ФИЗИКА ЗВЕЗД И МЕЖЗВЕЗДНОЙ СРЕДЫ

КИНЕМАТИКА И ФИЗИКА НЕБЕСНЫХ ТЕЛ том 30 № 5 2014

УДК 524.31

Л. С. Любимков, Д. Б. Поклад

Научно-исследовательский институт «Крымская астрофизическая обсерватория» п. Научный, Крым, 98409 lyub@crao.crimea.ua

Определение эффективных температур гигантов и сверхгигантов классов G и K по наблюдаемым фотометрическим индексам

Предложен метод определения эффективной температуры T_{ab} для гигантов и сверхгигантов спектральных классов G и K, основанный на применении двух фотометрических индексов, свободных от влияния межзвездного поглощения индекса Q в фотометрической системе UBV и индекса [c1] в системе иvby. Построены эмпирические зависимости между значениями T_{эф}, найденными для близких и ярких G- и К-гигантов и сверхгигантов методом инфракрасных потоков, с одной стороны, и наблюдаемыми индексами Q и [c₁] для этих звезд с другой стороны. Найдено систематическое расхождение между зависимостями T_{эф} от Q для звезд с нормальной и пониженной металличностью. Аппроксимация построенных зависимостей полиномами второго порядка дает относительно простой и вместе с тем достаточно точный метод определения Т_{эф} по индексу Q в области 3800 5100 К и по индексу [c₁] в области 4900 Т_{эф} T_{2d} 5500 K.

ВИЗНАЧЕННЯ ЕФЕКТИВНИХ ТЕМПЕРАТУР ГІГАНТІВ І НАДГІ-ГАНТІВ КЛАСІВ G I К ЗА СПОСТЕРЕЖУВАНИМИ ФОТОМЕТРИЧ-НИМИ ІНДЕКСАМИ, Любімков Л. С., Поклад Д. Б. — Запропоновано метод визначення ефективної температури Т_{еф} для гігантів і надгігантів спектральних класів G і К, заснований на застосуванні двох фотометричних індексів, вільних від впливу міжзоряного поглинання

індексу Q у фотометричній системі UBV та індексу [c₁] у системі иvby. Побудовано емпіричні залежності між значеннями T_{еф}, знайденими для близьких і яскравих G- і К-гігантів і надгігантів методом інфрачервоних потоків, з одного боку, і спостережуваними індексами

[©] Л. С. ЛЮБИМКОВ, Д. Б. ПОКЛАД, 2014

Q і $[c_1]$ для цих зірок — з іншого боку. Знайдено систематичну розбіжність між залежностями $T_{e\phi}$ від Q для зірок з нормальною та зменшеною металічністю. Апроксимація побудованої залежності поліномами другого порядку дає відносно простий але досить точний метод визначення $T_{e\phi}$ за індексом Q в області 3800 $T_{e\phi}$ 5100 K та за індексом $[c_1]$ в області 4900 $T_{e\phi}$ 5500 K.

DETERMINATION OF EFFECTIVE TEMPERATURES FOR G- AND K-TYPE GIANTS AND SUPERGIANTS FROM OBSERVED PHOTOMET-RIC INDICES, by Lyubimkov L. S., Poklad D. B. — We propose a method of the effective temperature T_{eff} determination for G- and K-type giants and supergiants which is based on the use of two photometric indices that are free from interstellar extinction, namely, the index Q in the UBV photometric system and the index $[c_1]$ in the uvby system. Empirical relations are constructed between the T_{eff} values derived for nearby and bright G and K-type giants and supergiants by the InfraRed Flux Method (IRFM), on the one hand, and the observed indices Q and $[c_1]$ for these stars, on the other hand. A systematic discrepancy is found between the $T_{eff} - Q$ relations for stars with the normal metallicity and with the lowered one. Approximating the constructed relations by the second-order polynomials, we obtain a relatively simple and, at once, rather accurate method of the T_{eff} determination from the index Q in a range of 3800 T_{eff} 5100 K and from the index [c₁] in a range of $4900 \quad T_{eff} \quad 5500 \text{ K}.$

введение

Химический состав гигантов и сверхгигантов спектральных классов F, G и K уже не одно десятилетие привлекает повышенное внимание исследователей. Объясняется это тем, что в атмосферах таких звезд наблюдаются аномалии содержания ряда легких элементов, которые объясняются изменением химического состава звезды в процессе ее эволюции [2]. В частности, азот обнаруживает тенденцию к избытку, а углерод к дефициту. Отношение изотопов углерода ¹²C/¹³C оказывается сильно пониженным. Большое разнообразие показывает содержание лития [12]. Из расчетов следует, что на стадии F-, G- и K-гигантов и сверхгигантов происходит глубокое конвективное перемешивание, приводящее к выносу продуктов термоядерных реакций из недр звезды на ее поверхность. Аккуратный анализ наблюдаемых химических аномалий и их сравнение с предсказаниями теории позволяет проверять и уточнять современную теорию эволюции звезд.

В Научно-исследовательский институте «Крымская астрофизическая обсерватория» уже выполнен ряд исследований сверхгигантов и ярких гигантов классов А, F и G [12—14]. Продолжая эти исследования, мы планируем изучить химический состав большой группы более холодных гигантов и сверхгигантов (классы светимости I, II и III), принадлежащих спектральным классам G и K. Как известно, анализ химического состава звезды начинается с определения двух ее фундаментальных параметров — эффективной температуры $T_{3\phi}$ и ускорения свободного падения lgg в атмосфере. От точности этих параметров существенно зависит точность определяемых содержаний элементов. Для нашей задачи особое значение имеет первый из них — эффективная температура $T_{3\phi}$.

При исследовании большого числа звезд важно иметь относительно простой, но одновременно и достаточно точный метод, пригодный для массовых определений эффективной температуры $T_{3\phi}$. Известен прямой метод оценки $T_{3\phi}$ путем измерения угловых диаметров звезд, например при их покрытии Луной. В частности, таким методом в работе [20] были получены высокоточные значения $T_{3\phi}$ для 32 гигантов классов К и М. Однако данный метод достаточно сложен и не подходит для оценки $T_{3\phi}$ в случае произвольно заданной выборки звезд.

Обсуждая другие методы определения параметра $T_{3\phi}$, следует отметить, что в случае холодных звезд классов G и K эти методы имеют специфические особенности. В частности, бальмеровские линии H и H, которые являются хорошими индикаторами $T_{3\phi}$ в случае более горячих звезд классов A и F, для G- и K-звезд не подходят, так как в их спектрах они достаточно слабы и сильно блендированы.

Известно, что одним из наиболее точных методов определения $T_{3\phi}$ у холодных звезд является метод инфракрасных потоков, в сокращенном обозначении IRFM (the Infra-Red Flux Method), который был предложен более 30 лет назад [6]. Этот метод основывается на том факте, что в инфракрасной области спектра потоки излучения у холодных звезд достаточно велики; кроме того, здесь сравнительно мало линий и нет значительного межзвездного поглощения. Метод IRFM уже был применен для большого числа холодных звезд.

В отличие от IRFM, который является чисто фотометрическим методом оценки $T_{3\phi}$, в работах [1] и [11] предложен спектроскопический метод определения $T_{3\phi}$ для F-, G- и К-гигантов и сверхгигантов. Здесь в качестве индикатора $T_{3\phi}$ использованы отношения глубин парлиний с сильно отличающимися потенциалами возбуждения. Зависимости указанных отношений от $T_{3\phi}$ прокалиброваны на основе известных высокоточных определений $T_{3\phi}$ для 110 F-, G- и К-гигантов [1] и 161 сверхгиганта тех же классов [11]. Данный метод требует высокоточных измерений глубин ряда спектральных линий (точнее, пар линий), поэтому для его применения необходимо иметь спектры с достаточно высоким разрешением.

В нашей работе [14] были определены параметры $T_{3\phi}$ и lgg, а также ряд других величин для 63 галактических сверхгигантов и ярких гигантов (классы светимости I и II) спектральных классов A, F и G. Здесь для определения lgg были применены звездные параллаксы; их наблюдаемые значения были взяты из новой редукции данных спутника HIPPARCOS [22]. Этот метод (он описан в работах [3, 14]) позволил найти величину lgg с беспрецедентной точностью; например, средняя ошибка значений lgg для звезд с расстояниями до 300 пк составила ±0.06 dex. Что касается величины $T_{3\phi}$, то в случае А- и F-звезд была применена комбинированная методика: спектроскопия (бальмеровские линии) + фотометрия (индексы Q, $[c_1]$ и). В случае более холодных G-звезд пришлось использовать только фотометрические индексы, причем индекс был исключен, так как он приводил к существенному завышению $T_{3\phi}$ по сравнению с индексом $[c_1]$ и данными метода IRFM.

В упомянутой работе [14] для G-гигантов и сверхгигантов основным индикатором $T_{3\phi}$ служил индекс $[c_1]$, а индикатором $\lg g$ — параллакс из работы [22]. Наблюдаемый индекс $[c_1]$ при этом напрямую сравнивался с теоретическими значениями $[c_1]$, вычисленными на основе моделей атмосфер. Если рассматривать более холодные K-звезды ($T_{3\phi} < 4900$ K), теория, как будет показано ниже, не может удовлетворительно объяснить наблюдаемые значения $[c_1]$ и Q. В настоящей работе применен другой подход по сравнению с [14]: для близких и ярких звезд строятся эмпирические зависимости высокоточных значений $T_{3\phi}$, определенных с помощью IRFM, от наблюдаемых индексов Q и $[c_1]$. Аппроксимация полученных зависимостей полиномами второго порядка дает для G- и K-гигантов и сверхгигантов относительно простой, но достаточно точный метод оценки параметра $T_{3\phi}$.

ИНДЕКСЫ Q и [c1]: СРАВНЕНИЕ НАБЛЮДЕНИЙ И ТЕОРИИ

Два фотометрических индекса, которые рассматриваются в настоящей работе, определяются из следующих соотношений: индекс $Q = (U \ B) \ 0.72(B \ V)$ в фотометрической системе *UBV*; индекс $[c_1] = c_1 - 0.20(b \ y)$ в системе *uvby*. Известно, что оба эти индекса свободны от влияния межзвездного поглощения.

Интересно сравнить, как согласуются теоретические индексы Q и $[c_1]$ с их наблюдаемыми величинами для холодных звезд классов G и К. Ниже мы приводим значения $T_{3\phi}$ для многих G- и К-гигантов и сверхгигантов, найденные с помощью IRFM; отметим, что их значения lgg, определенные нами, варьируют от 1.2 до 3.0. Чтобы провести корректное сравнение с теорией, мы выбрали из этого массива только звезды со значениями lgg от 1.6 до 2.4 (или lgg = 2.0 ± 0.4) и сравнили с расчетами для lgg = 2.0. Кроме того, в сравнении участвовали только звезды с нормальной (солнечной) металличностью, т. е. [Fe/H] 0.0. Сравнение между теорией и наблюдениями представлено на рис. 1.

На рис. 1, *а* приведены наблюдаемые величины Q для звезд в диапазоне эффективных температур $T_{3\phi}$ от 4000 до 5500 К и значениями lgg = 2.0±0.4 (точки) в сравнении со значениями Q, рассчитанными по программе ATLAS [7] (сплошная кривая). Наблюдаемая зависимость

Рис. 1. Наблюдаемые индексы Q и $[c_1]$ для звезд с $\lg = 2.0\pm0.4$ (точки) в зависимости от эффективной температуры $T_{3\phi}$. Сплошные кривые — расчеты для $\lg g =$ = 2.0 по программам ATLAS [7] и MARCS [17]. Штриховые кривые — усредненные зависимости, построенные по наблюдаемым точкам. Заштрихованный прямоугольник — область, где наблюдаемый индекс $[c_1]$ не показывает какой-либо существенной зависимости от $T_{3\phi}$

Q от $T_{3\phi}$ аппроксимирована штриховой кривой; она показывает, что при $T_{3\phi} < 4500$ К имеют место расхождения между наблюдениями и расчетами, усиливающиеся с уменьшением $T_{3\phi}$. Прямое использование теоретической зависимости при определении $T_{3\phi}$ по наблюдаемому индексу Q, например для К-гиганта с $T_{3\phi} = 4200$ К, приводит к уменьшению эффективной температуры $T_{3\phi}$ на 200 К. Это существенное различие, если учесть чувствительность спектров таких холодных звезд к параметру $T_{3\phi}$. Систематическое занижение $T_{3\phi}$ для К-гигантов и сверхгигантов может привести к систематическим ошибкам при определении содержания элементов.

Более значительные расхождения, как видно из рис. 1, δ , имеют место в случае индекса [c_1]. Две теоретические кривые (сплошные линии) получены по данным двух групп исследователей, использовавших разные компьютерные программы ATLAS [7] и MARCS [17]. Видим, что при $T_{3\phi} < 5500$ К теоретические кривые существенно расходятся. При этом кривая, полученная с программой ATLAS, хорошо согласуется с наблюдаемой зависимостью $T_{3\phi}$ от [c_1] (штриховая кривая) вплоть до значения $T_{3\phi} = 4500$ К; однако при $T_{3\phi} < 4500$ К между теорией и наблюдениями имеет место сильное несоответствие. Интересно, что теоретическая кривая, полученная с программой MARCS, при $T_{3\phi} < 5500$ К лежит заметно выше как наблюдаемой зависимости, так и теоретической кривой ATLAS. Для дальнейшего анализа является важной область температур $T_{3\phi}$ от 4000 до 4950 К и значений [c_1] от 0.2 до 0.3, которая на рис. 1, δ показана заштрихованным прямоуголь-

ником. Здесь наблюдаемый индекс $[c_1]$ не показывает никакой существенной зависимости от $T_{3\phi}$; поэтому в этой области он непригоден для определения $T_{3\phi}$.

Итак, во-первых, при температурах $T_{3\phi} < 4500$ К расчеты индексов Q и $[c_1]$ не могут описать наблюдаемые величины Q и $[c_1]$ для К-гигантов и сверхгигантов. Поэтому сравнение наблюдаемых значений Qи $[c_1]$ с расчетами этих величин с целью определения эффективной температуры при $T_{3\phi} < 4500$ К является некорректным. В данной работе предложен другой подход — прямое применение наблюдаемых индексов Q и [c₁] путем подстановки их в найденные нами зависимости $T_{3\phi}$ от Q и $[c_1]$. Во-вторых, на основании рис. 1 мы можем указать интервалы T_{эф}, в которых найденные зависимости могли бы дать достаточно надежные оценки $T_{3\phi}$. Мы полагаем, что зависимость $T_{
m s\phi}$ от Q можно применять для относительно холодных звезд с $T_{
m s\phi} <$ <5100 К, где ход Q с $T_{
m sol}$ сравнительно крутой (рис. 1, a), в то время как зависимость $T_{3\phi}$ от $[c_1]$, как следует из сказанного выше, можно использовать только для более горячих звезд с $T_{3\phi}$ 4900 К (рис. 1, δ). Перекрываясь в области $T_{3\phi} = 4900...5100$ К, эти зависимости могли бы обеспечить определение $T_{3\phi}$ во всей области температур, занимаемой G- и К-гигантами и сверхгигантами.

Возникает вопрос о расхождении между теорией и наблюдениями при $T_{3\phi} < 4500$ К. Из расчетов [7] следует, что при таких низких температурах даже в случае гигантов и сверхгигантов (в случае холодных карликов это хорошо известно) становится важной роль конвекции, и следовательно, та методика, которая применяется для ее учета в расчетах моделей атмосфер. Можно предположить, что традиционная теория длины перемешивания, применяемая в таких расчетах, при $T_{3\phi} < 4500$ К становится несостоятельной. Необходимо переходить к применению трехмерных нестационарных моделей атмосфер, как, например, в работе [21].

ОТБОР ЗВЕЗД С ВЫСОКОТОЧНЫМИ ЗНАЧЕНИЯМИ *Т*_{эф}, ПОЛУЧЕННЫМИ С ПОМОЩЬЮ МЕТОДА ИНФРАКРАСНЫХ ПОТОКОВ

Фотометрические индексы, которые сравнительно просто получить из наблюдений, в отличие от спектроскопических индикаторов эффективной температуры $T_{3\phi}$, хорошо подходят для оценки $T_{3\phi}$ даже в случае удаленных звезд, когда невозможно получить спектр звезды с высоким разрешением. Построение эмпирических зависимостей $T_{3\phi}$ от Qи [c_1] мы будем основывать на высокоточных значениях $T_{3\phi}$, найденных для близких G- и К-гигантов и сверхгигантов методом инфракрасных потоков (IRFM). В настоящей работе использованы данные работ [4, 5, 19], из которых взяты эффективные температуры $T_{3\phi}$, определенные с помощью IRFM. Эти работы содержат достаточно много G и К-гигантов и сверхгигантов. Найденные в них значения $T_{3\phi}$ получены с высокой точностью; кроме того, из сравнения $T_{3\phi}$ для общих звезд следует, что нет существенных систематических различий между этими работами.

В результате отбора, описанного ниже, мы выбрали из работ [4, 5, 19] для дальнейшего анализа 81 звезду. Эти объекты были разделены на две группы звезды с нормальной и пониженной металличностью. Объясняется это тем, что гиганты и сверхгиганты с пониженной металличностью, как оказалось, показывают систематические отличия в наблюдаемом индексе Q от нормальных звезд с такими же температурами $T_{3\phi}$. В табл. 1 представлены 65 отобранных звезд с нормальной металличностью. Под нормальной металличностью мы имеем в виду значения [Fe/H] от

0.2 до +0.2, в среднем [Fe/H] = 0.0; к звездам с пониженной металличностью мы относим объекты с [Fe/H] от 0.3 до 0.7, в среднем [Fe/H] = 0.5. Звезды за пределами интервала [Fe/H] от 0.7 до +0.2 не рассматривались. Поскольку все рассмотренные звезды являются довольно яркими, для каждой из них в литературе имеется, как правило, несколько оценок [Fe/H], которые можно найти, например, в базе данных SIMBAD (http://simbad.u-strasbg.fr/simbad/sim-fid). Напомним, что величина [Fe/H] характеризует содержание железа в логарифмической шкале по отношению к содержанию на Солнце.

Как видно из табл. 1, выбранные звезды являются яркими; их видимые звездные величины $m_V < 5.6$. Другим критерием отбора было

			0.00 11	0.00)							
HR	HD	Sp	m_V	, мсд	<i>d</i> , пк	<i>Т</i> эф, К (IRFM)	Источ- ник	lgg	M/M_{\odot}	Q	$[c_1]$
					[Fe/H] 0.0					
165	3627	K3 III	3.28	30.91	32	4343	[19]	2.22	1.46	0.568	0.256
168	3712	K0 III	2.25	14.29	70	4553	[19]	1.85	5.51	0.290	
180	3919	G8 III	4.61	13.27	75	5100	[5]	2.78	3.10	0.026	
253	5234	K2 III	4.83	9.93	101	4453	[4]	2.17	2.57	0.376	0.229
402	8512	K0 III	3.60	28.66	35	4689	[4]	2.67	2.17	0.164	0.287
434	9138	K4 III	4.84	10.73	93	4046	[4]	1.66	1.41	0.566	0.263
464	9927	K3 III	3.57	18.41	54	4380	[19]	2.10	2.26	0.528	0.249
489	10380	K3 III	4.45	8.98	111	4132	[19]	1.64	2.27	0.575	0.238
603	12533	K3 II	2.14	9.19	109	4259	[19]	1.35	7.56	0.594	
617	12929	K2 III	2.00	49.56	20	4501	[19]	2.37	2.03	0.289	0.247
694	14770	G8 III	5.19	8.17	122	4951	[5]	2.57	3.54	0.052	
874	18322	K1 III	3.89	23.89	42	4608	[4]	2.55	2.05	0.200	0.273
941	19476	K0 III	3.80	28.93	35	4879	[4]	2.90	2.42	0.124	0.285
1318	26846	K3 III	4.90	13.46	74	4577	[4]	2.47	2.15	0.301	0.267
1457	29139	K5 III	0.98	48.94	20	3883	[19]	1.32	1.55	0.793	0.182
2012	39003	G9.5 III	3.95	14.16	71	4604	[4]	2.31	3.20	0.261	0.213
2427	47174	K3 Iab	4.80	7.84	128	4394	[5]	1.99	3.07	0.412	
2443	47442	K0 II-III	4.43	7.74	129	4633	[5]	2.13	4.34	0.208	
2985	62345	G8 III	3.57	23.07	43	5001	[4]	2.79	3.02	0.019	0.281
2990	62509	K0 III	1.15	96.54	10	4833	[19]	2.88	2.28	0.135	0.298
3003	62721	K4 III	4.88	9.61	104	3988	[19]	1.54	1.46	0.711	0.281
3475	74739	G8 Iab	4.03	9.85	102	4911	[4]	2.32	4.25	0.052	0.292
3547	76294	G9 II-III	3.13	19.51	51	4817	[19]	2.45	3.66	0.075	

Таблица 1. Параметры отобранных звезд, имеющих нормальную и пониженную металличность ([Fe/H] 0.0 и -0.5)

									Ок	ончание	табл. 1
HR	HD	Sp	m_V	, мсд	<i>d</i> , пк	<i>Т</i> эф, К (IRFM)	Источ- ник	lgg	M/M _☉	Q	$[c_1]$
3705	80493	K7 III	3.16	16.06	62	3851	[19]	1.23	1.77	0.827	
3903	85444	G7 III	4.12	12.36	81	5085	[5]	2.57	3.59	-0.022	
3994	88284	K0 III	3.61	28.98	35	4865	[4]	2.84	2.54	0.188	
4247	94264	K0 III	3.83	34.38	29	4670	[19]	2.80	1.69	0.171	0.279
4291	95345	K1 III	4.85	9.05	110	4490	[4]	2.18	2.91	0.278	0.278
4392	98839	G7.5 III	4.99	6.12	163	4872	[4]	2.29	4.29	0.083	0.278
4432	99998	K3.5 III	4.77	5.40	185	3919	[19]	1.19	2.67	0.701	0.171
4716	107950	G6 III	4.77	8.44	118	5033	[4]	2.50	3.76	-0.017	
4932	113226	G8 III	2.83	29.76	34	5049	[19]	2.74	3.17	0.054	
5429	127665	K3 III	3.58	20.37	49	4271	[4]	2.00	1.77	0.509	
5480	129312	G7 III	4.86	6.07	165	4854	[4]	2.23	4.46	0.037	0.254
5649	134505	G7 III	3.41	27.80	36	5058	[5]	2.88	2.84	-0.001	0.291
6132	148387	G8 III	2.74	35.42	28	5007	[5]	2.82	2.94	0.024	
6147	148786	G9 III	4.29	13.39	75	5106	[5]	2.69	3.32	0.049	
6603	161096	K2 III	2.75	39.85	25	4533	[4]	2.47	1.89	0.397	0.305
6698	163917	G9 III	3.31	21.64	46	4871	[4]	2.60	3.30	0.156	
6703	163993	G8 III	3.70	23.84	42	5011	[5]	2.84	2.88	0.011	
6705	164058	K5 III	2.23	21.14	47	3927	[19]	1.28	2.20	0.782	0.185
6770	165760	G8 III	4.65	11.96	84	4969	[4]	2.66	3.33	0.047	0.311
6807	166640	G8 III	5.57	8.28	121	5079	[5]	2.75	3.17	-0.001	
6895	169414	K2 III	3.84	27.42	36	4450	[19]	2.43	1.50	0.322	0.226
6970	171391	G8 III	5.13	9.91	101	5116	[5]	2.75	3.19	-0.066	
69/3	171443	K3 III	3.85	16.38	61	4248	[4]	1.93	1.89	0.565	
7239	1/8345	K0 II	4.12	6.88	145	45/5	[5]	1.94	5.07	0.206	0.212
7420	1812/0		5.80	20.27	38	4935	[19]	2.89	2.02	0.048	0.313
7429	104400	G1 II	4.43	767	120	5415	[4]	2.05	2.01	0.399	0.275
7581	188114	KO II III	4.39	17.07	56	1683	[5]	2.40	2.61	-0.130	0.370
7615	188947	K0 III	3.88	24 17	41	4085	[3]	2.55	2.01	0.127	0.230
7754	192947	G8 5 III-IV	3.58	30.82	32	4978	[4]	2.70	2.47	0.009	0.201
7949	197989	K0 III	2 48	44 86	22	4710	[19]	2.50	2.34	0.009	0.300
8093	201381	G8 III	4 52	20.47	49	5093	[5]	3.03	2.55	0.018	0.274
8167	203387	G8 III	4.30	16.58	60	5105	[5]	2.84	2.98	-0.063	
8232	204867	G0 Ib	2.91	6.07	165	5474	[5]	1.87	5.99	-0.029	0.464
8255	205512	K1 III	4.88	14.09	71	4609	[4]	2.52	2.17	0.229	0.241
8414	209750	G2 Ib	2.95	6.23	161	5206	[5]	1.81	6.26	0.038	0.329
8498	211388	K3 II-III	4.13	5.25	190	4140	[5]	1.39	4.99	0.610	
8632	214868	K2 III	4.51	9.80	102	4303	[19]	1.92	2.53	0.423	0.220
8649	215167	K3 III	4.69	7.53	133	4072	[4]	1.51	2.38	0.567	0.185
8650	215182	G2 II-III	2.95	15.22	66	5104	[5]	2.36	4.16	-0.070	0.392
8916	220954	K1 III	4.28	21.96	46	4699	[4]	2.70	2.13	0.223	0.273
9057	224342	F8 III	6.03	3.10	323	5520	[4]	2.35	4.32	-0.196	0.495
1(2	2546	CO III	4.27	10.01	[Fe/H]	0.5	[10]	2.75	1.01	0.161	0.242
103	3340 34224	00 III K2 5 III	4.3/	19.91	50 71	4933 4102	[19] [/]	∠./⊃ 1.74	1.91	-0.101	0.342
1007	27160	K2.5 III	4.55	27.76	26	4193	[4]	2.57	0.01	0.337	0.220
2035	30364	KU III K1 III IV	4.09	27.70	30	4093	[4]	2.37	1.10	-0.002	0.301
2033	73108	K2 III	3.81 4.60	12 74	33 78	4399	[4]	2.41	1.11	0.303	0.318
4382	98430	K0 III	3.56	17.56	57	4468	[4]	1.09	1.25	0.303	
4518	102224	K0.5 III	3.71	17.76	56	4378	[19]	1.90	1.34	0.302	0.254
4608	104979	G8 III	4.13	19.98	50	4824	[4]	2.57	1.84	-0.075	0.187
5340	124897	K1.5 III	-0.04	88.83	11	4231	[19]	1.66	1.21	0.382	0.337
5681	135722	G8 III	3.47	26.78	37	4834	[19]	2.58	1.86	-0.012	0.289
5787	138905	K0 III	3.92	19.99	50	4711	[4]	2.40	1.73	0.017	0.275
5889	141714	G3.5 III	4.60	19.18	52	5247	[5]	3.02	2.25	-0.211	0.313
6220	150997	G7.5 III	3.49	30.02	33	4948	[19]	2.77	1.93	-0.068	
6869	168723	K0 III-IV	3.26	53.93	19	4835	[4]	2.88	1.18	-0.025	0.307
8551	212943	K0 III	4.79	21.99	45	4588	[4]	2.51	0.90	0.125	0.296

8961 222107 G8 III

3.82 37.87 26

4605

[19]

ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНЫХ ТЕМПЕРАТУР ГИГАНТОВ И СВЕРХГИГАНТОВ

0.84

2.60

-0.034 0.283

условие, чтобы они имели достаточно большие и высокоточные параллаксы ; это необходимо для уверенного определения величины lgg (см. ниже). Следствием отбора по параллаксам явился тот факт, что в наш список попали довольно близкие звезды с расстояниями d < 200 пк. Некоторым исключением является поздний F-гигант HR 9057, самая горячая звезда в нашем списке ($T_{3\phi} = 5520$ K); для него $m_V = 6.03$ и d = 323 пк.

Из упомянутых работ [4, 5, 19] отбирались звезды с такими значениями $T_{3\phi}$, которые полностью перекрывали бы область $T_{3\phi}$, занимаемую К- и G-гигантами и сверхгигантами. В табл. 1 включены звезды со значениями $T_{3\phi}$ от 3850 до 5520 К. Напомним, что эти значения были определены методом IRFM, поэтому они имеют довольно высокую точность. Ошибки определения $T_{3\phi}$, приведенные в работах [4, 5, 19], позволяют заключить, что типичная ошибка значений $T_{3\phi}$, представленных в табл. 1, составляет ±(60...80) К.

При отборе звезд были учтены также значения ускорения силы тяжести lgg, которые должны были соответствовать гигантам и сверхгигантам. Все отобранные звезды попадают в область lgg от 1.2 до 3.0. Значения lgg находились нами по звездным параллаксам (в мсл миллисекундах дуги). Методика определения lgg по параллаксам описана в работах [3, 14]. Выше уже отмечалось, что для близких звезд, как в нашем случае, этот метод дает беспрецедентную точность определения lgg (несколько сотых единицы). Попутно приходится определять массу М каждой звезды; для этого мы использовали эволюционные треки [8] в случае звезд с нормальной металличностью и треки [9] в случае звезд с пониженной металличностью. Следует отметить, что во втором случае использование треков [9] вместо [8] приводит к некоторому уменьшению величины lgg и заметному понижению массы М. Из табл. 1 видно, что рассмотренные звезды имеют массы М в диапазоне от 0.8 до 7.6 M_{\odot} , где M_{\odot} — масса Солнца.

Еще одним обязательным условием при отборе звезд из работ [4, 5, 19] было наличие наблюдаемого индекса Q; значения Q найдены с помощью каталога [16] и базы данных SIMBAD (http://simbad. u-strasbg.fr/simbad/sim-fid). Что касается индекса [c_1], то его наблюдаемые значения, как оказалось, известны не для всех выбранных звезд; они найдены с помощью каталога [10]. Наблюдаемые величины Q и [c_1] приведены в двух последних графах табл. 1.

ЗАВИСИМОСТИ МЕЖДУ ЭФФЕКТИВНОЙ ТЕМПЕРАТУРОЙ И НАБЛЮДАЕМЫМИ ИНДЕКСАМИ *Q* и [*c*₁]

В работе [15] на основе данных, полученных для 102 ранних и средних В-звезд главной последовательности, были построены калибровочные зависимости между $T_{3\phi}$ и индексами Q и $[c_1]$, которые позволяли по наблюдаемым значениям Q и $[c_1]$ быстро определять эффективную Рис. 2. Зависимость между эффективной температурой $T_{3\phi}$ и индексом Q для звезд с нормальной металличностью (черные кружки) и пониженной металличностью (светлые кружки). Сплошная кривая — соотношение (1), штриховая — (2)

температуру $T_{3\phi}$ для звезд указанного типа. Та же идея фактически применена в настоящей работе — построение зависимости между $T_{3\phi}$ и индексами Q и $[c_1]$; однако при этом мы не используем собственные оценки $T_{3\phi}$, как в [15], а берем высокоточные значения $T_{3\phi}$ для ярких и близких звезд, полученные с помощью IRFM в других работах.

На рис. 2 показана зависимость между $T_{3\phi}$ и Q, построенная по данным табл. 1. Черными кружками здесь представлены звезды с нор-0.0), а светлыми мальной металличностью ([Fe/H] звезды с пониженной металличностью ([Fe/H] 0.5). Мы аппроксимировали обе зависимости полиномами второго порядка; они показаны на рис. 2 сплошной и штриховой кривой соответственно. Видим, что вторая зависимость (для звезд с пониженной металличностью) лежит систематически ниже первой. При обсуждении рис. 1, а уже было отмечено, что эмпирическую зависимость $T_{3\phi}$ от Q следует использовать для относительно холодных звезд. Теперь мы можем уточнить, что полученные кривые $T_{3b}(Q)$ на рис. 2 можно применять для определения эффективной температуры в интервале $T_{
m s\phi}\,$ от 3800 до 5100 К для звезд с нормальной металличностью (сплошная кривая) и от 4200 до 5100 К для звезд с пониженной металличностью (штриховая кривая). Соответствующие интервалы Q составляют приблизительно от 0.9 до 0.0 в первом случае и от 0.4 до 0.2 во втором.

Таким образом, оценка $T_{3\phi}$ по индексу Q может быть выполнена с помощью следующих соотношений:

 $T_{\rm sp} = 5064.0 - 1942.8Q + 639.59Q^2 \ ([Fe/H] 0.0, 0.0 Q 0.9),$ (1)

$$T_{3\phi} = 4708.1 - 1684.9Q + 1353.9Q^2$$
 ([Fe/H] 0.5, 0.2 Q 0.4). (2)

Что касается индекса [c_1], то для построения зависимости $T_{3\phi}$ от [c_1] подходит сравнительно небольшое число звезд. Прежде всего, значения [c_1], в отличие от Q, известны не для всех выбранных звезд. В табл. 1 индекс [c_1] приведен для 42 из 65 объектов с нормальной металличностью и для 13 из 16 объектов с пониженной металличностью. Далее, как отмечалось выше, при $T_{3\phi} < 4900$ К индекс [c_1] становится нечувствительным к $T_{3\phi}$; поэтому приходится исключить из анализа

Рис. 3. Зависимость между эффективной температурой $T_{3\phi}$ и индексом $[c_1]$ для звезд с нормальной металличностью (черные кружки. Кружком с координатами $[c_1] = 0.290 \pm 0.012$ и $T_{3\phi} = 4947 \pm 106$ К представлены восемь гигантов с очень близкими параметрами $[c_1]$ и $T_{3\phi}$ (см. текст). Штриховая кривая — аппроксимация наблюдаемых точек полиномом второй степени. Сплошная кривая — расчеты [7] по программе ATLAS при lgg=2.0; она соответствует соотношению (3)

многие звезды с $T_{3\phi} < 4900$ К. На рис. 3 представлено десять звезд (черные кружки) со значениями $T_{3\phi}$ от 4854 до 5520 К и нормальной металличностью ([Fe/H] 0.0). Кроме того, имеется компактная группа из восьми гигантов со значениями lgg, максимально приближенными к lgg = 3 (в среднем $lgg = 2.89 \pm 0.09$). Они имеют очень близкие значения $T_{3\phi}$ и $[c_1]$, поэтому, чтобы не загромождать рис. 3, мы представили их средней точкой с координатами $[c_1] = 0.290 \pm 0.012$ и $T_{\rm ph} = 4947 \pm 106$ К (светлый кружок). Аппроксимация полиномом второй степени по десяти указанным звездам представлена штриховой линией, а сплошной кривой показана теоретическая зависимость, соответствующая расчетам по программе ATLAS [7] при lgg = 2.0. Видим, что имеется очень хорошее согласие между этими двумя кривыми. Другими словами, в интервале температур T_{3b} от 4900 до 5500 К наблюдаемые значения индекса $[c_1]$ хорошо описываются теоретической кривой. Интересно, что на эту кривую, которая соответствует ускорению свободного падения lgg = 2.0, попадает точка с существенно отличающимся значением lgg = 2.89±0.09 (кружок). Это свидетельствует о том, что при $T_{3\phi}$ 5000 К индекс [c_1] слабо зависит от lgg. Однако при температурах $T_{3\phi}$ 5500 K, как показывают расчеты, зависимость может быть более заметной.

Мы пришли к выводу, что в интервале 4900 $T_{3\phi}$ 5500 К, или 0.27 $[c_1]$ 0.50, для определения эффективной температуры по индексу $[c_1]$ можно пользоваться теоретической зависимостью, представленной на рис. 3 сплошной кривой. Наше уравнение для этой кривой имеет следующий вид:

$$T_{3\phi} = 3325.0 + 7267.5[c_1] - 5648.8[c_1]^2$$
([Fe/H] 0.0, 0.27 [c_1] 0.50). (3)

Следует отметить, что указанный интервал 4900 $T_{3\phi}$ 5500 К соответствует гигантам и сверхгигантам класса G. Таким образом, для более холодных звезд класса K он не подходит; в последнем случае можно использовать соотношения (1) и (2). Существует общая область $T_{3\phi}$ между 4900 и 5100 К, в которой могут работать все три соотношения (1)—(3). Рассматривая связь между индексами Q и [c_1] и эффективной температурой $T_{3\phi}$, следует иметь в виду, что эти индексы могут в какой-то мере зависеть и от величины lgg. Как уже указывалось, значения lgg для звезд нашего списка лежат в диапазоне от 1.2 до 3.0. Интересно, что значение lgg = 2, согласно [14], является приблизительно границей между сверхгигантами (класс светимости I) и гигантами (классы светимости II и III). Чтобы проверить возможную связь между индексами Q и $[c_1]$ и величиной lgg, мы разделили все звезды на две группы — с lgg < 2 и lgg > 2. Оказалось, что зависимости $T_{3\varphi}(Q)$ и $T_{3\varphi}([c_1])$ не показывают какого-либо систематического различия между этими двумя группами. Напомним также, что на рис. 3 точка с lgg = 2.89 оказалась фактически лежащей на кривой, рассчитанной при lgg = 2.0. Поэтому можно предположить, что соотношения (1), (2) и (3) применимы во всем диапазоне значений lgg между 1.2 и 3.0.

ТОЧНОСТЬ МЕТОДА; СРАВНЕНИЕ С ДРУГИМИ ДАННЫМИ

Какова точность определения $T_{3\phi}$ при использовании уравнений (1), (2) и (3)? Чтобы ответить на этот вопрос, следует, прежде всего, оценить влияние ошибок в индексах Q и $[c_1]$. Ошибки в наблюдаемых значениях Q и $[c_1]$ для звезд из табл. 1 можно определить по разбросу измеренных показателей цвета U B, B V, b y и c_1 , которые входят в соотношения, определяющие Q и $[c_1]$ (см. выше). Как видно из базы данных SIMBAD (http://simbad.u-strasbg.fr/simbad/sim-fid), для каждой из этих ярких звезд имеется, как правило, несколько измерений указанных величин. Мы нашли, что для большинства звезд ошибка

Q варьирует в интервале от ±0.01 до ±0.04; в таком же интервале варьирует и ошибка $[c_1]$. Типичными можно считать погрешности $Q = \pm (0.02...0.03)$ и $[c_1] = \pm (0.02...0.03)$.

Оказалось, что неточности в определении $T_{3\phi}$ из уравнения (1) зависят не только от ошибки Q, но и от самой величины Q. Наш анализ показал, что ошибка $T_{3\phi}$ получается малой для самых холодных звезд с Q = 0.6...0.7; здесь $T_{3\phi} = \pm (10...30)$ К при $Q = \pm (0.02...0.03)$. С другой стороны, для относительно горячих звезд с Q = 0.1 эта ошибка существенно выше: $T_{3\phi} = \pm (40...60)$ К при $Q = \pm (0.02...0.03)$. Важно, что даже при $Q = \pm 0.04$ величина $T_{3\phi}$ получается меньше ± 100 К. Что касается уравнения (2), полученного для звезд с пониженной металличностью, здесь ошибка $T_{3\phi}$ при Q = 0.1 оказалась примерно такая же, но при Q = 0.3 она в два раза меньше, чем для уравнения (1).

При применении уравнения (3), как и в предыдущем случае, ошибка $T_{3\phi}$ зависит не только от погрешности $[c_1]$, но и от самого индекса $[c_1]$. Из нашего анализа следует, что величина $T_{3\phi}$ получается сравнительно малой для относительно горячих звезд с $[c_1] =$ = 0.4...0.5; здесь $T_{3\phi} = \pm (40...80)$ К при $[c_1] = \pm (0.02...0.03)$. Однако при уменьшении индекса $[c_1]$ и, соответственно, температуры $T_{3\phi}$ погрешность увеличивается, и уже при $[c_1] = 0.3$ достигает ± 100 К.

Из изложенного анализа следует, что при определении эффективной температуры $T_{3\phi}$ с помощью индекса Q, когда применяются уравнения (1) или (2), обеспечивается достаточно высокая точность во всем рекомендованном выше интервале $T_{3\phi} = 3800...5100$ К. Типичная ошибка $T_{3\phi}$ при этом составляет ±50 К и меньше. Отметим, что указанная область $T_{3\phi}$ полностью перекрывает диапазон $T_{3\phi}$, занимаемый К-гигантами и сверхгигантами (примерно от 3800 до 4800 К). В случае G-звезд (кроме самых поздних, где еще применим индекс Q) можно использовать только индекс $[c_1]$ путем его подстановки в уравнение (3); последнее было рекомендовано применять в интервале $T_{3\phi} =$ = 4900...5500 К. В этом случае относительно высокая точность достигается только при рассмотрении наиболее горячих звезд, когда $[c_1]$

0.4...0.5 и $T_{3\phi}$ 5300...5500 К. При меньших значениях [c_1] (меньших температурах $T_{3\phi}$) ошибка $T_{3\phi}$ достигает ±100 К и больше.

Чтобы получить дополнительную оценку точности нашего метода, можно сравнить вычисленные из соотношений (1)-(3) значения $T_{\rm ph}$ с температурами $T_{\rm ph}$, которые были найдены с помощью IRFM и приведены в табл. 1. Другими словами, можно оценить среднюю ошибку по разбросу отдельных точек на рис. 2 и 3 около кривых, заданных уравнениями (1), (2) и (3). Мы нашли, что указанный разброс характеризуется стандартным отклонением ±94 К в случае соотношения (1), ± 98 К в случае (2) и ± 115 К в случае (3). Необходимо учесть, что этот разброс частично обусловлен ошибками исходных значений $T_{\rm ph}$, найденных с помощью IRFM. Если принять, что метод IRFM дает точность ±(60...80) К (см. выше), тогда типичная ошибка нашего метода составляет приблизительно ±(50...70) К для соотношений (1) и (2) и ±(80...100) К для соотношения (3). В целом эти оценки не показывают значительного отличия от оценок, полученных выше. В частности, они подтверждают, что использование индекса Q при определении $T_{3\phi}$ для К-звезд, вообще говоря, дает более высокую точность, чем использование индекса $[c_1]$ при определении T_{3b} для G-звезд.

Некоторое представление о точности нашего метода может дать также сравнение с оценками $T_{3\phi}$ для G- и K-гигантов и сверхгигантов с помощью упоминавшегося выше спектроскопического метода (по отношению глубин пар линий с разными потенциалами возбуждения), предложенного в работах [1] и [11].

В нашем списке имеется восемь звезд, общих с [1], и три звезды, общие с [11]. Для первых восьми звезд мы определили $T_{3\phi}$ по индексу Q из уравнений (1) и (2), для остальных трех звезд — по индексу $[c_1]$ из уравнения (3). Сравнивая наши значения $T_{3\phi}$ для этих 11 общих звезд с данными [1, 11], мы нашли, что разница составляет в среднем 38 К. Если внести поправку за эту систематическую величину, тогда различия между данными двух методов характеризуются стандартным отклонением ±79 К. В эту величину вносят вклад ошибки обоих методов. Если допустить, что этот вклад одинаков, тогда мы получаем для

<i>Т</i> _{эф} , К	lgg	M/M_{\odot}	Примечания
4231±49	1.65 ± 0.07	1.25±0.32	$T_{\rm ph}$ – IRFM [19]
4262±20	1.69 ± 0.03	$1.30{\pm}0.15$	$T_{3\phi}$ – соотношение (2)
4286±30	1.66 ± 0.05	$1.08{\pm}0.06$	Данные [18]

каждого метода ошибку ±56 К. Видим, что даже такой упрощенный анализ для сравнительно небольшого числа общих звезд подтверждает хорошую точность нашего метода.

В список рассмотренных нами звезд был включен Арктур (HR 5340), яркий и очень близкий К-гигант, неоднократно подвергавшийся разносторонним исследованиям. Как известно, Арктур часто рассматривается как пробный камень для проверки каких-либо методик или результатов, относящихся к изучению холодных звезд. Следуя этой традиции, мы сравнили наши значения $T_{3\phi}$, lgg и M для Арктура с недавними результатами работы [18]. Такое сравнение представлено в табл. 2; данные [18] приведены в ее последней строке (следует отметить, что найденное в [18] значение [Fe/H] = 0.52 ± 0.04 подтверждает пониженную металличность звезды). Отметим, что параметр $T_{3\phi}$ был определен в работе [18] по распределению наблюдаемого потока в широком спектральном диапазоне, а величина lgg, как и у нас, была найдена по параллаксу.

В табл. 2 мы указали значения $T_{3\phi}$, найденные как с помощью метода IRFM [19], так и с помощью нашего метода, конкретно из соотношения (2) по наблюдаемому индексу $Q = 0.382 \pm 0.018$. В обоих случаях согласие с работой [18] хорошее; тем не менее, температура $T_{3\phi}$, полученная из равенства (2), оказалась существенно ближе к значению [18]. Найденные нами в обоих этих случаях величины lgg в пределах ошибки совпадают с lgg из [18]. Согласие между оценками массы M находится в пределах ошибки определения этой величины. Главный вывод, который следует из табл. 2, состоит в том, что пример Арктура подтверждает высокую точность определения $T_{3\phi}$ нашим методом.

ЗАКЛЮЧЕНИЕ

В данной работе была поставлена задача разработать относительно простой, но вместе с тем достаточно точный метод определения эффективной температуры $T_{3\phi}$ для холодных гигантов и сверхгигантов спектральных классов G и K. Для этой цели были использованы два фотометрических индекса, свободных от влияния межзвездного поглощения: индекс Q в системе UBV и индекс [c₁] в системе uvby. Сопоставив наблюдаемую зависимость этих индексов от величины $T_{3\phi}$, найденной методом IRFM, с теоретическими расчетами, мы нашли, что имеются существенные расхождения между наблюдениями и теорией при температурах $T_{3\phi} < 4500$ К. Сделан вывод, что прямое сравнение наблюдаемых индексов Q и $[c_1]$ с теоретическими расчетами при таких низких температурах может приводить к существенным ошибкам при определении $T_{3\phi}$. Особенно ненадежным становится такое сравнение в случае индекса $[c_1]$ при $T_{3\phi} < 4900$ К. Поэтому предлагается использовать эти индексы другим путем, а именно: подстановкой наблюдаемых значений Q и $[c_1]$ в найденные нами зависимости $T_{3\phi}$ от Q и $[c_1]$, которые основаны на определениях $T_{3\phi}$ методом IRFM.

Полученные зависимости, представленные соотношениями (1), (2) и (3), позволяют находить $T_{3\phi}$ по индексу *Q* в области 3800 $T_{3\phi}$

5100 К и по индексу [c_1] в области 4900 $T_{3\phi}$ 5500 К. Зависимости $T_{3\phi}$ от Q оказались разными для звезд с нормальной металличностью ([Fe/H] 0.0) и пониженной металличностью ([Fe/H] 0.5); им соответствуют равенства (1) и (2). Исследование точности предложенного метода позволяет заключить, что она сравнима с точностью метода IRFM. Если принять, что IRFM дает точность ±(60...80) К, тогда типичная ошибка нашего метода составляет приблизительно ±(50...70) К для соотношений (1) и (2) и ±(80...100) К для соотношения (3). Для наиболее холодных ярких звезд (как, например, Арктур) ошибка определения $T_{3\phi}$ может составлять всего лишь ±20 К.

- 1. Ковтюх В. В., Мишенина Т. В., Горбанева Т. И. и др. Определение высокоточных эффективных температур гигантов по спектральным критериям // Астрон. журн.—2006.—83, № 2.—С. 158—167.
- 2. *Любимков Л. С.* Химический состав звезд: метод и результаты анализа. Одесса: Астропринт, 1995.—323 с.
- 3. Любимков Л. С., Рачковская Т. М., Поклад Д. Б. Определение фундаментальных параметров сверхгигантов классов F и G // Астрофизика.—2009.—**52**, № 2.— С. 237—256.
- Alonso A., Arribas S., Martinez-Roger C. The effectine temperature scale of giant stars (F0-K5). I.The effective temperature determination by means of the IRFM // Astron. and Astrophys. Suppl. Ser.—1999.—139.—P. 335—358.
- Blackwell D. E., Lynas-Gray A. E. Determination of the temperatures of selected ISO flux calibration stars using the Infrared Flux Method // Astron. and Astrophys. Suppl. Ser.—1998.—129.—P. 505—515.
- Blackwell D. E., Petford A. D., Shallis M. J. Use of the infra-red flux method for determining stellar effective temperatures and angular diameters. The stellar temperature scale // Astron. and Astrophys.—1980.—82.—P. 249—252.
- 7. Castelli F., Kurucz R. L. // Modeling of Stellar Atmospheres: IAU Simp. N 210 / Eds N. E. Piskunov, W. W. Weiss, D. F. Gray. 2003. Poster A20.
- 8. *Claret A*. New grids of stellar models including tidel-evolution constants up to carbon burning. I. From 0.8 to 125 M_{\odot} at Z = 0.02 // Astron. and Astrophys. —2004.—424.—P. 919—925.
- Claret A. New grids of stellar models including tidal-evolution constants up to carbon burning. III. From 0.8 to 125 M_☉: the Large Magellanic Cloud (Z = 0.007—0.01) // Astron. and Astrophys.—2006.—453.—P. 769—771.

- 10. *Hauck B., Mermilliod M.* Uvby-beta photoelectric photometric catalogue // Astron. and Astrophys. Suppl. Ser.—1998.—129.—P. 431—433.
- 11. *Kovtyukh V. V.* High-precision effective temperatures of 161 FGK supergiants from line-depth ratios // Mon. Notic. Roy. Astron. Soc.—2007.—378.—P. 617—624.
- 12. Lyubimkov L. S., Lambert D. L., Kaminsky B. M., et al. Lithium abundance in atmospheres of F- and G-type supergiants and bright giants // Mon. Notic. Roy. Astron. Soc.—2012.—427.—P. 11—26.
- Lyubimkov L. S., Lambert D. L., Korotin S. A., et al. Nitrogen enrichment in atmospheres of A- and F-type supergiants // Mon. Notic. Roy. Astron. Soc.—2011. 410.—P. 1774—1786.
- Lyubimkov L. S., Lambert D. L., Rostopchin S. I., et al. Accurate fundamental parameters for A-, F- and G-type supergiants in the solar neighbourhood // Mon. Notic. Roy. Astron. Soc.—2010.—402.—P. 1369—1379.
- Lyubimkov L. S., Rachkovskaya T. M., Rostopchin S. I., Lambert D. L. Surface abundances of light elements for a large sample of early B-type stars. II. Basic parameters of 107 stars // Mon. Notic. Roy. Astron. Soc.—2002.—333.—P. 9—26.
- 16. *Mermilliod J.-C., Mermilliod M.* Catalogue of mean UBV data on stars. New York: Springer-Verlag, 1994.—1387 p.
- 17. Onehag A., Gustafsson B., Eriksson K., Edvardsson B. Calibration of Strömgren *uvby*-H photometry for late-type stars a model atmosphere approach // Astron. and Astrophys.—2009.—498.—P. 527—542.
- 18. *Ramirez I., Allende Prieto C.* Fundamental parameters and chemical composition of Arcturus // Astrophys. J.—2011.—743.—P. 135—148.
- Ramirez I., Melendez J. The effective temperature scale of FGK stars. I. Determination of temperatures and angular diameters with the Infrared Flux Method // Astrophys. J.—2005.—626.—P. 446—464.
- Richichi A., Fabbroni L., Ragland S., Scholz M. A homogeneous temperature calibration for K and M giants with an extension to the coolest stars // Astron. and Astrophys.—1999.—344.—P. 511—520.
- Trampedach R., Asplund M., Collet R., et al. A grid of three-dimensional stellar atmosphere models of solar metallicity. I. General properties, granulation, and atmospheric expansion // Astrophys. J.—2013.—769.—P. 18—32.
- 22. Van Leeuwen F. Hipparcos, the new reduction of the raw data. Dordrecht: Springer, 2007.—449 p.

Статья поступила в редакцию 07.10.13