
- 7. Сучков А. А. Галактики знакомые и загадочные. М.: Наука, 1988. 192 с.
- 8. Adams F. C., Laughlin Gr. A dying universe: the long-term fate and evolution of astrophysical objects. *Revs Mod. Phys.* 1997. 69, № 2. P. 337–372.
- Argast D., Samland M., Gerhard O.E., Thielemann F.-K. Metal-poor halo stars as tracers of ISM mixing processes during halo formation. *Astron. and Astrophys.* 2000. 356. P. 873–887.
- Basu S., Antia H. M. Helioseismology and solar abundances. *Phys. Rep.* 2008. 457. P. 217–283.
- Bressan A., Fagotto F., Bertelli G., Chiosi C. Evolutionary sequnces of stellar models with new radiative opacities. II. Z = 0.02. *Astron. and Astrophys. Suppl. Ser.* 1993. 100. P. 647–664.
- Bressan A., Marigo P., Girardi L., Nanni A., Rubele S. *Red giant evolution and specific problems*. arXiv:1301.7687v1 [astro-ph.SR] 31 Jan 2013.
- 13. Charbonnel C., Meynet G., Maeder A., Schaller G., Schaerer D. Grids of stellar models. III. From 0.8 to 120 M_{\odot} at Z = 0.004. *Astron. and Astrophys. Suppl. Ser.* 1993. 101. P. 415–419.
- Chieffi A., Limongi M. Pre-supernova evolution of rotating solar metallicity stars in the mass range 13-120 M_☉ and their explosive yields. *Astrophys. J.* 2013. 764. Art. id. 21. 36 p.
- 15. De Jong T., Maeder A. (eds). *Star formation*. IAU Symposium, No. 75. Univ. de Geneve, and Univ. de Lausanne Dordrecht. 1977. 307 p.
- 16. De Loore C. The evolution of massive stars. Sp. Sci. Rev. 1980. 26. P. 113-155.
- 17. Ekström S., Georgy C., Eggenberger P., Meynet G., et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M_{\odot} at solar metallicity (Z = 0.014). *Astron. and Astrophys.* 2012. 537. Id. A146. 18 p.
- Ekström S., Meynet G., Chiappini C., Hirschi R., Maeder A. Effects of rotation on the evolution of primordial stars. *Astron. Astrophys.* 2008. 489. P. 685–698.
- Fagotto F., Bressan A., Bertelli G., Chiosi C. Evolutionary sequences of stellar models with new radiative opacities. III. Z = 0.0004 and Z = 0.05. *Astron. and Astrophys. Suppl. Ser.* 1994. 104. P. 365–376.
- 20. Fagotto F., Bressan A., Bertelli G., Chiosi C. Evolutionary sequences of stellar models with new radiative opacities. IV. Z = 0.004 and Z = 0.008. Astron. and Astrophys. Suppl. Ser. 1994. 105. P. 29–38.
- Fagotto F., Bressan A., Bertelli G., Chiosi C. Evolutionary sequences of stellar models with very high metallicity. V. Z = 0.1. *Astron. and Astrophys. Suppl. Ser.* 1994. 105. P. 39–45.
- 22. Georgy C., Ekström S., Eggenberger P., Meynet G., et al. Grids of stellar models with rotation. III. Models from 0.8 to 120 M_{\odot} at a metallicity Z = 0.002. *Astron. and Astrophys.* 2013. 558. Id.A103. 17 p.
 - ISSN 0233-7665. Кінематика і фізика небес. тіл. 2020. Т. 36, № 4

30

- 23. Iben I. J. Post main sequence evolution of single stars. Ann. Rev. Astron. and Astrophys. 1974. 12. P. 215-256.
- 24. Iben I., Renzini A. Single star evolution I. Massive stars and early evolution of low and intermediate mass stars. *Phys. Rep.* 1984. 105. P. 329–406.
- 25. Marigo P., Chiosi C., Kudritzki R.-P. Zero-metallicity stars. II. Evolution of very massive objects with mass loss. *Astron. and Astrophys.* 2003. 399. P. 617–630.
- Marigo P., Girardi L., Chiosi C., Wood P. R. Zero-metallicity stars. I. Evolution at constant mass. *Astron. and Astrophys.* 2001. 371. P. 152–173.
- 27. Mengel J. G., Sweigart A. V., Demarque P., Gross P. G. Stellar evolution from the zero-age main sequence. *Astrophys. J. Suppl. Ser.* 1979. 40. P. 733–791.
- Meynet G. Maeder A. Stellar evolution with rotation. V. Changes in all the outputs of massive star models. *Astron. and Astrophys.* 2000. 361. P. 101—120.
- 29. Meynet G. Maeder A. Stellar evolution with rotation. X. Wolf-Rayet star populations at solar metallicity. *Astron. and Astrophys.* 2003. 404. P. 975–990.
- 30. Meynet G. Maeder A. Stellar evolution with rotation. XI. Wolf-Rayet star populations at different metallicities. *Astron. and Astrophys.* 2005. 429. P. 581–598.
- Meynet G., Maeder A., Eggenberger P., Ekström S., et al. Impact of rotation on stellar models. *Astron. Nachr.* 2016. 337. P. 827–836.
- 32. Meynet G., Maeder A., Schaller G., Schaerer D., Charbonnel C. Grids of stellar models. V. From 0.8 to 120 M $_{\odot}$ at Z = 0.001, 0.004, 0.008, 0.020 and 0.040. *Astron.* and Astrophys. Suppl. Ser. 1994. 103. P. 97–105.
- Packet W., Vanbeveren D., De Grève J. P., De Loore C., Sreenivasan S.R. The evolution of rotational velocity in O type stars. *Astron. and Astrophys.* 1980. 82. P. 73-78.
- Paczynski B. Evolution of Stars with M 8 M_☉. IAU Symp., No. 66: Late stages of stellar evolution / Ed. R. J. Tayler & J. E. Hesser. 1974. P. 62–69.
- 35. Pignatari M., Herwig F., Hirschi R., Bennett M., et al. NuGrid stellar data set. I. Stellar yields from H to Bi for stars with metallicities Z = 0.02 and Z = 0.01. *Astron. and Astrophys. Suppl. Ser.* 2016. 225. Art. id. 24. 54 p.
- Raiteri C. M., Villata M., Navarro J. F. Simulation of Galactic chemical evolution. I. O and Fe abundances in a simple collapse model. *Astron. and Astrophys.* 1996. 315. P. 105–115.
- 37. Ritter C., Herwig F., Jones S., Pignatari M., et al. NuGrid stellar data set II. Stellar yields from H to Bi for stellar models with MZAMS = 1–25 M_{\odot} and Z = 0.0001–0.02. *Mon. Notic. Roy. Astron. Soc.* 2018. 480. P. 538–571.
- 38. Schaerer D., Charbonnel C., Meynet G., Maeder A., Schaller G. Grids of stellar models. IV. From 0.8 to 120 M_{\odot} at Z = 0.040. *Astron. and Astrophys. Suppl. Ser.* 1993. 102, P. 339–342.
- 39. Schaerer D., Meynet G., Maeder A., Schaller G. Grids of stellar models. II. From 0.8 to 120 M_☉ at Z = 0.008. Astrophys. J. Suppl. Ser. 1993. 98. P. 523–527.
- 40. Schaller G., Schaerer D., Meynet G., Maeder A. Newgrids of models from 0.8 to 120 M_{\odot} at Z = 0.020 and Z = 0.001. *Astron. and Astrophys. Suppl. Ser.* 1992. 96. P. 269–331.
- Sugimoto D., Nomoto K. Presupernova models and supernovae. *Space Sci. Rev.* 1980. 25. P. 155–227.
- Sweigart A. V., Gross P. G. Horizontal-Branch Evolution with Semiconvection II. Theoretical Sequences. *Astrophys. J. Suppl. Ser.* 1976. 32. P. 367–398.

REFERENCES

- 1. De Jager K. (2003) Star of the greatest luminosity. M.: Mir, 1984. 493 p. [In Russian].
- Evolution of stars. Astronomichnyj encyklopedychnyj slovnyk. Eds I. A. Klimishin, A. O. Korsun, Lviv. 142. [In Ukrainian].
- 3. Zakhozhay V. A. (2013) Stellar lifetime on the main sequence stage and maximal stellar mass for the galaxy disc. *Kinematika i fizika nebes. tel.* 29(4). 61–72. [In Russian].
- Zakhozhaj V. A. Zabuga S. I. (2017) About the time of the burning of hydrogen in the interiors of stars. New approximation formulas. *Visnyk Astron. school.* 13(2). 81—84. [In Russian].
- 5. Masevich A. G., Tutukov A. V. (1988) *Evolution of stars: theory and observation*. M.: Nauka. 280. [In Russian].
- 6. Surdin V. G. (2001) The birth of stars. M.: URSS. 262. [In Russian].
- 7. Suchkov A. A. (1988) Galaxy familiar and mysterious. M.: Nauka. 192. [In Russian].
- Adams F. C., Laughlin Gr. (1997) A dying universe: the long-term fate and evolution of astrophysical objects. *Revs Mod. Phys.* 69(2). 337–372.
- Argast D., Samland M., Gerhard O. E., Thielemann F.-K. (2000) Metal-poor halo stars as tracers of ISM mixing processes during halo formation. *Astron. and Astrophys.* 356. 873–887.
- Basu S., Antia H. M. (2008) Helioseismology and solar abundances. *Phys. Rep.* 457. 217–283.
- Bressan A., Fagotto F., Bertelli G., Chiosi C. (1993) Evolutionary sequnces of stellar models with new radiative opacities. II. Z = 0.02. *Astron. and Astrophys. Suppl. Ser.* 100. 647—664.
- 12. Bressan A., Marigo P., Girardi L., Nanni A., Rubele S. (2013) *Red Giant evolution and specific problems*. arXiv:1301.7687v1 [astro-ph.SR] 31 Jan 2013.
- 13. Charbonnel C., Meynet G., Maeder A., Schaller G., Schaerer D. (1993) Grids of stellar models. III. From 0.8 to 120 M_{\odot} at Z = 0.004. *Astron. and Astrophys. Suppl. Ser.* 101. 415–419.
- 14. Chieffi A., Limongi M. (2013) Pre-supernova evolution of rotating solar metallicity stars in the mass range 13-120 M_{\odot} and their explosive yields. *Astrophys. J.* 764. Art. id. 21. 36.
- 15. De Jong T., Maeder A. (eds). (1977) *Star formation*. IAU Symposium, No. 75. Univ. de Geneve, and Univ. de Lausanne Dordrecht. 307.
- 16. De Loore C. (1980) The evolution of massive stars. Space Sci. Rev. 26. 113-155.
- 17. Ekström S., Georgy C., Eggenberger P., Meynet G., et al. (2012) Grids of stellar models with rotation. I. Models from 0.8 to 120 M_{\odot} at solar metallicity (Z = 0.014). *Astron. and Astrophys.* 537. Id. A146. 18.
- 18. Ekström S., Meynet G., Chiappini C., Hirschi R., Maeder A. (2008) Effects of rotation on the evolution of primordial stars. *Astron. and Astrophys.* 489. 685–698.
- 19. Fagotto F., Bressan A., Bertelli G., Chiosi C. (1994) Evolutionary sequences of stellar models with new radiative opacities. III. Z = 0.0004 and Z = 0.05. *Astron. and Astrophys. Suppl. Ser.* 104. 365–376.
- 20. Fagotto F., Bressan A., Bertelli G., Chiosi C. (1994) Evolutionary sequences of stellar models with new radiative opacities. IV. Z = 0.004 and Z = 0.008. Astron. and Astrophys. Suppl. Ser. 105. 29–38.
- Fagotto F., Bressan A., Bertelli G., Chiosi C. (1994) Evolutionary sequences of stellar models with very high metallicity. V. Z = 0.1. Astron. and Astrophys. Suppl. Ser. 105. 39–45.

- 22. Georgy C., Ekström S., Eggenberger P., Meynet G., et al. (2013) Grids of stellar models with rotation. III. Models from 0.8 to 120 M_{\odot} at a metallicity Z = 0.002. *Astron. and Astrophys.* 558. Id.A103. 17.
- 23. Iben I. J. (1974) Post main sequence evolution of single stars. Ann. Rev. Astron. and Astrophys. 12. 215–256.
- 24. Iben I., Renzini A. (1984) Single star evolution I. Massive stars and early evolution of low and intermediate mass stars. *Phys. Rep.* 105. 329–406.
- 25. Marigo P., Chiosi C., Kudritzki R.-P. (2003) Zero-metallicity stars. II. Evolution of very massive objects with mass loss. *Astron. and Astrophys.* 399. 617–630.
- 26. Marigo P., Girardi L., Chiosi C., Wood P. R. (2001) Zero-metallicity stars. I. Evolution at constant mass. *Astron. and Astrophys.* 371. 152–173.
- 27. Mengel J. G., Sweigart A. V., Demarque P., Gross P. G. (1979) Stellar evolution from the zero-age main sequence. *Astrophys. J. Suppl. Ser.* 40. 733–791.
- 28. Meynet G. Maeder A. (2000) Stellar evolution with rotation. V. Changes in all the outputs of massive star models. *Astron. and Astrophys.* 361. 101–120.
- 29. Meynet G. Maeder A. (2003) Stellar evolution with rotation. X. Wolf-Rayet star populations at solar metallicity. *Astron. and Astrophys.* 404. 975–990.
- Meynet G. Maeder A. (2005) Stellar evolution with rotation. XI. Wolf-Rayet star populations at different metallicities. *Astron. and Astrophys.* 429. 581–598.
- 31. Meynet G., Maeder A., Eggenberger P., Ekström S., et al. (2016) Impact of rotation on stellar models. *Astron. Nachr.* 337. 827–836.
- 32. Meynet G., Maeder A., Schaller G., Schaerer D., Charbonnel C. (1994) Grids of stellar models. V. From 0.8 to 120 M_{\odot} at Z = 0.001, 0.004, 0.008, 0.020 and 0.040. *Astron. and Astrophys. Suppl. Ser.* 103. 97–105.
- Packet W., Vanbeveren D., De Grève J. P., De Loore C., Sreenivasan S. R. (1980) The evolution of rotational velocity in O type stars. *Astron. and Astrophys.* 82. 73–78.
- 34. Paczynski B. (1974) Evolution of Stars with M 8 M_☉. IAU Symp., No. 66: Late stages of stellar evolution / Ed. R. J. Tayler & J. E. Hesser. 62–69.
- 35. Pignatari M., Herwig F., Hirschi R., Bennett M., et al. (2016) NuGrid stellar data set. I. Stellar yields from H to Bi for stars with metallicities Z = 0.02 and Z = 0.01. *Astron. and Astrophys. Suppl. Ser.* 225. Art. id. 24. 54.
- Raiteri C. M., Villata M., Navarro J. F. (1996) Simulation of Galactic chemical evolution. I. O and Fe abundances in a simple collapse model. *Astron. and Astrophys.* 315. 105–115.
- 37. Ritter C., Herwig F., Jones S., Pignatari M., et al. (2018) NuGrid stellar data set II. Stellar yields from H to Bi for stellar models with MZAMS = 1–25 M_{\odot} and Z = 0.0001–0.02. *Mon. Notic. Roy. Astron. Soc.* 480. 538–571.
- 38. Schaerer D., Charbonnel C., Meynet G., Maeder A., Schaller G. (1993) Grids of stellar models. IV. From 0.8 to 120 M_{\odot} at Z = 0.040. *Astron. and Astrophys. Suppl. Ser.* 102. 339–342.
- 39. Schaerer D., Meynet G., Maeder A., Schaller G. (1993) Grids of stellar models. II. From 0.8 to 120 M_{\odot} at Z = 0.008. *Astrophys. J. Suppl. Ser.* 98. 523–527.
- 40. Schaller G., Schaerer D., Meynet G., Maeder A. (1992) Newgrids of models from 0.8 to 120 M_{\odot} at Z = 0.020 and Z = 0.001. *Astron. and Astrophys. Suppl. Ser.* 96. 269–331.
- 41. Sugimoto D., Nomoto K. (1980) Presupernova models and supernovae. *Space Sci. Rev.* 25. 155–227.
- Sweigart A. V., Gross P. G. (1976) Horizontal-Branch Evolution with Semiconvection II. Theoretical Sequences. *Astrophys. J. Suppl. Ser.* 32. 367–398.

В. А. ЗАХОЖАЙ, С. І. ЗАБУГА

В. А. Захожай, С. И. Забуга

Харьковский национальный университет им. В. Н. Каразина, Харьков, Украина

ПРОДОЛЖИТЕЛЬНОСТЬ ГОРЕНИЯ ГЕЛИЯ У ЗВЕЗД НАСЕЛЕНИЙ I...III

Получены обобщенные аппроксимационные формулы, описывающие зависимость «время горения гелия — масса звезд нулевого возраста» для интервалов масс и элементного состава звезд, которые относят к населениям І...III. Аппроксимация проводилась как с учетом осевого вращения звезд, так и без его учета. Исследованы закономерности, проявляющиеся в полученных зависимостях от содержания тяжелых химических элементов Z (в пределах от 0 до 0.1), включающих характерные значения для звездных населений I...III, и наличия/отсутствия осевого вращения звезд.

Ключевые слова: горение гелия, осевое вращение звезд, аппроксимационные формулы, звезды населений I...III, масса звезд нулевого возраста.

V. A. Zakhozhay, S. I. Zabuga

V. N. Karazin Kharkiv National University, Kharkiv, Ukraine

THE HELIUM BURNING DURATION FOR POPULATION I-III STARS

Generalized approximation formulas are obtained. The formulas describe the dependence «helium burning time — mass of stars at zero age» for the stars, that belong to the population I...III. The approximation was deriven for non-rotating stars and stars with axial rotation. We have discovered the patterns in dependencies based on the obtained approximation equations from the content of heavy chemical elements Z (ranging from 0 to 0.1), including characteristic values for stellar populations I...III, and the presence/absence of axial rotation of stars.

Keywords: Helium burning, axial rotation of stars, approximation formulas, stars of populations I ... III, mass of stars of zero age.

Стаття надійшла до редакції 30.08.2019 Після доопрацювання 30.08.2019 Прийнята до друку 13.04.2020