ДИНАМИКА И ФИЗИКА ТЕЛ СОЛНЕЧНОЙ СИСТЕМЫ

КИНЕМАТИКА И ФИЗИКА НЕБЕСНЫХ ТЕЛ том 29 № 5 2013

УДК 523.4

А. В. Мороженко, А. П. Видьмаченко

Главная астрономическая обсерватория Национальной академии наук Украины ул. Академика Заболотного 27, Киев, 03680

Теневой механизм и эффект оппозиции блеска безатмосферных небесных тел

В модификации Ирвина — Яновицкого теневой модели Хапке формирования оппозиционного эффекта блеска предложено использовать зависимость между альбедо однократного рассеяния и прозрачносчастии в виде = (1)ⁿ, что количество неизвестных уменьтью шает до двух параметров (плотность упаковки частиц g и) и индикатрисы рассеяния (). Анализ спектрофотометрических измерений Луны и Марса показал, что хорошее согласие между наблюденными данными об эффекте оппозиции и изменениями показателя ивета с углом фазы для Луны и Марса достигается с расчетами при n = 0.25, g = 0.4 (Луна) и 0.6 (Марс). Применение этого метода к астероидам некоторых типов также дало удовлетворительное согласие: *E-mun* $(g = 0.6, = 0.6, A_{g} = 0.21, q = 0.83 \text{ unu } g = 0.3, = 0.4, A_{g} = 0.4$ = 0.15, q = 0.71) при марсианской индикатрисе; M(g = 0.4, g)0.1, A_g 42) и S (g = 0.4, = 0.4, $A_g = 0.28$, q = 0.49) — при лунной 0.075. qиндикатрисе; $C(g = 0.6, 0.1, A_{\sigma}, 0.075, q = 0.43)$ — при модифицированной лунной индикатрисе. В поляризационных измерениях Т. Герелса и др. выявлено, что при = 1.6° у светлой детали лунной поверхности Copernicus ($L = -20^{\circ}08$, $= +10^{\circ}11$) положение плоскости поляризации в G, I отличалось на 22° и 12° от характерной для отрицательной ветви, тогда как в U и у темной детали Plato (L = $= -10^{\circ}32$ = +51°25) отклонение находилось в пределах ошибки (±3°), что, возможно, является следствием когерентного механизма формирования поляризационного пика поляризации.

ТІНЬОВИЙ МЕХАНІЗМ ТА ЕФЕКТ ОПОЗИЦІЇ БЛИСКУ БЕЗАТМО-СФЕРНИХ НЕБЕСНИХ ТІЛ, Мороженко О. В., Відьмаченко А. П. — В модифікації Ірвіна — Яновицького тіньової моделі Хапке формування

© А. В. МОРОЖЕНКО, А. П. ВИДЬМАЧЕНКО, 2013

ефекту опозиції блиску запропоновано використовувати залежність між альбедо одноразового розсіяння та прозорістю частинок у)ⁿ, що кількість невідомих зменшує до двох паравигляді = (1)метрів (густина упаковки частинок д та) та індикатриси розсіяння (). Аналіз спектрофотометричних спостережень Місяця і Марса показав, що досягається добре погодження між спостережними даними про ефект опозиції і змінами показника кольору з кутом фази досягається з розрахунками за n = 0.25, g = 0.4 (Місяць) та 0.6 (Марс). Застосування цього методу до астероїдів деяких типів також дало задовільне погодження: *E*-тип (g = 0.6, = 0.6, $A_{g} = 0.21$, q = 0.83 або g = 0.3, = 0.4, $A_g = 0.15$, q = 0.71) при використанні марсіанської індикатриси; $M(g = 0.4, 0.1, A_g 0.075, q$ 42) ma S $(g = 0.4, = 0.4, A_g = 0.28, q = 0.49)$ при використанні місячної індикатриси; $C(g = 0.6, 0.1, A_{\sigma}, 0.075, q = 0.43)$ при використанні модифікованої місячної індикатриси. В поляризаційних спостереженнях Т. Герелса та ін. виявлено, що на = 1.6° у світлої деталі місячної поверхні Copernicus ($L = -20^{\circ}08$, $= +10^{\circ}11$) положення площини поляризації в G, I відрізнялось на 22° та 12° від характерної для від'ємної гілки, тоді як в U та у темної деталі Plato ($L=-10^{\circ}32$, $= +51^{\circ}25$) відхилення лежало у межах похибки ($\pm 3^{\circ}$), що, можливо, є проявом когерентного механізму формування поляризаційного піку поляризації.

SHADOW MECHANISM AND OPPOSITION EFFECT OF LIGHT FOR ATMOSPHERELESS CELESTIAL BODIES, by Morozhenko A. V., Vidmachenko A. P. — In the modified Irwin — Yanovitskij — Hapke shadow model of formation of opposition brightness effect the relationship between the single scattering albedo and transparency coefficient of particles is used in the form =(1) $)^{n}$. This reduces the number of unknowns to two parameters (the packing density of particles g and) and the scattering function (). Our analysis of spectrophotometric measurements of the Moon and Mars shows that a good agreement between the observed data on opposition effect and some change of color index with the phase angle for the Moon and Mars can be obtained for n = 0.25, g = 0.4 (the Moon) and 0.6 (Mars). Applying this method to some of asteroid types also gave satisfactory agreement: the E-type (g = 0.6, = 0.6, $A_g = 0.21$, q = 0.83 or g = 0.21= 0.4, $A_g = 0.15$, q = 0.71) for the Martian indicatrix; M-type (g = 0.3, 0.1, A_g 0.075, q 42) and S-type (g = 0.4, = 0.4, A_g = 0.28, q = 0.4, 0.49) for the lunar indicatrix; C-type (g = 0.6, 0.1, A_{σ} 0.075, q = 0.43) for a modified lunar indicatrix. Polarization measurements of T. Gehrels and others revealed that when $= 1.6^{\circ}$ for the bright feature Copernicus $(L = -20^{\circ}08)$, $= +10^{\circ}11$) of the lunar surface the plane polarization posi-37 tion in the G, I filters differed by 22 and 12 from one typical for the negative branch, whereas in the U filter and for the dark feature Plato ($L = -10^{\circ}32$, $= +51^{\circ}25$) the deviation was within the error limits (± 3). It is probable that this fact is a result of the coherent mechanism of the polarization peak formation.

В 1926—1927 гг. было обнаружено нелинейное увеличение блеска галлилевых спутников при малых значениях фазового угла (< 6°) [33, 34], но об эффекте оппозиции в блеске безатмосферных небесных тел начали говорить только после его обнаружения в блеске 13 деталей лунной поверхности [10], Марса [9, 28, 29] и др. Для его объяснения Б. Хапке [11] использовал предложенный Зеелигером в 1880-х гг. для фазовой зависимости блеска колец Сатурна механизм затенения частиц в среде конечной толщины, которая характеризуется параметром

$$D (4/3) r^3 N$$
,

где r — радиус частиц, N — их объемная концентрация. Предполагалось, что поверхностный слой состоит из крупных сферических частиц (2 r >>), которые упакованы так, что свет из любого направления может проникнуть внутрь на глубину больше 2r, частицы полностью непрозрачны, а альбедо их однократного рассеяния << 1; это позволяло не учитывать многократное рассеяние. В рамках этой модели отражательная способность определялась выражением

$$(0, 0, 0) = 0 (h(0, g)[4(0, 0)]^{-1},$$
 (1)

где и $_0$ — косинусы углов падения и отражения света, () — индикатриса рассеяния, h(,g) — некоторая функция, g — плотность упаковки частиц в поверхностном слое, значение которой в модели сферических частиц определяется формулой

$$g = 2r^2(4 N/3)^{2/3}$$
.

Оно равно 0.01—2.0 и связано с пористостью р выражением

$$p \quad 1 - 0.354g^{3/2}$$

Эта модель хорошо описала эффекты оппозиции деталей лунной поверхности при 0.04 g 0.10 [10], что соответствует неимоверно большому значению пористости p = 0.997...0.989, но не дала удовлетворительного согласия в наблюдаемом распределении яркости по диску вблизи лимба. Это было объяснено возможным влиянием макрорельефа, для учета которого Хапке в работе [12] ввел еще два параметра и четыре коэффициента, значения которых подбирались эмпирически. Однако даже эта усложненная модель не объясняла изменения показателя цвета с углом фазы и по диску. Этот пробел частично устранил В. Ирвин [16], который предложил с помощью поправки

 $\begin{pmatrix} 0, 0, 0, 0, 0, 0, 0, 0 \end{pmatrix}$ учитывать многократное рассеяние (без учета теневого механизма (ТМ)). Кроме того, он ввел понятие прозрачности частиц и получил строгое выражение функции h(0, g, 0) для случая однократного рассеяния. В этой модификации выражение (1) имеет вид

где

$$J(y,g,) \quad y \exp[s(x,)]dx \quad \exp(y),$$

$$s(x,g,) \quad x(1-0.5 \quad [\ \arcsin x]/ \) \quad [\ (2 \quad x^2)(1 \quad x^2)^{1/2})]/3 \ ,$$

$$x \quad x(_0, ,g, \) \quad 0.75(g/2)^{3/2}[1 \quad _0 \cos^2(a/2)]^{1/2},$$

$$y \quad y(_0, ,g, \) \quad x(_0, \ , \)[(1/ \) \ (1/ \ _0)],$$

Э. Г. Яновицкий [4, 5] предложил рассчитывать значение поправки (₀, , , , *x*₁) через точные функции Амбарцумяна:

$$\begin{pmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

где

$$\begin{array}{c} {}^{0}_{0}(\) \ \{[3(1\)]^{1/2} \ (3\ x_{1})^{1/2} \ x_{1}(1\)^{1/2}(1\ 3^{1/2}\) \\ [\{[3(1\)]^{1/2} \ (3\ x_{1})^{1/2}\}\{1\ [(3\ x_{1})(1\)]^{1/2}\}]^{1}, \\ {}^{0}_{1}(\) \ \{[3(1\)]^{1/2} \ [1\ (3\ x_{1})]^{1/2}\}(1\ 3^{1/2}\) \\ [\{[3(1\)]^{1/2} \ (3\ x_{1})^{1/2}\}\{1\ [(3\ x_{1})(1\)]^{1/2}\}]^{1}, \\ {}^{1}_{1}(\) \ [1\ 3^{1/2}\][1\ (3\ x_{1})^{1/2}\]^{1}. \end{array}$$

При их расчете индикатриса рассеяния принимается в виде

()
$$1 x_1 \cos x_2$$

где $x_1 = |1.5|$ — первый член в разложении индикатрисы рассеяния в ряд по полиномам Лежандра. Отметим, что при $= 0^{\circ}$

$$(_{0},0)$$
 [2 (0)/(2) $(_{0},0, ,x_{1})$]/8.

В этой модификации (которую назовем модификацией Ирвина — Яновицкого) мы проанализировали наблюдательные данные для Луны и Марса [1, 4, 5]. Было определено значение g = 0.25 (для Луны) и 0.4 (для Марса), которые соответствуют пористости p = 0.95 и 0.91, а также ()и .Поскольку у Марса наблюдается усиление эффекта оппозиции с уменьшением длины волны (т. е. с уменьшением отражательной способности), которое не объяснялось спектральным изменением поправки за многократное рассеяние, то было предложено, что в длинноволновой области спектра планеты < 1. Учет поправки (3) в 39 случае Луны уменьшил несоответствие наблюденного и рассчитанного распределений яркости по диску и объяснил (хотя и не в полной мере) изменение показателя цвета с , а для Марса наблюдалось неплохое согласие распределений яркости по диску и изменений фотометрического контраста деталей по диску с фазовым углом .

В последующем как модификация Хапке [12], так и Ирвина [16] подверглись неоднократным усложнениям [7, 23], в том числе и введением дополнительных параметров (например, амплитуды S(0) и ширины h оппозиционного пика, которые нельзя считать независимыми). Подробный анализ этих модификаций можно найти в работе [13]. Появление работы [21] стимулировало разработку когерентного механизма (КМ) или слабой локализации фотонов для объяснения эффекта оппозиции. В его основу положено явление интерференции отраженных шероховатой поверхностью лучей, одним из которых есть однократно отраженный, а другими — испытавшие два и больше отражений на неровностях. В появившейся в 1990 г. обзорной статье Хапке [13] приведены основные особенности этого механизма: если теневой механизм проявляется при $< 10^{\circ}$, то КМ при $< 1^{\circ}$; амплитуда ТМ больше при малых, а для КМ — при больших (наблюдательно это должно проявляться в противоположной спектральной зависимости оппозиционного пика блеска); при освещении поляризованным излучением теневой механизм не изменяет состояния поляризации отраженного излучения, а КМ — изменяет.

Несколько позже М. Мищенко с коллегами [25—27] приближенно рассчитал поляризационный эффект КМ при освещении поверхности не поляризованным светом и установил наличие поляризационного пика при 0.5° . Он четко наблюдательно проявляется у галилеевых спутников Юпитера [31], а также у некоторых других небесных тел. Поэтому для описания эффектов оппозиции Луны и Марса иногда пытаются учитывать совместное действие обоих механизмов [14, 15]. Поскольку в изменении блеска КМ только усиливает ТМ вблизи = 0° , то его эффект можно приписать уменьшению параметра g. Иная ситуация имеет место в случае поляризационных наблюдений, в которых КМ проявляется пиком степени поляризации P при 0.5° . Кроме того, не исключено, что обусловленная КМ поляризация характеризуется еще и специфическим положением плоскости поляризации

. Так, например, наблюдения А. В. Мороженко (1986 г.) и Р. Чигладзе (1987 г., 1988 г.) показали, что при $= 0.5^{\circ}$ для галилеевых спутников Юпитера наблюдалось не только повышенное значение степени поляризации, но и необычное положение ее плоскости (135°) [2], которое резко изменялось при незначительном уменьшении или увеличении . Поэтому мы, просматривая приведенные в работе [10] данные о значении (относительно ориентации электрического вектора), обратили внимание, что у некоторых лунных деталей при $= 1.6^{\circ}$ также наблюдается необычное значение . Так, у светлой детали (Сорегnicus, $L = -20^{\circ}08$, $= +10^{\circ}11$) $= 92^{\circ}$, 112° и 102° , тогда как у темной

(Plato, $L = -10^{\circ}32$, $= +51^{\circ}25$) — $= 87^{\circ}$, 88° , 89° , соответственно в полосах *U*, *G*, *I*. Поскольку ее погрешность равна 3° , не исключено, что у светлых деталей лунной поверхности в длинноволновой области спектра можно обнаружить проявление КМ в поляризации.

Сейчас при анализе фазовой зависимости блеска астероидов и спутников планет используют, как правило, многопараметрические выражения для теневого механизма. Практически забытой осталась простая модификация Ирвина — Яновицкого. Поэтому ниже мы покажем перспективность ее использования. В отличие от предыдущих работ [4, 5], в которых параметры и принимались независимыми, здесь мы предположим, что между этими параметрами есть связь типа

$$(1)^n,$$
 (4)

где *n* — некоторый параметр. Кроме того, предположим, что в интервале фазовых углов 0—10° выполняется равенство

$$(0^{\circ})/(5^{\circ}) = (5^{\circ})/(10^{\circ}).$$
 (5)

Для оценки неизвестных, кроме наблюдательных данных об эффекте оппозиции, использовались выражения

$$\frac{A(\)}{G(\ ,g,\)}\sin \ d = 2 \frac{G(\ ,\ ,x_1)}{G(\ ,g,\)}\sin \ d \quad (6)$$

$$x_{1} = \frac{3}{{}_{0}} \frac{A(\)}{G(\ ,g,\)} \sin \cos d$$

$$2 \frac{G(\ ,\ ,x_{1})}{G(\ ,g,\)} \sin \cos d , \qquad (7)$$

где A() — альбедо диска, G(,g) и $G(,x_1)$ — проинтегрированные по диску составляющие выражения (2)

$$\int_{0} \left[(\int_{0}) \right]^{-1} J(y,g, y) C \exp[(1/p)(g/2)^{3/2} ctg(y/2)]$$

И

Поскольку интервал , в котором известны значения фазовой функции F(), ограничен ($_0 < 180^\circ$), то для $>_0$ в работе [5] было предложено использовать интерполяционный полином

 $F() \quad a^{3} \quad b^{-2} \quad c \quad d,$

коэффициенты которого определяются из условий

$$F() a {}^{3}_{0} b {}^{2}_{0} c {}_{0} d,$$

$$dF()/d | {}^{3}_{0} 3a {}^{2}_{0} 2b {}_{0} c,$$

$$F() a {}^{3}_{0} b {}^{2}_{2} c d 0,$$

41

$$F()/d \mid 3a^2 2b c 0,$$

которые были апробированы на результатах лабораторных измерений шести искусственных шероховатых сфер с различными отражательными свойствами.

Из-за неизвестного значения параметра *n* первоначально проанализируем наблюдательные данные об эффекте оппозиции [8, 10, 15], фазовые зависимости блеска Луны в фильтре *B* [31], спектральные значения геометрического альбедо (без учета эффекта оппозиции) [22] и изменение показателя цвета различных деталей лунной поверхности [10] и диска Луны [22]. Поскольку данных об эффекте оппозиции блеска всего диска Луны нет, то интегрирование в системе уравнений (6) велось с шагом 10°. Оказалось, что наилучшее согласие расчетов с наблюдениями было достигнуто при *g* = 0.4 и *n* 0.25, (*B*)= = 0.181 и приведенных в табл. 1 значениях (), которым соответствует *x*₁ = -0.93 (рис. 1, 2).

Что касается изменения показателя цвета U - I с углом падения света *i*, то расчеты для деталей «Clavius» и «Centre of Plato» показали, что при изменении *i* от 0 до 60° оно соответственно равно 0.021^m и 0.008^m при $= 0^\circ$; 0.060^m и 0.009^m на терминаторе при $= 20^\circ$; 0.005^m и 0.004^m на лимбе при $= 20^\circ$.

Для оценки отдельных деталей использовались данные об отклонении отражательной способности детали при $= 0^{\circ}$ от средней для 13 деталей (табл. 13 в работе [10]). Значения «средней» по яркос-

, град	Луна	Mapc	С-тип		
0	3.054	1.533	3.054		
1	3.011	1.525	3.003		
2	2.969	1.516	2.952		
3	2.896	1.508	2.901		
4	2.858	1.499	2.850		
5	2.841	1.491	2.798		
10	2.643	1.450	2.566		
20	2.334	1.305	2.145		
30	2.019	1.200	1.927		
40	1.740	1.148	1.763		
50	1.534	0.988	1.586		
60	1.371	0.932	1.422		
70	1.208	0.855	1.264		
80	1.069	0.819	1.061		
90	0.905	0.828	0.968		
100	0.761	0.835	0.826		
110	0.616	0.862	0.694		
120	0.485	0.899	0.558		
130	0.417	0.985	0.492		
140	0.381	1.010	0.313		
150	0.341	1.118	0.255		

Таблица 1. Индикатриса рассеяния () Луны, Марса и астероидов С-типа

Рис. 1. Наблюденные и рассчитанные (при плотности упаковки g = 0.4 и значении n = 0.25 в уравнении (14)) эффекты оппозиции: 1 -для темной детали диска Луны (Центр Плато, при альбедо однократного рассеяния = 0.163), 2 -для светлой детали диска Луны (Восточный Клавий D, = 0.339) в системе V по данным наземных наблюдений [10] (a); КА «Апполон-8» [30] и Клементина [8] (δ)

Рис. 2. Наблюденные (кружки) [10] и рассчитанных при g = 0.4, n = 0.25 (звездочки) изменений показателя цвета m = U - I: 2 — для темных деталей (Центр Плато, (U) = 0.0955, (I) = 0.292 и Гуморум, (359 нм) = 0.101, (1064 нм) = = 0.279); I — для светлых деталей (Коперник, (U) = 0.197, (I) = 0.586; Клавий, (U) = 0.204, (I) = 0.615); 3 — для = 1

ти детали оценивалось по значениям $A(, 10^{\circ})$ [22] (табл. 2). Там же приведены спектральные значения наблюденного геометрического альбедо A_g , фазового интеграла q Луны [22] и рассчитанных значений A_g , q (при g = 0.4, n = 0.25). Полученное здесь значение g = 0.4 отвечает пористости p = 0.95, величина которой может соответствовать реальной для самой верхней части поверхностного слоя, исчисляемой если не микронами, то десятками микронов. Согласно исследованиям КА «Сервейер-1, -3 и -6» [19, 20] пористость лунного грунта на глубине 0.5...1 см составляет 0.6...0.8, а на глубине 5...10 см — 0.35.

Марс. Для выяснения правомочности использования значения n = 0.25 в связи параметров и (4) будем использовать следующие наблюдательные данные: полученная из обработки переданных КА «Маринер-9» изображений данных о фазовой зависимости блеска [35, 36], об эффекте оппозиции в полосе *V* диска Марса [9] и отдельных деталей [29, 37], спектральных значений геометрического альбедо (без

Таблица 2. Спектральные значения альбедо однократного рассеяния, наблюденных геометрического альбедо A_g и фазового интеграла q, а также рассчитанных A_g , q для Луны [21] и «среднего» Марса [16]

	A_g	q		A_{g}	q	A_g	q		A_{g}	q
, HM	Луна (<i>g</i> = 0.4, <i>n</i> = 0.25)				Mapc $(g = 0.6, n = 0.25)$					
315		_	_	_		0.061	0.88	0.203	0.072	0.64
359	0.072	0.544	0.137	0.102	0.423	0.061	0.90	0.204	0.073	0.64
393					_	0.066	0.86	0.218	0.083	0.65
416	0.085	0.578	0.162	0.120	0.428	0.076	0.79	0.245	0.093	0.66
457	0.088	0.551	0.169	0.127	0.429	0.099	0.87	0.320	0.121	0.69
501	0.106	0.585	0.183	0.138	0.432	0.120	0.90	0.386	0.141	0.71
626	0.162	0.603	0.276	0.200	0.455	0.247	1.00	0.698	0.275	0.88
730	0.179	0.633	0.344	0.246	0.474	0.283	1.12	0.771	0.314	0.92
860	0.179	0.661	0.347	0.248	0.475	0.280	1.17	0.769	0.313	0.91
1064	0.202	0.676	0.368	0.252	0.481	0.270	1.20	0.753	0.304	0.91
U	0.077	0.532	0.149	0.112	0.425	0.058	0.92	0.195	0.074	0.64
В	0.094	0.587	0.162	0.120	0.428	0.082	0.94	0.273	0.103	0.67
V	0.113	0.611	0.194	0.146	0.435	0.146	1.01	0.465	0.176	0.75

Рис. 3: а — эффект оппозиции для полного диска Марса: линии — наблюдения [9], точки — расчет при g = 0.6, n = 0.25 в полосах U(=0.210), B(=0.294), V(=0.487), R(=0.780), δ — эффект оппозиции для двух деталей поверхности Марса: для темной детали Сиртис Майор (кружки — наблюдения [29], жирная линия — расчет при g = 0.6, n = 0.25; = 0.310, 0.467, 0.577, 0.613 для = 430, 550, 670 и 1040 нм соответственно) и для светлой детали Арабиа (звездочки — наблюдения [29], тонкая линия — расчет при g = 0.6, n = 0.25; = 0.355, 0.638, 0.853, 0.939)

учета эффекта оппозиции [17, 18]) и об отражательной способности материка Арабиа и моря Сиртис Майор при $=5^{\circ}$ [24]. Оказалось, что g = 0.6 (пористость p = 0.836), значение () приведено в табл. 1. Сравнение расчетов с наблюдениями показано на рис. 3, 4.

Рис. 4: а — эффект оппозиции для двух деталей поверхности Марса: темной (звездочки и жирная линия — наблюдения КА «Викинг» [37] и расчет при g = 0.6, n = 0.25; = 0.405, 0.601, 0.741 для = 443, 539, 592 нм соответственно) и светлой (кружки и тонкая линия — наблюдения [37] и расчет при g = 0.6, n = 0.25; = 0.371, 0.531, 0.602); δ — сравнение наблюденных [17, 18] (точки) и рассчитанных фазовых зависимостей показателя цвета m = m(416 нм) - m(730 нм): 1 — для светлой детали Арабиа (= 0.251, 0.895), 2 — для темной детали Сиртис Майор (= 0.251, 0.603)

Как видно, довольно большое несоответствие с наблюдательными данными КА «Викинг» [37] наблюдается на рис. 4, *a*, согласно которым эффект оппозиции менее выражен у темной детали. Если это реально, то пористость поверхностного слоя темной детали меньше, чем у светлой (g_{τ} g_{c}). Это можно объяснить современными представлениями о том, что пылевые облака образуются за счет выноса миллиардов тонн пыли, главным образом со светлых областей Марса. Поэтому пыль, осевшая после пылевых бурь 1971 и 1973 гг., могла сильнее уменьшить пористость темных деталей. Наблюдаемый на рис. 4, *б* разброс показателя цвета обусловлен не учётом долготного эффекта в блеске планеты [2], амплитуда которого при = 730 нм составляет 0.2^m , а при = 416 нм — около нуля. В табл. 2 также приведены спектральные значения альбедо однократного рассеяния , наблюденного геометрического альбедо A_g и фазового интеграла q «среднего» Марса [17], а также рассчитанных A_g , q (при g = 0.6, n = 0.25).

Астероиды. Для астероидов мы ограничились только проверкой справедливости высказанного Ф. Тупиевой предположения, что фазовые зависимости блеска астероидов Е-типа близки к фазовой зависимости блеска Марса, а фазовые зависимости М-, S-астероидов близки к фазовым зависимостям для Луны. Поэтому мы ограничились анализом составных фазовых зависимостей блеска типов E, M, S, C [6]. Как видно из рис. 5, наилучшее согласие наблюдений (треугольники) и ра-

Рис. 5. Наблюденные [6] (треугольники) и рассчитанные (звездочки) фазовые зависимости блеска астероидов разных типов: Е-типа (g = 0.6, = 0.6, $A_g = 0.213$, q = 0.83) и марсианская индикатриса рассеяния (g = 0.3, = 0.4, $A_g = 0.151$, q = 0.71, точки), М- (g = 0.4, 0.1, $A_g = 0.075$, q = 42) и S-типов (g = 0.4, = 0.4, $A_g = 0.284$, q = 0.49) — лунная индикатриса, С-типа (g = 0.6, 0.1, $A_g = 0.075$, q = 0.43) — модифицированная лунная индикатриса

счетов (звездочки, точки), действительно достигнуто для трех отдельных индикатрис рассеяния: марсианская (Е-тип), лунная (М-, S-типы) и модифицированная лунная для С-типа.

Теперь несколько слов о модификации лунной индикатрисы. Для астероидов С-типа геометрическое альбедо изменяется иногда в три раза (0.03—0.10); оно чрезвычайно малое, поэтому, пренебрегая мно-гократным рассеянием, значения () (см. в табл. 1) определялись из соотношения

() F()H(g,)/3.054H(g,0).

Это делалось подбором параметра g(0.6), при котором выполняется равенство (5). Здесь 3.054 = (0) для Луны. Считаем необходимым отметить, что приведенные в подрисуночных подписях рис. 5 значения параметров, безусловно, не могут характеризовать все астероиды данного типа, а тем более — еще и других типов. Таким образом, модификация Ирвина — Яновицкого теневого механизма формирования эффекта оппозиции блеска, которая содержит функцию () и два независимых параметра (g и), при справедливости связи =

(1)^{0.25} удовлетворительно описывает не только фазовые зависимости блеска безатмосферных небесных тел, но и изменение показателя цвета с углом фазы и по диску, распределение отражательной яркости по диску, фотометрического контраста по диску и с углом фазы. В то же время необходимо отметить, что используемое здесь предположение о том, что значения параметра *g* и функции () для всех деталей диска одинаковы и не зависят от длины волны, вряд ли оправданно, но сейчас отсутствуют наблюдательные данные, которые позволили бы от него отказаться.

- 1. *Мороженко А. В.* Оптические параметры атмосферы и поверхности Марса. III. Поверхность // Астрон. вестн.—1975.—9, № 3.—С. 137—143.
- 2. *Мороженко А. В.* Эффекты когерентного рассеяния в поляризационных свойствах галилеевых спутников Юпитера? // Кинематика и физика небес. тел.— 2008.— **24**, № 2.—С. 155—157.
- 3. Мороженко А. В., Рубашевский А. А., Яновицкий Э. Г. Результаты статистической обработки наблюдений фазовой зависимости интегрального блеска Марса // Астрон. журн.—1970.—47, № 5.—С. 1073—1082.
- 4. *Мороженко А. В., Яновицкий Э. Г.* Оптические свойства поверхностного слоя Луны // Астрон. журн.—1971.—48, № 1.—С. 172—183.
- 5. *Мороженко А. В., Яновицкий Э. Г.* Оптическая модель поверхности Марса в видимом участке спектра // Астрон. журн.—1971.—48, № 4.—С. 795—809.
- 6. *Тупиева* Ф. А. Сравнительный анализ фазовых зависимостей блеска астероидов // Кинематика и физика небес. тел.—1991.—7, № 3.—С. 42—51.
- Bowell E., Hapke B., Domingue D., et al. Applications of photometric models to asteroids // Asteroids II / Eds R. P. Binzel, T. Gehrels, M. S. Matthews. — Tucson: Univ. Arizona Press, 1989.—P. 524—556.
- Buratti B. J., Hillier J. K., Wang M. The lunar opposition surge: observations by Clementine // Icarus.—1996.—124, N 2.—P. 490—499.
- 9. de Vaucouleurs G. Geometric and photometric parameters of the terrestrial planets // Icarus.—1964.—3, N 3.—P. 187—235.
- Gehrels T., Coffeen D. L., Owings D. Wavelength dependence of polarization. III. The lunar surface // Astron. J.—1964.—69, N 10.—P. 826—852.
- 11. *Hapke B*. A theoretical function for the lunar surface // J. Geophys. Res.—1963.—68, N 15.—P. 4571—4586.
- 12. *Hapke B.* An improved the theoretical lunar photometric function // Astron. J.— 1966.—71, N 5.—P. 333—339.
- 13. *Hapke B*. Coherent backscatter and the radar characteristics of outer planet satellites // Icarus.—1990.—**88**, N 2.—P. 407—417.
- 14. *Hapke B., Nelson R. M., Smythe W.* The opposition effect of the Moon: The contribution of coherent backscatter // Science.—1993.—260, N 5107.—P. 509— 511.
- 15. *Hellenstein P., Veverka J., Hillier J.* The lunar opposition effect: A test of alternative models // Jcarus.—1997.—128, N 1.—P. 2—14.
- Irwine W. M. The shadowing effect in diffuse reflection // J. Geophys. Res.—1966.— 71, N 12.—P. 2931—2937.
- 17. Irvine W. M., Simon Th., Menzel D. H., et al. Multicolor photoelectric photometry of the brighter planets. II. Observations from Le Houga observatory // Astron. J.— 1968.—73, N 4.—P. 251—264.
- Irvine W. M., Simon Th., Menzel D. H., et al. Multicolor photoelectric photometry of the brighter planets. III. Observations from the Boyden observatory // Astron. J.— 1968.—73, N 9.—P. 807—828.
- 19. *Jaffe L. D.* Surface structure and mechanical properties of the lunar maria // J. Geophys. Res.—1967.—72, N 6.—P. 1727—1731.

- 20. Jaffe L. D. Surveyor 6 lunar mission // J. Geophys. Res.—1968.—73, N 16.— P. 5297—5300.
- 21. *Kuga Y., Ishimaru A.* Retroreflectance from a dence distribution of spherical particles // J. Opt. Soc. Amer.—1984.—A1, N 7.—P. 831—835.
- 22. Lane A. P., Irvine W. M. Monochromatic phase curves and albedos for the lunar disk // Astron. J.—1973.—78, N 3.—P. 267—277.
- Lumme K., Bowel E. Radiative transfer in the surface of atmosphereless bodies. I. Theory // Astron. J.—1981.—86, N 11.—P. 1694—1704.
- McCord Th. B., Westphal J. A. Mars: Narrow-band photometry from from 0.3 to 2.5 microns of surface regions during the 1969 apparition // Astrophys. J.—1971.—168, N 1.—P. 141—153.
- 25. *Mishchenko M. I.* Polarization characteristics of the coherent backscatter opposition effect // Earth, Moon, Planets.—1992.—58, N 2.—P. 127—144.
- Mishchenko M. I., Dlugach J. M. The amplitude of the opposition effect due to weak localization of photons in discrete disordered media // Astrophys. Space Sci.— 1992.—189, N 2.—P. 151—154.
- 27. *Mishchenko M. I., Luck J-M., Nieuwenhuizen T. M.* Full angular profile of the coherent polarization opposition effect // J. Opt. Soc. Amer.—2000.—17, N 5.—P. 88—891.
- 28. O'Leary B. T. The opposition effect of Mars // Astrophys. J.—1967.—149, N 3.— P. L147—L149.
- O'Leary B. T., Jackell L. The 1969 opposition effect of Mars. Full disk, Syrtis Mayor and Arabia // Icarus.—1979.—13, N 3.—P. 437—448.
- Pohn H. A., Radin H. W., Wildey R. L. The Moon's photometric function near zero phase angle from Apollo 8 photography // Astrophys. J.—1969.—157, N 3.— P. L193—L195.
- Rougier G. Photometric photoelerctrique global de la Lune // Ann. Observ. Strasbourg.—1933.—2, 3.—P. 203—339.
- Rozenbush V. K., Avramchuk V. V., Rosenbush A. E., Mishchenko M. I. Polarization properties of the Galilean satellites of Juputer: Observations and preliminary analysis // Astrophys. J.—1997.—487, N 1.—P. 402—414.
- 33. *Stebbins J.* The light-variations of the satellites of Jupiter and their application to the solar constant // Lick Observ. Bull.—1927.—13, N 1.—P. 1—11.
- Stebbins J., Jacobsen T. S. Further photometric measures of Jupiter's satellites and Uranus, with tests for the solar constant // Lick Observ. Bull.—1928.—13, N 2.— P. 180—195.
- 35. *Thorpe Th. E.* Mariner 9 photometric observations of Mars from November 1971 through March 1972 // Icarus.—1973.—20, N 4.—P. 482—489.
- Thorpe Th. E. Viking orbiter photometric observations of the Mars phase function July through November 1976 // J. Geophys. Res.—1977.—82, N 28.—P. 4161—4165.
- Thorpe Th. E. The Mars opposition effect at 20 N latitude and 20 W longitude // Icarus.—1979.—37, N 2.—P. 389—397.

Статья поступила в редакцию 30.07.12