УДК 523.942

О. А. Баран, М. І. Стоділка

Астрономічна обсерваторія Львівського національного університету імені Івана Франка вул. Кирила і Мефодія 8, Львів, 79005 sun@astro.franko.lviv.ua

Особливості фотосферної конвекції Сонця на грануляційних, мезогрануляційних і супергрануляційних масштабах

Спектри потужності варіацій температури і вертикальних швидкостей у сонячній фотосфері розраховані з використанням даних спостережень у лінії нейтрального заліза 639.3 нм, отриманих на 70-см німецькому баштовому вакуумному телескопі VTT (Канарські острови, Іспанія) поблизу центра сонячного диску у спокійній області. Проаналізовано зміни спектрів з висотою: в нижній фотосфері потужність з висотою зменшується, основна потужність припадає на діапазон частот, що відповідає грануляції (пік на масштабах

1.5...2.0 Мм), у верхніх шарах фотосфери максимум спектру потужності зміщується у бік більших масштабів (1 Мм). Потужність варіацій вертикальної швидкості супергрануляції (20... 30 Мм) практично не змінюється з висотою; окремого режиму мезогрануляції (5...12 Мм) на всіх досліджуваних висотах не виявлено. Конвективна структура сонячної фотосфери на мезогрануляційних масштабах з висотою веде себе подібно до грануляції: мезоструктури є частиною протяжного розподілу грануляційних масштабів. Показано, що супергрануляційні потоки стійкі вздовж всієї фотосфери і сягають набагато вищих шарів, ніж потоки грануляції.

ОСОБЕННОСТИ ФОТОСФЕРНОЙ КОНВЕКЦИИ СОЛНЦА НА ГРА-НУЛЯЦИОННЫХ, МЕЗОГРАНУЛЯЦИОННЫХ И СУПЕРГРАНУЛЯ-ЦИОННЫХ МАСШТАБАХ, Баран А. А., Стодилка М. И. — Спектры мощности вариаций температуры и вертикальных скоростей в солнечной фотосфере рассчитаны с использованием данных наблюдений в линии нейтрального железа 639.3 нм, полученных на 70-см немецком башенном вакуумном телескопе VTT (Канарские острова, Испания) вблизи центра солнечного диска в спокойной области. Проанализированы изменения спектров с высотой: в нижней фотосфере мощность с высотой уменьшается, основная мощность приходится на диапазон частот, которые соответствуют грануляции (пик на маситабах 1.5...2.0 Мм), в верхних слоях фотосферы максимум спектра мощности смещается в сторону больших масштабов (

1 Мм). Мощность вариаций вертикальной скорости супергрануляции (20...30 Мм) практически не изменяется с высотой; отдельного режима мезогрануляции (5...12 Мм) на всех исследованых высотах не обнаружено. Конвективная структура солнечной фотосферы на мезогрануляционных масштабах с высотой ведет себя подобно грануляции: мезоструктуры являются частью протяженного распределения грануляционнных масштабов. Показано, что супергрануляционные потоки устойчивы вдоль всей фотосферы и достигают значительно более высоких слоев, нежели потоки грануляции.

PECULIARITIES OF SOLAR PHOTOSPHERIC CONVECTION AT GRA-NULAR, MESOGRANULAR AND SUPERGRANULAR SCALES, by Baran O. A., Stodilka M. I. — Power spectra of temperature and vertical velocity variations in the solar photosphere were calculated by using observational data of neutral iron line 639.3 nm obtained with the 70-cm German Vacuum Tower Telescope (Canary Islands, Spain) around the centre of the solar disc in the non-pertubed region. We analyzed the power spectra change with height. In the lower photosphere the main power is localized in the range corresponding to granulation with a peak at scales of about 1.5...2.0 Mm and decreases with height. In the upper photosphere maximum of the power spectrum is shifted towards larger scales (1 *Mm*); the power of vertical velocity fluctuations of supergranulation ($20...30 \, Mm$) practically does not change with height; a separate regime of mesogranula-5...12 Mm) was not found at all altitudes under study. According to ton (our results, the convective structure of the solar photosphere on mesogranular scales behaves like the granulation, namely, mesostructures appear as a part of a broad distribution of granular scales. It is shown that supergranular flows are stable along the whole photosphere and reach much higher layers than the granular ones.

вступ

При спостереженнях випромінювання Сонця виявляються флуктуації інтенсивності, швидкості та інших величин, що описують стан сонячної атмосфери на різних просторово-часових масштабах: грануляцію (0.5...2.0 Мм), мезогрануляцію (5...12 Мм) і супергрануляцію (20...30 Мм) [33, 42]. Кожен елемент такої неоднорідної сонячної атмосфери бере одночасно участь у багатьох рухах, які складають спостережуване поле швидкостей.

Основні досягнення в області дослідження фотосферної конвекції зроблено на масштабах грануляції: тривалий час досліджується висотна стратифікація фізичних параметрів всередині грануляційних потоків, знайдено інверсію варіацій температури і вертикальної швидкості [5, 16, 27, 28, 32, 39], виявлено тонку структуру конвективних потоків [4, 7, 21, 39], менш досліджено поле горизонтальних швидкостей на грануляційних масштабах [1, 26]; проаналізовано еволюцію грануляційних комірок [7, 14, 23, 31, 37, 40]; отримано багатовимірні моделі грануляції, які відтворюють спостереження [6, 17, 37, 49].

На основі ранніх фотосферних спостережень супергрануляція вважається системою конвективних комірок з переважно горизонтальним рухом речовини [47]. Багато праць присвячено аналізу параметричних властивостей супергрануляційних комірок [11, 13, 24, 30]. На сьогоднішній день відомо, що потік супергрануляції розходиться з центра комірки назовні, обмежуючись на краях контуром з сильних фотосферних магнітних полів і хромосферної сітки [42]: теплий потік, ймовірно, піднімається у центрі комірки, а холодний потік опускається на краях; проте виявлені горизонтальні флуктуації інтенсивності на масштабах супергрануляції дуже малі [18]. Теорія вказує на проникнення конвективних рухів великих масштабів набагато вище в атмосферу Сонця, ніж для малих утворень: вважається, що супергрануляція здатна проникати принаймні в шари середньої хромосфери і що рухи добре корелюють з комірчастою структурою у фотосфері [34]. Достатньо вивчені горизотальні потоки на супергрануляційних масштабах, оскільки вимірювання супергрануляційних горизонтальних потоків поблизу лімба виявились найкращими для відтворення [1]. Однак лише частково досліджено вертикальну складову швидкостей всередині супергрануляційних комірок [8, 20, 44].

Ранні спостереження [35] сонячної атмосфери виявили структури, більші за гранули, які назвали мезогранулами, проте відмінність мезогрануляції від грануляції довгий час залишалась не підтвердженою, але і не спростованою. Більшість подальших досліджень цього явища грунтуються на аналізі специфічних властивостей окремих гранул розширятися до більших (мезогрануляційних) масштабів (так звані активні, вибухаючі гранули) [14, 22, 36, 38, 40]. В роботі [25] вперше було виявлено у фотосфері Сонця довгоживучі структури, які були названі «сімействами активних гранул». Пізніше в роботі [45] за допомогою 3D-аналізу поля інтенсивності на грануляційних масштабах підтверджено припущення, що значна частина гранул в сонячній фотосфері об'єднується у подібні утворення, які були названі авторами «деревами з гранул, що фрагментуються».

З досліджень [43] стало відомо, що встановлення чи інтерпретація природи потоків більших масштабів залежить від методу та методики обробки даних і що просторова кореляція між вибухаючими гранулами може створювати великомасштабну нестабільність на більших масштабах. Таким чином, структурні утворення, більші за грануляційні, можуть виникати внаслідок просторового і часового усереднення даних, а отже, мезогрануляція не є справжнім елементом конвекції. Роботи [29, 41, 46] підтвердили ці припущення.

Іншим підходом до вирішення проблеми виділення конвективних утворень окремих просторових масштабів є дослідження енергетики конвективних рухів у сонячній атмосфері. Аналіз спектрів потужності флуктуацій швидкості (кінетична енергія) та інтенсивності чи температури (теплова енергія) дає інформацію про енергетичні втрати та взаємоперетворення енергії на різних масштабах. Спектри потужності флуктуацій інтенсивності і швидкості конвективних рухів на масштабах грануляції розглянуто в роботі [15]: знайдено коефіцієнти нахилу спадної частини спектру, які дають інформацію про фізичні характеристики грануляції залежно від розміру комірки. На основі спектрів потужності сонячної конвекції в роботі [44] досліджено залежності поля швидкостей та інтенсивності від просторових масштабів. З метою дослідження природи явища мезогрануляції в роботах [9, 10] побудовано спектри потужності. У роботі [10] не знайдено локального максимуму, який би відповідав мезогрануляції, а у роботі [9], де були використані дані з кращим розділенням, зроблено протилежний висновок. На спектрах потужності, отриманих в роботі [48], мезоструктури виявились невіддільною частиною розширеного розподілу грануляційних масштабів. В роботі [19] також отримано лише два піки, що відповідають грануляції і супергрануляції.

Таким чином, характер конвективних рухів на різних просторово-часових масштабах ще до кінця не вивчено, досі немає однозначної інтерпретації даних спостережень. Тому відтворення і аналіз варіацій фізичних параметрів сонячної конвекції за результатами сучасних спостережень залишаться актуальним.

Мета нашої роботи — за даними спостережень Сонця в лінії нейтрального заліза з високим просторовим розділенням отримати спектри потужності варіацій температури і вертикальної швидкості сонячної конвекції, дослідити їхні зміни на різних висотах; за особливостями спектрів потужності виділити і дослідити конвективну структуру сонячної фотосфери на різних просторово-часових масштабах.

ОТРИМАНІ РЕЗУЛЬТАТИ

Наші дослідження базуються на результатах спостережень в лінії нейтрального заліза 639.3 нм, отриманих Н. Г. Щукіною на 70-см вакуумному баштовому телескопі VTT (Канарські острови, Іспанія) поблизу центра сонячного диска у спокійній області з просторовим розділенням 0.5 [2]. Час спостереження — 2.6 год. Протяжність області спостереження вздовж поверхні Сонця — 64 Мм, досліджувані глибини лежать у межах від –25 до 550 км (в рамках моделі спокійної атмосфери Сонця VAL-80 [50]).

Тут ми аналізуємо результати відтворення просторово-часових варіацій температури і вертикальної швидкості у фотосфері Сонця,

отриманих на основі профілів спостережуваної лінії шляхом розв'язку нерівноважної інверсної задачі переносу випромінювання [3].

Структура фотосфери Сонця визначається як конвективними, так і хвильовими рухами. Для подальшого дослідження конвекції хвильову складову варіацій температури і вертикальної швидкості у спостережуваній області видалено за допомогою k- фільтрації. Окремо ми виділили рухи з періодом T > 20 хв, тобто виключили грануляцію з малим і середнім часом життя, що дає можливість краще дослідити більші просторово-часові масштаби — мезогрануляцію і супергрануляцію.

Спектри потужності. Розглянемо енергетику конвекції в сонячній фотосфері. Маючи просторово-часові варіації температури і вертикальних швидкостей вздовж однієї просторової координати у фотосфері Сонця, отримуємо відповідні спектри потужності в координатах — k_x , просумовані по часовій частоті:

$$P(k_x) = d P(\cdot,k_x)$$

Оскільки для спокійної атмосфери Сонця всі напрямки в горизонтальній площині рівноправні, спектр потужності для 2D-іміджів отримаємо зі спектру для одновимірних іміджів за допомогою корекції [9]:

$P_2(k) = 2 k P_1(k).$

Таким чином, ми побудували спектри потужностей конвективної складової температурних варіацій і вертикальних швидкостей на різних висотах у сонячній фотосфері (рис. 1 та 2, зліва) і відповідні спектри для рухів з періодом T > 20 хв (рис. 1 та 2, справа). Для порівняння спектрів всієї конвекції і спектрів довгоперіодичних варіацій їх нормовано на один максимум спектру, порахований для всієї конвекції на висоті h = -25 км.

Обмежені час та область спостережень призводять до дрібних піків у спектральних залежностях. Наявність багатьох піків свідчить швидше про погану статистичну стійкість отриманих результатів, ніж про властивості незбуреної атмосфери. Щоб краще побачити загальні зміни спектрів з висотою, ми провели апроксимацію отриманих нами кривих функцією $P(k) = Ak e^{-k}$ (залежність підібрана з урахуванням залежностей, отриманих в роботах [15, 44]), причому коефіцієнти A,

для кожного спектру підбирались індивідуально. На графіках ми також позначили область 3 .

На рис. 1 представлено спектри потужності температурних варіацій фотосферної конвекції всіх масштабів на висотах h = 0, 200 і 400 км (зліва) та спектри потужності температурних варіацій для рухів з періодом T > 20 хв на відповідних висотах (справа). Як бачимо з рис. 1, e, на висоті h = 0 км, тобто в шарах нижньої фотосфери, зосереджено найбільшу потужність варіацій температури. Основна потужність на цих висотах в обох випадках відповідає діапазону грануляційних масштабів: максимальні значення потужності для всієї конвекції і для

Рис. 1. Спектри потужності температурних варіацій в сонячній фотосфері на висотах 400 км (*a*), 200 км (*b*) і 0 км (*b*): зліва — для конвективних рухів всіх можливих часових частот, справа — для рухів з періодом T > 20 хв

конвективних рухів з періодом T > 20 хв на спектрі зосереджені поблизу просторових частот k/(2) = 1/ 0.5...0.6 1/Мм, або

1.5...2.0 Мм. З висотою потужність температурних варіацій суттєво зменшується. У верхніх шарах фотосфери максимальні значення потужності на всіх спектрах зміщуються у бік менших просторових частот, причому для довгоперіодичних варіацій ці зміщення на порядок більші, ніж у випадку всієї конвекції, і становлять 1 Мм на висоті h = 400 км порівняно з положенням максимуму потужності на h = 0 км. Однак в обох розглянутих випадках максимальна потужність температурних варіацій все ж залишається у межах грануляційних масштабів у всіх шарах сонячної фотосфери.

На рис. 2 показано спектри потужності варіацій вертикальних швидкостей фотосферної конвекції всіх масштабів на висотах h = 0,

Рис. 2. Те ж для вертикальних швидкостей

200 і 400 км (зліва) і аналогічні спектри для рухів з періодом T > 20 хв (справа). В обох випадках максимальна потужність також зосереджена в нижній фотосфері (рис. 2, в) в діапазоні просторових частот k/(2) = 1/0.5...0.6 1/Мм, що відповідають грануляційним масшта-1.5...2.0 Мм. У вищих шарах фотосфери потужність варіацій бам вертикальних швидкостей на грануляційних масштабах зменшується. Максимальні значення потужності варіацій вертикальних швидкостей на цих масштабах з висотою теж дещо зміщуються на спектрі у бік менших просторових частот, аналогічно до спектрів потужності температурних варіацій, причому для довгоперіодичних варіацій ці зміщення також на порядок більші, ніж у випадку всієї конвекції, і ста-1 Мм на висоті h = 400 км порівняно з положенням макновлять симуму потужності на h = 0 км.

Що ж стосується малих просторових частот, що відповідають супергрануляції, то тут на висоті h = 0 км потужність варіацій вертикальних швидкостей, яка припадає на цей діапазон, доволі незначна порівняно з основною ділянкою спектру, що відповідає більшим частотам. Проте з висотою (рис. 2, a, δ) потужність на цих частотах практично не змінюється, і у верхніх шарах фотосфери (h = 400 км) стає вагомішою на фоні решти спектру, де значення потужності суттєво зменшується — приблизно на порядок порівняно з h = 0 км на рис. 2, в. Доволі суттєвий пік, відділений від решти спектру чітким мінімумом на просторових частотах k / (2) = 1 / 21/Мм (12 Мм), краще спостерігається на спектрі потужності для довгоперіодичних варіацій з T > 20 хв на рис. 2, a, δ , справа, а вже починаючи з h = 200 км і вище перевищує область 3. Висотний розподіл спектру потужності вертикальних швидкостей вказує на те, що конвективні потоки на супергрануляційних масштабах краще зберігаються при проникненні у верхні шари фотосфери. Зауважимо, що на спектрі потужності температурних варіацій супергрануляція подібним чином не проявляється, оскільки, як згадувалось раніше, температурні варіації на супергрануляційних масштабах досить незначні [18].

Отже, на отриманих нами спектрах потужності вертикальних швидкостей у верхніх шарах фотосфери грануляційні і супергрануляційні масштаби досить чітко розділені. Проте немає видимих проявів особливої поведінки тієї частини спектру, що б відповідала мезогрануляції, оскільки на масштабах <12 Мм варіації температури і вертикальних швидкостей зазнають подібних змін з висотою.

Особливості температурної структури і поля вертикальних швидкостей сонячної конвекції. Далі ми проводимо аналіз особливостей поведінки розподілів варіацій фізичних параметрів сонячної конвекції по висоті. Для цього було виділено три просторово-часові масштаби: грануляцію, мезогрануляцію і супергрануляцію.

Грануляційні масштаби. Методом фільтрації просторових і часових частот ми виділили просторові розподіли варіацій температури і вертикальної швидкості на грануляційних масштабах (= 0.5... 5.0 Мм) у фотосфері Сонця вздовж двох просторових координат (h — по висоті, X — вздовж поверхні Сонця). Шляхом усереднення по просторовій координаті і часу ми порахували коефіцієнти кореляції цих варіацій в нижній фотосфері (на висоті h = 0 км) з відповідними варіаціями у верхніх шарах сонячної фотосфери. Максимальна похибка коефіцієнтів кореляції в цьому випадку складає 0.002.

Коефіцієнт кореляції $r_{T_0,T}$ температурних варіацій грануляції на різних висотах у досліджуваній області з відповідними варіаціями на висоті h = 0 км представлено на рис. З, *а* суцільною лінією. Як бачимо, із збільшенням висоти коефіцієнт кореляції змінюється від $r_{T_0,T} = 1$ до $r_{T_0,T} = 0$ на висоті h 210 км, а вище знову збільшується і набуває від'ємних значень у межах $|r_{T_0,T}|$ 0.3. Зміна знаку кореляції викликана, перш за все, температурною інверсією. Отже, цю висоту можна 30

Рис. 3. Коефіцієнти кореляції $r_{0,T}$ варіацій температури грануляції (суцільна лінія) і мезогрануляції (штрихи) на різних висотах з варіаціями температури на висоті h = 0 км (a), відповідні коефіцієнти кореляції $r_{V_0,V}$ вертикальних швидкостей на різних висотах з вертикальними швидкостями на висоті h = 0 км (δ), відповідні коефіцієнти кореляції $r_{T,V}$ варіацій температури і вертикальних швидкостей як функція висота (s), коефіцієнт кореляції $r_{V_0,V}$ вертикальних швидкостей супергрануляції на різних висотах з вертикальними швидкостей мощ на висоті h = 0 км (c). Похибки коефіцієнтів кореляції вказані на кожному графіку сірою точковою лінією і відповідають правій шкалі

вважати початком інверсії температурних варіацій на грануляційних масштабах. Зазначимо, що область температурної інверсії досить широка, оскільки для кожної окремої комірки висота інверсії залежить від контрасту інтенсивності і розмірів самої комірки (що більша гранула, то вище відбувається місце температурна інверсія [5, 27]). Отже, температурна структура сонячної фотосфери на грануляційних масштабах лише частково відновлюється в верхніх шарах досліджуваної області.

Коефіціент кореляції $r_{V_0,V}$ варіацій вертикальних швидкостей грануляції на різних висотах з відповідними варіаціями на висоті h = 0 км показано на рис. 3, δ суцільною лінією. Як бачимо, його значення доволі різко зменшується з висотою від $r_{V_0,V} = 1$ до мінімальних значень $|r_{V_0,V}| = 0.3$ на висотах h > 400 км. Це є наслідком горизонтального зміщення структури вертикальних швидкостей у верхніх шарах фотосфери [4], а також можливої інверсії швидкостей: у верхніх шарах фотосфери змінюється напрямок руху речовини на протилежний [27, 28]. Проте наявність мінімальної кореляції у верхній фотосфері на грануляційних масштабах все ж свідчить про часткове збереження структури грануляційних потоків у полі вертикальних швидкостей по всій висоті аж до температурного мінімуму.

Ми порахували коефіцієнт кореляції $r_{T,V}$ варіацій температури і вертикальних швидкостей як функцію висоти для грануляції (рис. 3, *в*,

суцільна лінія). Як бачимо, максимального значення $r_{T,V} = 0.55$ цей коефіцієнт досягає в нижній фотосфері, та з висотою зменшується до $r_{T,V} = 0$ на висоті h = 225 км (відбувається температурна інверсія). В верхніх шарах фотосфери він набуває незначних від'ємних значень $|r_{T,V}| < 0.15$, причому на висоті h = 400 км змінює знак вдруге (подвійна інверсія [5, 27]). Отже, в середній і верхній фотосфері грануляційна структура частково відновлюється, проте інверсія варіацій температури і вертикальних швидкостей та їхні горизонтальні зміщення погіршують кореляцію цих варіацій у верхніх шарах.

Мезогрануляційні масштаби. Методом фільтрації просторових і часових частот аналогічно до грануляції ми виділили просторові розподіли варіацій температури і вертикальної швидкості на мезогрануляційних масштабах (= 5...12 Мм). Шляхом усереднення по просторовій координаті і часу ми порахували коефіцієнти кореляції цих варіацій у нижній фотосфері (на висоті h = 0 км) з відповідними варіаціями у верхніх шарах сонячної фотосфери. Максимальна похибка коефіцієнтів кореляції в цьому випадку складає 0.002.

Коефіцієнт кореляції $r_{T_0,T}$ температурних варіацій мезогрануляції на різних висотах в досліджуваній області з відповідними варіаціями на висоті h = 0 км показано на рис. З, a штриховою лінією. Як бачимо, зі збільшенням висоти коефіціент кореляції на мезогрануляційних масштабах різко зменшується, змінює знак на висоті h = 245 км і набуває мінімальних значень у верхніх шарах фотосфери. Отже, температурна структура сонячної фотосфери на мезогрануляційних масштабах з висотою поводиться аналогічно до грануляції, причому інверсія відбувається трохи вище, ніж у випадку грануляції, за рахунок більшого розміру комірки.

Коефіціент кореляції $r_{V_0,V}$ варіацій вертикальних швидкостей мезогрануляції на різних висотах з відповідними варіаціями на висоті h = 0 км представлено на рис. З, δ штриховою лінією. Як бачимо, цей коефіцієнт різко зменшується від максимальних значень у нижній фотосфері до мінімуму у верхній фотосфері, як це відбувається і у випадку грануляційних масштабів.

Ми порахували коефіцієнт кореляції $r_{T,V}$ варіацій температури і вертикальних швидкостей як функцію висоти для мезогрануляції (рис. 3, *в*, штрихова лінія). Максимальна кореляція на мезогрануляційних масштабах ($r_{T,V} = 0.70$) має місце в нижній фотосфері та знижується до $r_{T,V} = 0$ на висоті h = 240 км через температурну інверсію. У верхніх шарах фотосфери отриманий нами коефіціент кореляції набуває незначних від'ємних значень $|r_{T,V}| < 0.30$ для мезогрануляції. Таким чином, конвективна структура на мезомасштабах максимально проявляється в нижніх шарах фотосфери, і лише частково її видно у верхніх шарах, причому мезогрануляція поводиться подібно до грануляції.

На основі аналізу згаданих коефіцієнтів кореляції ми дійшли висновку, що мезоструктури є частиною протяжного розподілу грануляційних масштабів. Отже, мезогранули — це великі довгоживучі гранули або їхні комплекси [25, 45, 46]. 32 Супергрануляційні масштаби. Для виділення конвективних рухів на супергрануляційних масштабах (20...30 Мм) ми пригнічували рухи з горизонтальними швидкостями більшими за 0.5 км/с (згідно з роботами [44, 47]) з подальшим усередненням їх за час спостереження — 2.6 год. В результаті ми отримали усереднений в часі просторовий розподіл варіацій вертикальних швидкостей на супергрануляційних масштабах.

Шляхом усереднення по просторовій координаті ми обчислили коефіцієнт кореляції варіацій вертикальних швидкостей супергрануляції на h = 0 км з відповідними варіаціями у верхніх шарах сонячної фотосфери. Виявилось, що кореляція залишається високою вздовж всіх досліджуваних висот — потоки супергрануляції проходять через всю фотосферу до висот температурного мінімуму і, вочевидь, вище.

висновки

На основі даних VTT-спостережень в лінії Fe I 639.3 нм з високим просторовим і часовим розділенням побудовано і проаналізовано спектри потужності (з 2D-корекцією) варіацій температури і вертикальних швидкостей фотосферної конвекції Сонця; для кращого виділення потужності на великих просторово-часових масштабах побудовано також спектри потужності для довгоперіодичних варіацій (T > 20 хв), тобто виключено грануляцію з малим і середнім часом життя.

— у нижніх шарах фотосфери максимальна потужність варіацій температури і вертикальних швидкостей для всієї конвекції та для довгоперіодичних варіацій зосереджена на масштабах, що відповідають грануляції; з висотою потужність на грануляційних масштабах зменшується; у верхніх шарах фотосфери максимуми спектрів зміщуються у бік більших просторових масштабів, причому для довгоперіодичних варіацій ці зміщення на порядок більші, ніж у випадку всієї конвекції, проте максимальна потужність все ж залишається у межах грануляційних масштабів.

— частина спектру потужності варіацій вертикальних швидкостей, яка відповідає масштабам > 12 Мм, залишається практично незмінною на всіх досліджуваних висотах (і краще виражається на спектрах для довгоперіодичних варіацій). Цим масштабам відповідають супергрануляційні потоки, які краще зберігаються при проникненні у верхні шари фотосфери. На спектрі потужності температурних варіацій супергрануляція подібним чином не проявляється.

Отже, на отриманих нами спектрах потужності вертикальних швидкостей у верхніх шарах фотосфери грануляційні і супергрануляційні масштаби досить чітко розділені; проте немає видимих проявів особливої поведінки тієї частини спектру, що б відповідала мезогрануляції, оскільки на масштабах <12 Мм (мезогрануляційні та грануляційні масштаби) варіації температури і вертикальних швидкостей з висотою зазнають аналогічних змін.

Досліджено висотні зміни варіацій температури і вертикальних швидкостей на грануляційних (0.5...5.0 Мм) та мезогрануляційних (5...12 Мм) масштабах і варіацій вертикальних швидкостей на супергрануляційних масштабах (20...30 Мм). Шляхом аналізу відповідних коефіцієнтів кореляції ми показали, що:

 температурна структура сонячної фотосфери на мезогрануляційних масштабах з висотою веде себе як на грануляційних масштабах і так само лише частково відновлюється у верхніх шарах фотосфери;

— поле вертикальних швидкостей на мезогрануляційних масштабах теж веде себе подібно до грануляції і так само лише частково зберігається у верхніх шарах фотосфери; у випадку супергрануляції відповідна кореляція залишається високою вздовж всіх досліджуваних висот — потоки супергрануляції проходять через всю фотосферу до висот температурного мінімуму і, вочевидь, вище;

— варіації температури і конвективних швидкостей на грануляційних і мезогрануляційних масштабах корелюють максимально у нижній фотосфері; у верхніх шарах фотосфери кореляція варіацій температури і конвективних швидкостей на цих масштабах стає незначною.

Таким чином, конвективна структура сонячної фотосфери на мезогрануляційних масштабах з висотою веде себе подібно до грануляції, а тому мезоструктури є частиною протяжного розподілу грануляційних масштабів: мезогранули — це великі довгоживучі гранули або їхні комплекси.

Ми щиро вдячні Н. Г. Щукіній і Р. І. Костику за надані результати спостережень.

- 1. Баран О. А., Стоділка М. І. Поле горизонтальних конвективних швидкостей за спостереженнями на краю диску Сонця // Кинематика и физика небес. тел.— 2010.—26, № 3.—С. 34—49.
- 2. Костык Р. И., Щукина Н. Г. Тонкая структура конвективных движений в фотосфере Солнца: наблюдения и теория // Астрон. журн.—2004.—81, № 9.— С. 846—859.
- 3. *Стоділка М. І.* Інверсна задача для дослідження неоднорідностей атмосфери Сонця та зір // Журн. фіз. досліджень.—2002.—6, № 4.—С. 435—442.
- 4. *Стодилка М. И., Баран О. А.* Структура фотосферной конвекции Солнца на субгрануляционных масштабах // Кинематика и физика небес. тел.—2008.—24, № 2.—С. 99—109.
- 5. *Стодилка М. И., Баран О. А., Малинич С. 3.* Особенности конвекции в фотосфере Солнца // Кинематика и физика небес. тел.—2006.—22, № 3.—С. 173—182.
- Asplund M., Ludvig H.-G., Nordlund A., Stein R. F. The effects of numerical resolution on hydrodynamical surface convection simulations and spectral line formation // Astron. and Astrophys.—2000.—359, N 2.—P. 669—681.
- 7. *Baran O. A.* Structure of convective flows of the real Solar granulation // Advances in Astronomy and Space Physics.—2011.—1, N 1-2.—P. 53—56.
- Baran O. A. Structure of convective flows on supergranular scales in the solar photosphere // Advances in Astronomy and Space Physics.—2012.—2, N 2.— P. 153—156.

- Chou D.-Y., Chen C.-S., Ou K.-T., Wang C.-C. Power spectra of median- and small-scale solar convection // Astrophys. J.—1992.—396.—P. 333—339.
- 10. *Chou D.-Y., Labonte B. J., Braun D. C., Duvall T. L.* Power spectra of solar convection // Astrophys. J.—1991.—**372.**—P. 314—320.
- 11. *Del Moro D., Berrilli F., Duvall T. L., Kosovichev A. G.* Dynamics and structure of supergranulation // Solar Phys.—2004.—221, N 1.—P. 23—32.
- 12. *Del Moro D., Giordano S., Berrilli F.* 3D photospheric velocity field of a supergranular cell // Astron. and Astrophys.—2007.—472, N 2.—P. 599—605.
- 13. De Rosa M. L., Toomre J. Evolution of solar supergranulation // Astrophys. J.— 2004.—616, N 2.—P. 1242—1260.
- Dialetis D., Macris C., Prokakis T., Muller R. A possible relation between lifetime and location of solar granules // Astron. and Astrophys.—1988.—204, N 1-2.— P. 275— 278.
- 15. *Espagnet O., Muller R., Roudier T., Mein N.* Turbulent power spectra of solar granulation // Astron. and Astrophys.—1993.—271.—P. 589—600.
- Espagnet O., Muller R., Roudier T., et al. Penetration of the solar granulation into the photosphere: height dependence of intensity and velocity fluctuations // Astron. and Astrophys. Suppl. Ser.—1995.—109, N 1.—P. 79—108.
- Gadun A. S., Hanslmeier A., Pikalov K. N., et al. Size-dependent properties of simulated 2-D solar granulation // Astron. and Astrophys. Suppl. Ser.—2000.—146.— P. 267—291.
- 18. Goldbaum N., Rast M. P., Ermolli I., et al. The intensity profile of the solar supergranulation // Astrophys. J.—2009.—707, N 1.—P. 67—73.
- 19. *Hathaway D. H., Beck J. G., Bogart R. S., et al.* The photospheric convection spectrum // Solar Phys.—2000.—**193**.—P. 299—312.
- Hathaway D. H., Beck J. G., Han S., Raymond J. Radial flows in supergranules // Solar Phys.—2002.—205, N 1. P. 25 38.
- 21. *Hirzberger J*. On the brightness and velocity structure of solar granulation // Astron. and Astrophys.—2002.—**392**, N 2.—P. 1105—1118.
- Hirzberger J., Bonet J. A., Vazquez M., Hanslmeier A. Time series of solar granulation images. III. Dynamics of exploding granules and related phenomena // Astrophys. J.—1999.—527.—P. 405—414.
- Hirzberger J., Bonet J. A., Vazquez M., Hanslmeier A. Time series of solar granulation images. II. Evolution of individual granules // Astrophys. J.—1999.—515, N 1.— P. 441—454.
- Hirzberger J., Gizon L., Solanki S. K., Duvall T. L. Structure and evolution of supergranulation from local helioseismology // Solar Phys.—2008.—251, N 1-2.— P. 417—437.
- Kawaguchi I. Morphological study of the solar granulation. The fragmentation of granules // Solar Phys.—1980.—65.—P. 207—220.
- 26. *Komm R., Mattig W., Nesis A.* The small-scale velocity field in the solar photosphere // Astron. and Astrophys.—1991.—243, N 1.—P. 251—262.
- Kostik R., Khomenko E., Shchukina N. Solar granulation from photosphere to low chromosphere observed in Ba II 4554 A line // Astron. and Astrophys.—2009.—506, N 3.—P. 1405—1414.
- Kostyk R. I., Shchukina N. G. Fine structure of convective motions in the solar photosphere: observations and theory // Astron. Reports.—2004.—48, N 9.—P. 769— 780.

- 29. *Matloch L., Cameron R., Schmitt D., Schussler M.* Modelling of solar mesogranulation // Astron. and Astrophys.—2009.—**504**.—P. 1041—1055.
- Meunier N., Tkaczuk R., Roudier Th., Rieutord M. Velocities and divergences as a function of supergranule size // Astron. and Astrophys.—2007.—461, N 3.— P. 1141—1147.
- Nesis A., Hammer R., Roth M., Schleicher H. Dynamics of the solar granulation. VIII. Time and space development // Astron. and Astrophys.—2002.—396, N 3.— P. 1003—1010.
- 32. *Nesis A., Hammer R., Roth M., Schleicher H.* Dynamics of the solar granulation. IX. A global approach // Astron. and Astrophys.—2006.—451, N 3.—P. 1081—1089.
- 33. Nordlund A., Stein R. F., Asplund M. Solar surface convection // Liv. Rev. Solar Phys.—2009.—6, N 2.—117 p.
- 34. *November L. J.* The vertical component of the supergranular convection // Astrophys. J.—1989.—**344**.—P. 494—503.
- November L. J., Toomre J., Gebbie K. B., Simon G. W. The detection of mesogranulation on the Sun // Astrophys. J.—1981.—245.—P. L123—L126.
- 36. *Oda N*. Morphological study of the solar granulation. III. The mesogranulation // Solar Phys.—1984.—93.—P. 243—255.
- Ploner S. R. O., Solanki S. K., Gadun A. S. The evolution of solar granules deduced from 2-D simulations // Astron. and Astrophys.—1999.—352, N 2.—P. 679—696.
- Potzi W., Brandt P. N., Hanslmeier A. Variation of granular evolution at meso-scales // Hvar Observ. Bull.—2003.—27, N 1.—P. 39—46.
- Puschmann K., Ruiz Cobo B., Vazquez M., et al. Time series of high resolution photospheric spectra in a quiet region of the Sun. II. Analysis of the variation of physical quantities of granular structures // Astron. and Astrophys.—2005.—441, N 3.— P. 1157—1169.
- 40. *Rast M. P.* On the nature of "exploding" granules and granule fragmentation // Astrophys. J.—1995.—443.—P. 863—868.
- 41. *Rast M. P.* The scales of granulation, mesogranulation, and supergranulation // Astrophys. J.—2003.—**597**, N 2.—P. 1200—1210.
- 42. *Rieutord M., Rincon F.* The Sun's supergranulation // Liv. Rev. Solar Phys.—2010.— 7, N 2.—82 p.
- Rieutord M., Roudier T., Malherbe J. M., Rincon F. On mesogranulation, network formation and supergranulation // Astron. and Astrophys.—2000.—357.— P. 1063— 1072.
- 44. *Rieutord M., Roudier T., Rincon F., et al.* On the power spectrum of solar surface flows // Astron. and Astrophys.—2010.—**512**.— id.A4.—11 p.
- 45. *Roudier Th., Lignieres F., Rieutord M., et al.* Families of fragmenting granules and their relation to meso- and supergranular flow fields // Astron. and Astrophys.—2003.—409.—P. 299—308.
- 46. *Roudier Th., Muller R.* Relation between families of granules, mesogranules and photospheric network // Astron. and Astrophys.—2004.—419.—P. 757—762.
- Simon G. W., Leighton R. B. Velocity fields in the solar atmosphere. III. Large-scale motions, the chromospheric network, and magnetic fields // Astrophys. J.—1964.—140.—P. 1120—1147.
- Straus T., Bonaccini D. Dynamics of the solar photosphere. I. Two-dimensional spectroscopy of mesoscale phenomena // Astron. and Astrophys.—1997.—324.— P. 704—712.

- 49. Stein R. F. Solar surface magneto-convection // Liv. Rev. Solar Phys.—2012.—9, N 4.—P. 1—51.
- 50. Vernazza J. E., Avrett E. H., Loeser R. Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet-sun // Astrophys. J. Suppl. Ser.— 1981.—45.—P. 635—725.
- Yelles Chaouche L., Moreno-Insertis F., Martinez Pillet V., et al. Mesogranulation and the solar surface magnetic field distribution // Astrophys. J. Lett.—2011.—727, N 2. id. L30.—6 p.

Статья поступила в редакцию 12.09.13