ВНЕГАЛАКТИЧЕСКАЯ АСТРОНОМИЯ

КИНЕМАТИКА И ФИЗИКА НЕБЕСНЫХ ТЕЛ том 33 № 6 2017

УДК 524.8+539

Б. Новосядлий¹, О. Сергієнко¹, В. М. Шульга^{2,3}

¹Астрономічна обсерваторія Львівського національного університету імені Івана Франка, вул. Кирила і Мефодія 8, м. Львів, 79005

bnovos@gmail.com, muszka.na.rowerku@gmail.com

²Цзілінський університет, вул. Кванцзінь, 2699, 130012, м. Чаньчунь, КНР

³Радіоастрономічний інститут НАН України, вул. Мистецтв 4, м. Харків, 61002 shulga@rian.kharkov.ua

Молекули в ранньому Всесвіті

Ми вивчаємо формування перших молекул, негативних іонів водню та молекулярних іонів у моделі Всесвіту з космологічною сталою та холодною темною матерією. Космологічна рекомбінація описується в рамках модифікованої моделі ефективного 3-рівневого атома, а кінетика хімічних реакцій — в рамках мінімальної моделі для водню, дейтерію та гелію. Встановлено, що викликані неточностями в розрахунку космологічної рекомбінації похибки відносних концентрацій молекул сягають 2-3 %. Похибки космологічних параметрів впливають на оцінки відносних концентрацій молекул, негативних іонів водню та молекулярних іонів на рівні 2 %. При відсутності реіонізації на червоному зміщенні z = 10 відношення концентрацій до концентрації водню становлять 3.08 10^{-13} для H^- , 2.37 10^{-6} для H_2 , 1.26 10^{-13} для H_2 , 1.12 10^{-9} для HD та 8.54 10^{-14} для HeH⁺.

МОЛЕКУЛЫ В РАННЕЙ ВСЕЛЕННОЙ, Новосядлый Б., Сергиенко О., Шульга В. М. — Мы изучаем формирование первых молекул, отрицательных ионов водорода и молекулярных ионов в модели Вселенной с космологической постоянной и холодной темной материей. Космологическая рекомбинация описывается в рамках модифицированной модели эффективного 3-уровневого атома, а кинетика химических реакций — в рамках минимальной модели для водорода, дейтерия и гелия. Установлено, что вызванные неточностями расчета космологической рекомбинации погрешности относительных концентраций молекул составляют 2-3 %. Погрешности космологических параметров влияют на относительные концентрации молекул, отрицательных ионов водорода и молекулярных ионов на уровне до 2 %. При отсутствии реионизации на красном смещении z = 10 отношение концен-

© Б. НОВОСЯДЛИЙ, О. СЕРГІЄНКО, В. М. ШУЛЬГА, 2017

траций к концентрации водорода составляют 3.08 10^{-13} для H^{-13} , 2.37 10^{-6} для H_2 , 1.26 10^{-13} для H_2 , 1.12 10^{-9} для HD и 8.54 10^{-14} для HeH^+ .

MOLECULES IN THE EARLY UNIVERSE, by Novosyadlyj B., Sergijenko O., Shulga V. M. — We study the formation of first molecules, negative Hydrogen ions and molecular ions in model of the Universe with cosmological constant and cold dark matter. The cosmological recombination is described in the framework of modified model of the effective 3-level atom, while the kinetics of chemical reactions in the framework of the minimal model for Hydrogen, Deuterium and Helium. It is found that the uncertainties of molecular abundances caused by the inaccuracies of computation of cosmological parameters affect the abundances of molecules, negative Hydrogen ions and molecular ions at the level of up to 2 %. In the absence of cosmological reionization at redshift z = 10 the ratios of abundances to the Hydrogen one are 3.08 ⁻¹³ for H⁻, 2.37 10⁻⁶ for H₂, 1.26 10⁻¹³ for H₂, 1.12 10⁻⁹ for HD and 8.54 10⁻¹⁴ for HeH⁺.

вступ

На ранніх етапах розвитку Всесвіту ($z \sim 10^4$) всі атоми водню, дейтерію, гелію та літію повністю іонізовані квантами теплового випромінювання (детальніше див. [20, 30, 31]). З появою нейтральних атомів розпочинається формування перших молекул. Цей процес широко вивчається [8—11, 13, 16, 19, 22, 25, 26, 32, 33] через його важливість для охолодження газових хмар, з яких сформувалися перші світні об'єкти.

Для розрахунку еволюції концентрацій перших молекул важливо точно знати еволюцію концентрацій іонізованих фракцій у процесі космологічної рекомбінації. Найчастіше і рекомбінація, і формування молекул описуються за допомогою рівнянь хімічної кінетики з аналітичними апроксимаціями для швидкостей реакцій [8, 33]. Цей підхід дозволяє провадити обчислення швидко, але є недостатньо точним. Інший метод полягає у точному врахуванні переходів у багаторівневих атомах і для рекомбінації, і для формування молекул [3]. Його суттєвим недоліком є повільність обчислень. Для максимально швидкого розрахунку еволюції концентрацій нейтральних атомів та іонів водню і гелію протягом космологічної рекомбінації з точністю, що відповідає моделі багаторівневого атома, було запропоновано модифіковану модель ефективного 3-рівневого атома [30, 31]. При дослідженні формування молекул її використовували, зокрема, у роботах [12, 28].

Для тестування космологічних моделей за даними космічної обсерваторії Planck необхідно швидко розраховувати концентрацію 4 вільних електронів у Всесвіті з похибкою не більше кількох десятих відсотка. Для досягнення такої точності було розроблено модель ефективного *N*-рівневого атома та створено програми HyREC [2] та CosmoRec [6]. Альтернативним підходом стало доповнення модифікованої моделі ефективного 3-рівневого атома [29, 34].

Метою даної роботи є дослідження формування первинних молекул, негативних іонів водню і молекулярних іонів в рамках модифікованої моделі ефективного 3-рівневого атома для космологічної рекомбінації та мінімальної моделі для кінетики хімічних реакцій, а також вивчення впливу на нього точності опису космологічної рекомбінації та значень параметрів космологічної моделі. Ми обмежуємося розглядом космологічної СDM-моделі та нехтуємо реіонізацією середовища.

РІВНЯННЯ ЕВОЛЮЦІЇ КОНЦЕНТРАЦІЙ ХІМІЧНИХ СКЛАДОВИХ ВСЕСВІТУ

Після початку рекомбінації первинне середовище складається з нейтральних атомів, іонів та молекул водню, дейтерію, гелію та літію, квантів теплового реліктового випромінювання та частинок холодної темної матерії. Вважаємо, що останні є стабільними, беруть участь тільки у гравітаційній та, можливо, слабкій взаємодіях, тому ніяк не впливають на кінетику рекомбінації та дисоціації атомів та молекул. Концентрації цих складових визначаються характерними для них хімічними реакціями, концентраціями задіяних реагентів та коефіцієнтами швидкостей реакцій, що залежать від температури речовини та випромінювання в середовищі.

Кінетика хімічних реакцій описується за допомогою рівнянь [8, 22, 33]

$$\frac{dx_i}{dt} \sum_{chem} k_{mn} f_{\widetilde{m}} f_{\widetilde{n}} x_m x_n \sum_{m} k_m f_{\widetilde{m}} x_m \sum_{j} k_{ij} f_{\widetilde{i}} f_{\widetilde{j}} x_i x_j \quad k_i f_{\widetilde{i}} x_i, (1)$$

де k_{mn} — коефіцієнти швидкостей реакцій з реагентами *m* та *n*; вміст $f_{\tilde{m}}$ — це відносна концентрація $f_{\rm He}$ $n_{\rm He}/n_{\rm H}$ для реагентів *m*, що містять гелій, $f_{\rm D}$ $n_{\rm D}/n_{\rm H}$ для реагентів *m*, що містять дейтерій, $f_{\rm Li}$ =

 $n_{\rm Li} / n_{\rm H}$ для реагентів *m*, що містять літій, та $f_{\rm H} - n_{\rm H} / n_{\rm H} - 1$ для реагентів *m*, що містять лише водень. Для хімічних складових середовища, що містять лише водень, відносна концентрація $x_m - n_m / n_{\rm H}$, де $n_m - \infty$ концентрація реагента *m*, $n_{\rm H} - \infty$ сумарна концентрація водню; для складових, що містять дейтерій, гелій та літій, $x_m - n_m / n_{\rm D}$, $x_m - n_m / n_{\rm He}$, де $n_m / n_{\rm He}$, та $n_{\rm Li} - \infty$ сумарні концентрації дейтерію, гелію та літію відповідно.

У Всесвіті з метрикою Фрідмана — Робертсона — Уокера зручно перейти від диференціювання по часу *t* до диференціювання по червоному зміщенню *z* за допомогою такого співвідношення:

$$\frac{d}{dz} = \frac{1}{H(1-z)}\frac{d}{dt},$$

де H (da/dt)/a — параметр Габбла.

Зазначимо, що ми не розглядаємо теплообмін між речовиною та випромінюванням через функції молекулярного охолодження та нагрівання, оскільки через малі концентрації первинних молекул в однорідному ізотропному Всесвіті це не впливає суттєво на еволюцію температури матерії [12, 23, 24].

МІНІМАЛЬНА МОДЕЛЬ ХІМІЧНИХ РЕАКЦІЙ У ПЕРВИННОМУ СЕРЕДОВИЩІ

Перебіг хімічних процесів у первинному середовищі при наявності водню, дейтерію, гелію та літію описується повною моделлю [8], що включає 87 реакцій. Однак для вивчення кінетики формування первинних молекул ми використовуємо мінімальну модель [8], котра є дещо спрощеною, але достатньою для коректного розрахунку концентрацій хімічних складових середовища. Мінімальна модель складається з 33 реакцій: 10 для водню, 6 для дейтерію, 3 для гелію та 14 для літію. Оскільки вміст літію є дуже малим ($f_{\rm Li}$ $n_{\rm Li}/n_{\rm H}$ 10¹⁰) та наявні суттєві розбіжності у його визначенні [7], а система реакцій без літію є завершеною, ми розглядаємо середовище лише з воднем, дейтерієм та гелієм.

Хімічні реакції мінімальної моделі для H, D та He подано у табл. 1. Коефіцієнти швидкостей хімічних реакцій взяті з роботи [8], за винятком коефіцієнтів рекомбінації та фотоіонізації водню та гелію.

(H1)	$H^+ + e^ H^+$	(H2)	$H + H^+ + e^-$
(H3)	$H + e^ H^- +$	(H4)	$H^- + H^+ e^-$
(H5)	$H^- + H = H_2 + e^-$	(H7)	$H^- + H^+$ $H + H$
(H8)	$H + H^{+}$ $H_{2}^{+} +$	(H9)	$H_2^+ + H + H^+$
(H10)	$H_2^+ + H = H_2 + H^+$	(H15)	$H_2 + H^+$ $H_2^+ + H$
(D1)	$D^+ + e^- D^+$	(D2)	$D+ D^+ + e^-$
(D3)	$D+H^+$ D^++H	(D4)	$D^+ + H = D + H^+$
(D8)	$D^+ + H_2 = H^+ + HD$	(D10)	$HD+H^+$ H_2+D^+
(He8)	$He+H^+$ HeH^++		
(He11)	$HeH^+ + H He + H_2^+$	(He14)	$HeH^+ + He + H^+$

Таблиця 1. Хімічні реакції (номери реакцій згідно з [8])

КОСМОЛОГІЧНА РЕКОМБІНАЦІЯ

В умовах термодинамічної рівноваги рекомбінація Не III, Не II та Н II описується рівняннями Саха. На $z \sim 8000$ двічі іонізований гелій Не III починає рекомбінувати. З рівнянь Саха для рекомбінації Не III Не II та Не II Не I можна отримати рівняння для відносної концентрації вільних електронів $x_e = n_e / n_{\rm H}$ (водень і дейтерій на цій стадії повністю іонізовані):

де

HeII
$$\frac{\left(2 \ m_e k T_m\right)^{3/2}}{h^3 n_{\rm H}} e^{-\frac{HeII}{(kT_m)}},$$

HeI $4\frac{\left(2 \ m_e k T_m\right)^{3/2}}{h^3 n_{\rm H}} e^{-\frac{HeII}{(kT_m)}}.$

Коли увесь двічі іонізований гелій рекомбінує до однократно іонізованого, з рівнянь Саха для рекомбінації Не II Не I та Н II Н I випливає таке рівняння для x_e (див. також [1, 17]):

 $x_{e}^{3} x_{e}^{2}(_{HI} _{HeI}) x_{e}(_{HI} _{HeI} _{HI}(1 f_{D}) _{HeI}f_{He})$ $_{HI} _{HeI}(1 f_{D} f_{He}) 0,$ $(2 m_{e}kT_{m})^{3/2} _{HI/(kT_{m})}$

де

HI
$$\frac{(2 m_e kT_m)^{3/2}}{h^3 n_{\rm H}} e^{-{\rm HI}/(kT_m)}.$$

Тут і надалі ми описуємо рекомбінацію дейтерію аналогічно до рекомбінації водню.

Дійсні розв'язки цих кубічних рівнянь дають значення відносної концентрації вільних електронів, з яких можна обчислити відносні концентрації іонізованих та нейтральних водню, дейтерію та гелію (див. [1, 17]).

Варто зауважити, що на стадії сумісної рівноважної рекомбінації водню та однократно іонізованого гелію починають формуватися перші молекули, негативні та молекулярні іони, відносні концентрації котрих можна обчислити за наведеними у Додатку формулами. Ці розв'язки задають початкові умови для інтегрування рівнянь (1) на стадії нерівноважної рекомбінації.

Коли умови термодинамічної рівноваги порушуються, для опису нерівноважної кінетики рекомбінації використовується модифікована модель ефективного 3-рівневого атома [30]. У ній еволюція відносних концентрацій іонізованих водню та гелію описується рівняннями

$$\frac{dx_{\text{HII}}}{dz} \quad x_e x_{\text{HII}} n_{\text{H} \text{H}} \quad H(1 \quad x_{\text{HII}}) \exp - \frac{h_{\text{H2s}}}{k_B T_m} \quad \frac{C_{\text{H}}}{H(1 \quad z)}, \quad (2)$$

$$\frac{dx_{\text{HeII}}}{dz} = x_e x_{\text{HeII}} n_{\text{H}} \stackrel{s}{\text{He}} \stackrel{s}{\text{He}} (1 - x_{\text{HeII}}) \exp - \frac{h_{\text{He}^{2}s}}{k_B T_m} - \frac{C_{\text{He}}^s}{H(1 - z)}$$
$$x_e x_{\text{HeII}} n_{\text{H}} \stackrel{t}{\text{He}} \frac{g_{\text{He}^{2}s}}{g_{\text{He}^{2}s}} \stackrel{t}{\text{He}} (1 - x_{\text{HeII}}) \exp - \frac{h_{\text{He}^{2}s}}{k_B T_m} - \frac{C_{\text{He}}^s}{H(1 - z)}, \quad (3)$$

де корекційні множники мають вигляд

$$C_{\rm H} = \frac{1}{1} \frac{K_{\rm H}}{K_{\rm H}} \frac{n_{\rm H}(1 - x_{\rm HII})}{n_{\rm H}(1 - x_{\rm HII})},$$

$$C_{\rm He}^{s} = \frac{1}{1} \frac{K_{\rm He}^{s}}{K_{\rm He}^{s}} \frac{1}{1} \frac{K_{\rm He}^{s}}{K_{\rm He}^{s}} \frac{n_{\rm H}}{f_{\rm He}} \frac{f_{\rm He}(1 - x_{\rm HeII}) \exp[h_{-ps}/(k_{B}T_{m})]}{n_{\rm H}} \frac{1}{f_{\rm He}(1 - x_{\rm HeII}) \exp[h_{-ps}/(k_{B}T_{m})]},$$

$$C_{\rm He}^{t} = \frac{1}{1 - K_{\rm He}^{t}} \frac{1}{k_{\rm He}^{t}} \frac{1}{k_{\rm He}^{t}} \frac{1}{k_{\rm He}^{t}} \exp[h_{-ps}/(k_{B}T_{m})]}.$$

Тут використано позначення та значення коефіцієнтів і атомних сталих, приведені в роботах [30, 31, 34].

Рівняння (2) та перший доданок у рівнянні (3) складають базову модифіковану модель ефективного 3-рівневого атома, запропоновану у роботах [30, 31] (її огляд наведено також у роботі [1]). Подальші дослідження космологічної рекомбінації, зумовлені необхідністю досягти достатньої для тестування космологічних моделей за даними космічної обсерваторії Planck точності розрахунку x_e , привели до доповнення цієї моделі.

Повна модифікована модель ефективного 3-рівневого атома [34] додатково враховує повний вираз для ймовірності виходу для синглетного $2^1 p$ $1^1 s$ переходу Не I, вплив непрозорості континууму нейтрального водню на синглетний перехід Не I [14], рекомбінацію через триплетний $2^3 p$ $1^1 s$ перехід Не I (другий доданок у (3)) та вплив на неї непрозорості континууму нейтрального водню. Для водню додатково використовується корекційна функція для множника, що враховує почервоніння L-фотонів через розширення Всесвіту [27]:

$$K_{\rm H} = \frac{K_{\rm H2p}}{8 H(z)} 1 \exp \left(\frac{(\lg(1+z) - z_1)^2}{w_1^2}\right) \exp \left(\frac{(\lg(1-z) - z_2)^2}{w_2^2}\right)$$

Це дозволяє наблизити модифіковану модель ефективного 3-рівневого атома до моделі ефективного *N*-рівневого атома.

Температура матерії T_m практично дорівнює температурі випромінювання T_r до $z \sim 850$. Швидкість зміни температури описується адіабатичним охолодженням випромінювання внаслідок розширення Всесвіту:

$$\frac{dT_m}{dz} \quad \frac{T_m}{1 \quad z}.$$
(4)

Пізніше, приблизно на червоних зміщеннях *z* < 850, для швидкості зміни температури матерії використовується рівняння [30]

$$\frac{dT_m}{dz} = \frac{2T_m}{1-z} = \frac{8_{-T}a_rT_r^4}{3m_e cH(1-z)} \frac{x_e}{1-f_{\rm D}-f_{\rm He}-x_e} (T_m - T_r).$$
(5)

Для згладження переходу від (4) до (5) використовується корекція [29].

Систему рівнянь (2)—(5) доповнюють рівняння для опису рекомбінації дейтерію та кінетики хімічних реакцій (1).

РЕЗУЛЬТАТИ ТА ОБГОВОРЕННЯ

На основі програми для розрахунку еволюції відносної концентрації вільних електронів протягом космологічної рекомбінації з використанням модифікованої моделі ефективного 3-рівневого атома recfast^{*} (версія 1.5.2) створено програму для розрахунку відносних концентрацій первинних негативних іонів водню і молекулярних іонів H⁻, H₂, HeH⁺ та молекул H₂, HD. Оскільки система рівнянь, що описує космологічну рекомбінацію та кінетику хімічних реакцій, є жорсткою, було використано метод інтегрування Гіра, реалізований у програмі DDRIV^{**}, що є у вільному доступі.

На рисунку показано еволюцію відносних концентрацій $x_{\rm H\,II}, x_{\rm D\,II}, x_{\rm HeII}, x_{\rm H}, x_{\rm H_2}, x_{\rm H_2}, x_{\rm HD}$ та $x_{\rm HeH}$, розраховану в рамках повної модифікованої моделі ефективного 3-рівневого атома для СDM-моделі з найоптимальнішими параметрами, отриманими на основі спостережень космічної обсерваторії Planck 2015 р. [21] флюктуацій температури та поляризації реліктового випромінювання на всіх гармоніках (Planck TT, TE, EE+lowP): фізичні густини баріонів та холодної темної матерії $_bh^2 = 0.02225$ 0.00016 та $_ch^2 = 0.1198$ 0.0015, густина енергії космологічної сталої = 0.6844 0.0091, безрозмірна стала Габбла h = 0.6727 0.0066 (довірчі інтервали 1). Найоптимальніші

Еволюція відносних концентрацій компонентів з воднем, дейтерієм та гелієм

^{*} http://www.astro.ubc.ca/people/scott/recfast.html

^{**} http://www.netlib.org/slatec/src/ddriv1.f

1000, z = 100 Ta z = 10							
Компоненти	<i>z</i> = 1000	<i>z</i> = 100	<i>z</i> = 10				
ΗI	0.9511	0.9997	0.9998				
ΗII	4.893 10 ²	2.748 10 4	$2.003 10^{-4}$				
H^{-}	$1.778 10^{-19}$	$1.630 10^{-11}$	$3.076\ 10^{-13}$				
H_2	1.621 10 13	5.940 10 7	$2.370 10^{-6}$				
H_2	2.125 10 18	1.210 10 ¹³	1.260 10 13				
DI	0.9518	0.9998	1.000				
D II	4.821 10 ²	$2.127 10^{-4}$	$1.405 10^{-11}$				
HD	3.975 10 ¹³	6.343 10 ⁶	4.268 10 5				
He I	1.000	1.000	1.000				
He II	3.854 10 19	$1.796 10^{-20}$	$1.678 10^{-20}$				
HeH^+	3.138 10 20	$1.772 10^{-13}$	$1.036 10^{-12}$				

Таблиця 2. Відносні концентрації атомів, іонів та молекул на червоних зміщеннях z = 1000, z = 100 та z = 10

вмісти дейтерію та гелію становлять $Y_p \quad 4n_{\text{He}}/n_b = 0.24667 \quad 0.00014$ (n_b — концентрація баріонів) та $f_D = (2.614_{0.060}^{0.057}) 10^{-5}$ (в рамках стандартної моделі первинного нуклеосинтезу). Тут і надалі температура реліктового випромінювання $T_{cmb} = 2.7255$ К. Значення відносних концентрацій на різних червоних зміщеннях після космологічної рекомбінації подано у табл. 2.

Бачимо, що відносні концентрації Н II, D II, Не II та молекул, негативних іонів водню і молекулярних іонів на червоних зміщеннях z = 1000, 100 та 10 перевищують відповідні значення, отримані у роботі [33], де використовувався спрощений опис космологічної рекомбінації водню, дейтерію та гелію.

Оцінимо вплив точності розрахунку космологічної рекомбінації на концентрації первинних молекул. Для цього порівняємо значення, отримані в рамках базової модифікованої моделі ефективного 3-рівневого атома для водню і гелію, з отриманими в рамках повної модифікованої моделі ефективного 3-рівневого атома. У випадку використання повної моделі для водню, дейтерію і гелію відносні концентрації відрізняються від отриманих в рамках базової моделі не більше ніж на 2 % для H^- , H_2 , H_2 та HeH^+ на червоних зміщеннях від 1000 до 10 і на 3 % для молекули HD на червоних зміщеннях від 100 до 10. При використанні повної моделі лише для водню та дейтерію і базової для гелію відхилення відносних концентрацій, як і у попередньому випадку, не перевищують 2 % для H^- , H_2 , H_2 та HeH⁺ i 3 % для HD. Якщо, навпаки, рекомбінацію гелію описати за допомогою повної моделі, а водню та дейтерію за допомогою базової, то відхилення є мізерними для всіх молекул, негативних іонів водню та молекулярних іонів на червоних зміщеннях від 1000 до 10.

Дослідимо тепер вплив значень космологічних параметрів на відносні концентрації Н⁻, H₂, H₂ та HeH⁺ після космологічної рекомбінації. Розглянемо CDM-моделі з найоптимальнішими параметра-10

ми, отриманими на основі: 1) спостережень Planck (2015 р.) флюктуацій температури реліктового випромінювання на всіх гармоніках та поляризації на низьких гармоніках (Planck TT+lowP) [21]: $_{h}h^{2} =$ $_{c}h^{2}=0.1197,$ = 0.02222, = 0.685, h = 0.6731; 2) спостережень Planck (2013 р.) флюктуацій температури реліктового випромінювання на всіх гармоніках та даних 9-річних спостережень поляризації на низьких гармоніках на космічній обсерваторії WMAP (Planck+WP) [20]: $_{b}h^{2} = 0.02205$ 0.00028, $_{c}h^{2} = 0.1199$ 0.0027, $= 0.685 \frac{0.018}{0.016}$, $=0.685 \begin{array}{c} 0.018\\ 0.016 \end{array}$ h = 0.6730.012 (невизначеності 1). Відхилення відносних концентрацій від відповідних значень в моделі з найоптимальнішими параметрами Planck TT, TE, EE+lowP сягають 0.4% для H⁻, H₂, H₂ у випадку моделі з параметрами Planck TT+lowP і 1.5 % у випадку моделі з параметрами Planck+WP, для HeH⁺ 0.3 % у випадку моделі з параметрами Planck TT+lowP i 1 % у випадку моделі з параметрами Planck +WP на червоних зміщеннях від 1000 до 10, для HD вони не перевищують 0.4 % на z > 300, 0.125 % на z > 90 у випадку моделі з параметрами Planck TT+lowP та 1.5 % на z > 300, 0.4 % на z > 60 у випадку моделі з параметрами Planck+WP і є мізерно малими на менших червоних зміщеннях. Для моделей зі значеннями параметрів на верхній і нижній межах довірчих інтервалів 1 за даними Planck TT, TE, EE+lowP відхилення відносних концентрацій від значень у моделі з найоптимальнішими параметрами на z < 1000 сягають 2 % для H⁻, H₂ та HeH⁺ і 0.6 % для H₂ та HD.

Значення вмістів дейтерію та гелію впливають на відносні концентрації негативних іонів водню і молекулярних іонів та молекул таким чином. Відхилення значень х у моделі з найоптимальнішими параметрами Planck TT, TE, EE+lowP, найоптимальнішим вмістом дейтерію та вмістом гелію на верхній або нижній межі довірчого інтервалу 1 $(Y_n =$ = 0.24743 або Y_p = 0.24591 [21]) від відповідних значень в моделі з тим самим набором космологічних параметрів та найоптимальнішим вмістом гелію сягають 0.5 % для H_2 на z < 100, не більше 0.2 % для H^- , H_2 , HD та HeH⁺ на z < 1000. У випадку вмісту дейтерію на верхній або нижній межі довірчого інтервалу 1 $(f_{\rm D} = 2.801 \ 10^{5} \ {\rm afo} \ f_{\rm D} = 2.424 \ 10^{5}$ [21]) та найоптимальнішого вмісту гелію відповідні відхилення є мізерними для всіх молекул, негативних іонів водню та молекулярних іонів на всьому проміжку часу від епохи космологічної рекомбінації до червоного зміщення 10. Для моделей з вмістом і дейтерію, і гелію на верхній або нижній межі довірчого інтервалу 1 відхилення сягають 0.5 % для Н₂ на червоних зміщеннях менше 100 та не перевищують 0.2 % для інших молекул, негативних іонів водню та молекулярних іонів на червоних зміщеннях менше 1000. Відхилення відносних концентрацій у моделях з вмістами дейтерію та гелію і космологічними параметрами на межах довірчих інтервалів 1 від відповідних значень у моделі з усіма найоптимальнішими параметрами сягають 2 % для H⁻, H $_2$ та HeH⁺ і не перевищують 0.6 % для H₂ та HD на всіх z від 1000 до 10.

Всі попередні розрахунки проведено для кількості сортів нейтрино $N_{e\phi}$ = 3. Однак за даними Planck TT, TE, EE+lowP $N_{e\phi}$ = 2.99 0.20. У випадку оптимальних значень космологічних параметрів та вмістів дейтерію і гелію вплив відхилення оптимальної кількості сортів нейтрино від трьох на відносні концентрації не перевищує 0.1 % для всіх молекул, молекулярних іонів та негативного іону водню. У випадку кількості сортів нейтрино на верхній чи нижній межі 1 довірчого інтервалу відповідні відхилення відносних концентрацій сягають 0.3 %. Відхилення відносних концентрацій в моделях з кількістю сортів нейтрино, вмістами дейтерію та гелію і космологічними параметрами на верхніх або нижніх межах довірчих інтервалів 1 від відповідних значень в моделі з найоптимальнішими космологічними параметрами, вмістами дейтерію та гелію і $N_{eb} = 3$ не перевищують 2.3 % для H^- , H_2 , та HeH⁺ i 0.6 % для H_2 та HD на всіх червоних зміщеннях від 1000 до 10.

Розглянемо тепер моделі з нестандартною кількістю сортів нейтрино. У випадку $N_{e\phi} = 4$ (один додатковий сорт нейтрино) відхилення відносних концентрацій від відповідних значень у моделі з оптимальними космологічними параметрами та вмістами дейтерію і гелію не перевищують 1.2 % для H⁻, H₂ та HeH⁺, 1.1 % для HD і 0.65 % для H₂ на z від 1000 до 10. У випадку $N_{e\phi} = 5$ (два додаткових сорти нейтрино) відхилення відносних концентрацій не перевищують 2.4 % для H⁻ і H₂, 2.3 % для HeH⁺, 2.2 % для HD та 1.2 % для H₂, а у випадку $N_{e\phi} = 6$ (три додаткових сорти нейтрино) — відповідно 3.5 % для H⁻ і H₂, 3.4 % для HeH⁺, 3.2 % для HD та 1.8 % для H₂.

Обговоримо тепер, як може вплинути на концентрації перших молекул врахування хімічних реакцій, що не входять в мінімальну модель. Для прикладу поряд з реакціями (H5), (H10), (H15), (D8) та (D10), що визначають концентрації молекул H_2 та HD в мінімальній моделі, розглянемо такі реакції:

 $-(AH1) H_2 + H H + H + H$ (коефіцієнт швидкості реакції з [6]),

— (АН2) H₂ + H+H (пряма фотодисоціація, коефіцієнт швидкості реакції з [5] для системи Лаймана),

— (АНЗ) H₂ + H+H (пряма фотодисоціація, коефіцієнт швидкості реакції з [5] для системи Вернера),

 $-(AH4) H_2 + H + H$ (непряма фотодисоціація — процес Соломона, коефіцієнт швидкості реакції з [6]),

— (AD1) HD+H H+H+D, (коефіцієнт швидкості реакції з [6] — по аналогії з [10] ми використовуємо для цього процесу коефіцієнт швидкості реакції (AH1)),

— (AD2) HD+ H+D, (пряма фотодисоціація, коефіцієнт швидкості реакції з [5] для системи Лаймана),

— (AD3) HD+ H+D пряма фотодисоціація, коефіцієнт швидкості реакції з [5] для системи Вернера).

Таблиця 3. Внески хімічних реакцій (s¹) з табл. 1 та додаткових реакцій, що не входять у мінімальну модель, у зміну концентрації молекул H₂ і HD з червоним зміщенням. Для зіткнювальних процесів: $k_{ij} x_i x_j$, для радіаційних процесів: $k_i x_i$. Внески реакцій для HD помножено на f_{i2}

nownoweno nu _{JD}									
Реакції	<i>z</i> = 1000	<i>z</i> = 900	z = 800	<i>z</i> = 700	<i>z</i> = 600	<i>z</i> = 500			
(H5)	3.3283 10 ²⁶	8.3908 10 ²⁷	2.2116 10 ²⁷	9.5927 10 ²⁸	6.3109 10 ²⁸	5.7183 10 ²⁸			
(H10)	$2.4427 10^{ 25}$	$1.1466 10^{ 25}$	$6.8675 10^{ 26}$	$9.0506 10^{ 26}$	$2.8233 10^{ 25}$	$2.5080 10^{24}$			
(H15)	$2.0023 10^{ 25}$	$3.8589\ 10^{\ 26}$	$4.3035 10^{ 27}$	$4.9211 10^{ 28}$	$6.1995 10^{29}$	$1.0471 10^{ 29}$			
(D8)	$8.0983 10^{ 26}$	$3.6709\ 10^{\ 26}$	$1.1987 10^{ 26}$	$5.5183 10^{ 27}$	$4.5474 10^{ 27}$	$1.1214 10^{-26}$			
(D10)	$8.0978 10^{ 26}$	$3.6704\ 10^{\ 26}$	$1.1982 10^{ 26}$	$5.5117 10^{\ 27}$	$4.5267 10^{ 27}$	$1.1025 10^{-26}$			
(AH1)	$4.2816 10^{ 26}$	$1.1225 10^{26}$	$1.1609 10^{ 27}$	$5.0826\ 10^{\ 29}$	9.3180 10 31	6.8023 10 ³³			
(AH2)	$1.5708 10^{-30}$	$5.6162\ 10^{\ 33}$	$2.7681 10^{-36}$	$1.2587 10^{-40}$	$2.4497\ 10\ ^{46}$	5.2153 10 54			
(AH3)	$4.6770 10^{\ 31}$	$1.3254 10^{33}$	$4.8805 10^{ 37}$	$1.5233 10^{41}$	$1.7918 10^{ 47}$	$1.8805 10^{55}$			
(AH4)	$1.7650 10^{ 28}$	$1.2925 10^{-30}$	$1.5086 10^{33}$	$1.9160 10^{ 37}$	$1.2631 10^{\ 42}$	$1.0332 10^{ 49}$			
(AD1)	$2.7444 10^{\ 30}$	$7.3146 10^{ 31}$	$7.7265 10^{ 32}$	$3.4757 10^{33}$	$6.5943 10^{ 35}$	5.0173 10 37			
(AD2)	$8.3736 10^{\ 33}$	$5.3323\ 10^{\ 35}$	$5.4243\ 10^{\ 38}$	$6.2807\ 10^{\ 42}$	$4.2604 10^{\ 47}$	5.2039 10 54			
(AD3)	$5.2459\ 10^{\ 34}$	$2.1056 10^{-36}$	$1.1984 10^{-39}$	$6.5459\ 10^{\ 44}$	$1.6204 10^{-49}$	$4.7849 10^{ 57}$			

Внески цих реакцій в швидкість зміни концентрацій H_2 та HD з червоним зміщенням наведено в табл. 3. Бачимо, що внески реакцій (H10) і (H15) перевищують внески реакцій (AH1)—(AH4), а внески реакцій (D8) і (D10) — внески реакцій (AD1)—(AD3) на всіх червоних зміщеннях від 1000 до 500. Однак реакції (H10) і (H15) є протилежними, так само як і реакції (D8) і (D10), тобто швидкість збільшення концентрацій H_2 та HD визначається різницями (H10) – (H15) та (D8) – (D10) відповідно (для H_2 збільшення концентрації прискорюється додатково реакціями (H5) і (D10) та сповільнюється реакцією (D8)). Через низьку температуру реліктового випромінювання внесок фотодисоціації H_2 на z = 1000 не перевищує 0.25 % суми внесків реакцій (H5) + (H10) – (H15) – (D8) + (D10), а внесок фотодисоціації HD не перевищує 0.2 % різниці внесків реакцій (D8) – (D10). Внески фотодисоціації зменшуються зі зменшенням z.

Таким чином, фотодисоціацією молекул H₂ та HD можна знехтувати на червоних зміщеннях, менших за 1000. На z = 1000 внесок реакції (AH1) становить близько 55 % суми внесків (H5) + (H10) – (H15) – (D8) + (D10), а внесок реакції (AD1) — 55 % різниці внесків (D8) – (D10). Отже, на червоному зміщенні 1000 врахування реакцій (AH1) і (AD1) сповільнить формування молекул H₂ та HD приблизно у два рази. На z = 900 внески реакцій (AH1) і (AD1) не перевищують 15 %, а на z = 800 - 2 % суми внесків (H5) + (H10) – (H15) – (D8) + (D10) та різниці внесків (D8) – (D10) відповідно. Вже на z = 700 внески реакцій (AH1) і (AD1) є мізерними.

висновки

Обчислення відносних концентрацій перших молекул на основі модифікованої моделі ефективного 3-рівневого атома водню та гелію для космологічної рекомбінації та мінімальної моделі для кінетики хімічних реакцій в епоху Темних віків показали, що в ранньому Всесвіті сформувалося найбільше молекул H₂. На z = 10 відносна концентрація H₂ перевищує відносні концентрації H₂ та HeH⁺ y 10⁷ разів, H⁻ — y 10⁶ разів, HD — y 10³ разів.

Неточності в розрахунку космологічної рекомбінації призводять до похибок значень відносних концентрацій молекул, негативних іонів водню та молекулярних іонів, що не перевищують 2-3 %, проте є сумірними з похибками, викликаними неточностями значень космологічних параметрів (до 2 %). Найважливішим є точний опис рекомбінації водню та дейтерію. Вплив неточностей визначення кількості сортів нейтрино, а також вмістів дейтерію та гелію з даних Космічної обсерваторії Planck є несуттєвим (похибки відносних концентрацій не перевищують 0.5 %).

Після закінчення епохи Темних віків та початку Космічного світанку (z < 30) необхідно враховувати реіонізацію середовища, проте невизначеності теоретичного опису цього процесу не дозволяють отримати достатньо точні концентрації іонів та первинних молекул.

додаток

КОНЦЕНТРАЦІЇ МОЛЕКУЛ НА СТАДІЇ РІВНОВАЖНОЇ РЕКОМБІНАЦІЇ

На стадії рівноважної рекомбінації водню, дейтерію та гелію з рівнянь (1) за умови $dx_i/dt = 0$ отримується система алгебраїчних рівнянь для відносних концентрацій молекул, негативних іонів водню і молекулярних іонів. Її можна лінеаризувати, приймаючи, що x_{HII}, x_{DII} та x_{HeII} — це величини нульового порядку, а $x_H, x_{H_2}, x_{H_2}, x_{HD}$ та x_{HeH} — першого порядку малості. З лінійної системи рівнянь отримуються розв'язки:

$$\begin{array}{c} x_{\rm HeH} & \frac{N_{\rm HeH}^0}{D_{\rm HeH}}, \\ N_{\rm HeH}^0 & k_{\rm HeI H II} n_{\rm H} x_{\rm H II} (1 \ x_{\rm HeII}), \\ D_{\rm HeH} & k_{\rm HeI H II} n_{\rm H} x_{\rm H II} \ k_{\rm HeH} \quad k_{\rm HeH \ H I} n_{\rm H} (1 \ x_{\rm H II}), \\ x_{\rm H} & \frac{N_{\rm H}^0}{D_{\rm H}}, \\ N_{\rm H}^0 & k_{\rm HIe} (1 \ x_{\rm H II}) (x_{\rm H II} \ x_{\rm DII} f_{\rm D} \ x_{\rm HeII} f_{\rm He}) n_{\rm H}, \\ D_{\rm H} & k_{\rm H} \quad k_{\rm H \ HI} (1 \ x_{\rm H \ II}) n_{\rm H} \ k_{\rm H \ HII} n_{\rm H} n_{\rm H}, \end{array}$$

14

$$\begin{aligned} x_{\rm H_2} & \frac{N_{\rm H_2}^0 \dots N_{\rm H_2}^{\rm H} x_{\rm H}}{D_{\rm H_2}}, \\ x_{\rm H_2} & \frac{N_{\rm H_2}^{\rm H} D_{\rm H_2} N_{\rm H_2}^{\rm H} N_{\rm H_2}^{\rm H}}{D_{\rm H_2} D_{\rm H_2}} x_{\rm H} & \frac{N_{\rm H_2}^{\rm H_2} N_{\rm H_2}^0}{D_{\rm H_2} D_{\rm H_2}}, \\ & N_{\rm H_2}^0 \quad k_{\rm H1H\,II} x_{\rm H\,II} (1 \quad x_{\rm H\,II}) n_{\rm H} \\ (k_{\rm HeH \ H\,I} (1 \quad x_{\rm H\,II}) \quad k_{\rm H1H\,II} x_{\rm H\,II}) f_{\rm He} n_{\rm H} N_{\rm HeH}^0 / D_{\rm HeH} , \\ & N_{\rm H_2}^{\rm H} \quad ((k_{\rm H_2 \rm H\,II} \quad 2k_{\rm H1H\,II}) x_{\rm H\,II} \\ k_{\rm H1H\,II} k_{\rm D\,I\,H_2} x_{\rm D\,II} f_{\rm D} / k_{\rm HDH\,II}) n_{\rm H} N_{\rm H_2}^{\rm H} / D_{\rm H_2} \quad k_{\rm H1H\,II} x_{\rm H\,II} n_{\rm H} , \\ & D_{\rm H_2} \quad 2k_{\rm H1H\,II} x_{\rm H\,II} n_{\rm H} \quad k_{\rm H_2} \quad k_{\rm H_2 \rm H\,I} (1 \quad x_{\rm H\,II}) n_{\rm H} \\ ((k_{\rm H_2 \rm H\,II} \quad 2k_{\rm H1H\,II}) x_{\rm H\,II} \quad k_{\rm H1H\,II} k_{\rm D\,I\,H_2} x_{\rm D\,II} f_{\rm D} / k_{\rm HDH\,II}) n_{\rm H} N_{\rm H_2}^{\rm H_2} / D_{\rm H_2}, \\ & N_{\rm H_2} \quad k_{\rm H \ H\,II} (1 \quad x_{\rm H\,II}), \quad N_{\rm H_2}^{\rm H_2} \quad k_{\rm H_2 \rm H\,I} (1 \quad x_{\rm H\,II}), \\ & D_{\rm H_2} \quad k_{\rm H_2 \rm H\,II} x_{\rm H\,II}, \quad x_{\rm H\,I} n_{\rm H}, \quad x_{\rm H\,I} \quad k_{\rm HD\,I\,II} x_{\rm H\,II} x_{\rm H\,II} x_{\rm H\,II} x_{\rm H\,II}. \\ & k_{\rm HDH\,II} x_{\rm H\,II} x_{\rm H\,II} x_{\rm H\,II} , \quad x_{\rm H\,II} \quad k_{\rm HD\,I\,II} x_{\rm H\,II} x_{\rm H\,II} x_{\rm H\,II} x_{\rm H\,II} , \\ & k_{\rm HDH\,II} x_{\rm H\,II} x_{\rm H\,II} x_{\rm H\,II} x_{\rm H\,II} x_{\rm H\,II} , \quad x_{\rm H\,II} , \\ & k_{\rm HD\,I\,II} x_{\rm H\,II} x_{\rm H\,II} x_{\rm H\,II} x_{\rm H\,II} , \quad x_{\rm H\,II} x_{\rm$$

Роботу виконано в рамках проекту Міністерства освіти і науки України «Динаміка, еволюційні та фізичні ефекти у формуванні структури Всесвіту, залишках наднових і тісних подвійних зоряних системах з релятивістським компонентом» (державний реєстраційний номер 0116U001544).

- 1. Новосядлий Б. Формування великомасштабної структури Всесвіту: теорія і спостереження // Журн. фіз. досл.—2007.—11.—С. 226—257.
- 2. *Ali-Haimoud Y., Hirata C. M.* HyRec: A fast and highly accurate primordial hydrogen and helium recombination code // Phys. Rev. D.—2011.—**83**, N 4.—043513.
- 3. *Alizadeh E., Hirata C. M.* Molecular hydrogen in the cosmic recombination epoch // Phys. Rev. D.—2011.—84, N 8.—083011 (14 p.).
- 4. Chluba J., Thomas R. M. Towards a complete treatment of the cosmological recombination problem // Mon. Notic. Roy. Astron. Soc.—2011.—412.—P. 748—764.
- 5. *Coppola C. M., Diomede P., Longo S., Capitelli M.* H₂ and HD direct photodissociation in the chemistry of the primordial Universe // Astrophys. J.—2011.—727.—37.
- 6. *Coppola C. M., Longo S., Capitelli M., Palla F., Galli D.* Vibrational level population of H₂ and H₂ in the early universe // Astrophys. J. Suppl. Ser.—2011.—**193**.—7.
- 7. Fields B. D., Molaro P., Sarkar S. Big-bang nucleosynthesis // Chin. Phys. C.—2014.— 38.—P. 339—344.
- Galli D., Palla F. The chemistry of the early Universe // Astron. and Astrophys.— 1998.—335.—P. 403—420.
- 9. *Galli D., Palla F.* The dawn of chemistry // Ann. Rev. Astron. and Astrophys.—2013.— 51.—P. 163—206.
- Glover S. C. O., Abel T. Uncertainties in H₂ and HD chemistry and cooling and their role in early structure formation // Mon. Notic. Roy. Astron. Soc.—2008.—388.— P. 1627—1651.

Б. НОВОСЯДЛИЙ, О. СЕРГІЄНКО, В. М. ШУЛЬГА

- Glover S. C. O., Savin D. W. Is H₃ cooling ever important in primordial gas? // Mon. Notic. Roy. Astron. Soc.—2009.—393.—P. 911—948.
- 12. *Hirata C. M., Padmanabhan N.* Cosmological production of H₂ before the formation of the first galaxies // Mon. Notic. Roy. Astron. Soc.—2006.—372.—P. 1175—1186.
- Izotov Y. I., Kolesnik I. G. Kinetics of H₂ formation in the primordial gas // Sov. Astronomy.—1984.—28.—P. 15—21.
- Kholupenko E. E., Ivanchik A. V., Varshalovich D. A. Rapid He II He I recombination and radiation arising from this process // Mon. Notic. Roy. Astron. Soc.— 2007.—378.—P. L39—L43.
- 15. *Lepp S., Shull J. M.* Molecules in the early universe // Astrophys. J.—1984.—280.— P. 465—469.
- Lepp S., Stancil P. C., Dalgarno A. Topical review: Atomic and molecular processes in the early Universe // J. Phys. B.—2002.—35.—P. R57—R80.
- 17. *Novosyadlyj B*. Perturbations of ionization fractions at the cosmological recombination epoch // Mon. Not. Roy. Astron. Soc.—2006.—370.—P. 1771—1782.
- 18. Peebles P. J. E. Recombination of the primeval plasma // Astrophys. J.—1968.— 153.—P. 1.
- 19. *Pfenniger D., Puy D.* Possible flakes of molecular hydrogen in the early Universe // Astron. and Astrophys.—2003.—**398**.—P. 447—454.
- Planck Collaboration Planck 2013 results. XVI. Cosmological parameters // Astron. and Astrophys.—2014.—571.—A16.
- Planck Collaboration Planck 2015 results. XIII. Cosmological parameters // Astron. and Astrophys.—2016.—594.—A13.
- Puy D., Alecian G., Le Bourlot J., et al. Formation of primordial molecules and thermal balance in the early universe // Astron. and Astrophys.—1993.—267.—P. 337—346.
- Puy D., Signore M. Primordial molecules in the early cloud formation // Astron. and Astrophys.—1996.—305.—P. 371.
- 24. *Puy D., Signore M.* Molecular cooling of a collapsing protocloud // New Astron.— 1997.—2.—P. 299—308.
- 25. *Puy D., Signore M.* Primordial chemistry // New Astron. Rev.—1999.—43.—P. 223—241.
- 26. *Puy D., Signore M.* Primordial chemistry from molecules to secondary cosmic microwave background anisotropies // New Astron. Rev.—2007.—51.—P. 411—416.
- Rubino-Martin J. A., Chluba J., Fendt W. A., Wandelt B. D. Estimating the impact of recombination uncertainties on the cosmological parameter constraints from cosmic microwave background experiments // Mon. Notic. Roy. Astron. Soc.—2010.— 403.—P. 439—452.
- Schleicher D. R. G., Galli D., Palla F., et al. Effects of primordial chemistry on the cosmic microwave background // Astron. and Astrophys.—2008.—490.—P. 521—535.
- Scott D., Moss A. Matter temperature during cosmological recombination // Mon. Notic. Roy. Astron. Soc.—2009.—397.—P. 445—446.
- Seager S., Sasselov D. D., Scott D. A new calculation of the recombination epoch // Astrophys. J.—1999.—523.—P. L1—L5.
- Seager S., Sasselov D. D., Scott D. How exactly did the Universe become neutral? // Astrophys. J. Suppl. Ser.—2000.—128.—P. 407—430.
- 32. *Stancil P. C., Lepp S., Dalgarno A.* The Deuterium chemistry of the early Universe // Astrophys. J.—1998.—**509**.—P. 1—10.
- Vonlanthen P., Rauscher T., Winteler C., et al. Chemistry of heavy elements in the Dark Ages // Astron. and Astrophys.—2009.—503.—P. 47—59.
- Wong W. Y., Moss A., Scott D. How well do we understand cosmological recombination? // Mon. Notic. Roy. Astron. Soc.—2008.—386.—P. 1023—1028.

Статья поступила в редакцию 21.12.16