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The spontaneous magnetic field direction
in an anisotropic MHD dynamo

The phenomenon of magnetic field generation in an astrophysical plasma
in the frame of developed magnetohydrodynamic (MHD) turbulence is con-
sidered. The functional quantum field renormalization group approach is
applied to helical anisotropic MHD developed turbulence which is stabi-
lized by the self-generated homogeneous magnetic field. The purpose of the
study is to calculate the value as well as direction of the magnetic field in
the stochastic dynamo model. The generated magnetic field is determined
by ignoring divergent rotor part of Green function of the magnetic field. It is
shown that the magnetic field direction is connected with unique existing
vector n describing the anisotropic turbulence forcing.

HAIIPAMOK CIIOHTAHHOI'O MATI'HITHOI O I1OJIA Y AHI3OTPOII-
HOMY MIJ[-J/IHHAMO, llaxos b. O., Opuuwun M., IOpuuwunosa E.,
Cmeenik M. — Po3zensdaemuvcs aguuje cenepayii MasHimHux nojie 8 acmpo-
Gizuuniti naasmi y mescax mooeni possumenoi MIJ[-mypoyrenmuocmi.
3acmocosyemuvcs K8AHMOBONOILOBULL NIOXIO PEHOPMATIZAYIUHOL 2pynu 00
PO36UHEHOI 2IDOMPONHO-AHI30MPONHOT MYpOYIeHmHOCMI, KA CMaoinizy-
€MbCA CAMO2EHEPOBAHUM MASHIMHUM nosiem. Memoio yb02o 00cioNHceH s
€ 00YUCTIeHHA AK 3HAYEHHS, MAK | HANPAMKY MA2HIMHO20 NOJis Y cmoxac-
MmuyHii mooeni ounamo. I eneposane maznimue noie UsHA4AEMbCA NPU
3HeXmy8aHHi ougepeeHmuoi pomopnoi uacmunu ¢yuxyii I pina macnimuo-
2o noas. Iloxazano, wo HanpAMoOK Ma2HiMHO20 NOJIAL NOG'A3AHUL 3 HASGHIC-
Mo 6eKmopa N, AKUli ONUCYE AHI30MPONHe HAKAYY8AHHs eHepaii y mypoy-
JIEHMHICMb.

HAIIPABJIEHUE CIIOHTAHHOI' O MATHUTHOI O I10JI-1 B AHU30-
TPOIIHOM MIJ[-/IMHAMO, lllaxoe b. A., IOpuuwun M., IOpuuwuno-
sa E., Cmeenux M. — Paccmampusaemcs agieHue ceHepayuu MazHumHslx
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nozeti 8 acmpoguzuveckou niasme 6 pamkax mooeau pazeumou M1 /[-myp-
oyrenmuocmu. Ilpumensemcs K8aHMOBONOE80U NOOX0O0 PEHOPMAUZAYU-
OHHOU 2pynnvl K passumotl UupomponHo-aHu30mponHo mypoyieHm-
HOCMU, KOmopas CMAaOuiu3upyemcs camoeHepupyemviM 0OHOPOOHbIM
MazHumHuIM noaem. Llenvro smoeo uccnedosanus A61Aemcs GbluucieHue
KaK 3HAYeHUs, maxk U HanpagieHus 3mo20 MAHUMHO20 NOJisl 8 CIOoXac-
muyeckou mooenu ounamo. I enepupyemoe maznumuoe nose onpeoensiem-
csa npu nperebpexceHul OUBEPeHMHON POMOPHOU YACMbIO QYHKYUU
I'puna maenumnozo noaa. Iloxkazano, umo HanpasieHue MacHUMHO20 NOJA
C8A3AHO C HAIUYUEM 8eKMOpA R, ONUCHIBAIOWE20 AHUZOMPONHOE HAKAYU-
ganue sHepauu 8 mypoyieHmHoCMb.

INTRODUCTION

Magnetohydrodynamic (MHD) turbulent dynamo still attracts large atten-
tion due to many applications in both the astrophysical and laboratory plas-
mas. Despite an enormous effort, nowadays the related problems and ques-
tions remain deficiently explored. That is question, how does the turbulence
amplify and sustain magnetic fields (MFs), what is the spectrum and struc-
ture of this field at various scales in astrophysics as well as in a laboratory.
Many authors attempt to justify the basic treatment of stable regimes of
fully developed MHD turbulence in various approaches: kinetic or mag-
netic driving the helical or non-helical dynamo. Another eventual approach
is based on the self-consistent nonlinear set of MHD equations, the
Navier-Stokes equation including the Lorentz force together with the in-
duction equation.

Nowadays the mean field helical dynamo is used to be applied in astro-
physical rotators [22, 26, 28]. It involves initially weak large-scale field am-
plified by strong helical velocity fluctuations. In this understanding the
large-scale field is amplified and sustained on scales significantly larger
than the scale of the driving turbulence, and the source of E = oB (o is
known as the dynamo coefficient) typically is the kinetic helicity, H; =
(v-rotv) . Calculations of the field spectra are obviously performed in the
case of isotropic MHD turbulence. Recently, anisotropic contributions
from mean velocity flows have been considered as additional contributions
to the electromotive force driving the velocity driven helical dynamo [4,
31]. Generally, the MHD turbulence is nowadays understood to be inher-
ently anisotropic. A number of important physical processes in anisotropic
MHD turbulence was clarified in [2, 17, 23, 24] where the concept of criti-
cal balance was used to determine the ratio of the dimensions of turbulent
eddies in the directions parallel and perpendicular to the local MF.

As was emphasized in [6], the understanding of laboratory and/or astro-
physical dynamo depends on dominant contribution (role) of magnetic
fields, or alternatively, typical flows (known as the kinematic dynamo). In
classical understanding of nonlinear astrophysical dynamo theory one sepa-
rates “small-scale nonhelical dynamos” in which magnetic energy is ampli-
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fied by random force-line stretching on scales approximately less to that of
the turbulent forcing [16, 20, 21]. Contrary to “large-scale helical dyna-
mos”, the helical hydrodynamic turbulence produces MF on scales larger
than that of the input turbulent forcing (this is one we will consider here) [1,
5,7,22,26,28,29]. This type of dynamo is often used to explain MFs of the
solar and stellar coronae as well as coronae above accretion discs [14,15].
Numerical studies of the effect of a regular MF on o.-dynamo action, due to
helicity driven MHD turbulence, are reported in [27] for unite Prandtl num-
ber. They found that the apparent effect of the dc-magnetic field is to sup-
press the dynamo action. Recently several papers deal with a special flow
pattern, so-called “Roberts flow”, which concerns the low-dimensional dy-
namo modeling [12, 32, 37]. This model can be useful for the examination
of laboratory experiments. They attempt to solve numerically the dynamo
problem in the Fourie representation with small discrete modes. Note that
the kinetic helicity is not necessary for a modified version of the Roberts-
type dynamo [30].

In the helical MHD an additional problem arises: the instabilities in-
duce the exponential increase of the magnetic fluctuations in the large
scales range (see in [11], for example). The elimination of this instability
leads to formation of a large-scale magnetic field known as the turbulent dy-
namo. Removal of the instability in quantum field formulation of helical
MHD can be achieved by means of a nice and very well-known spontane-
ous symmetry breaking mechanism followed by the creation of a homoge-
neous stationary magnetic field. The problem was analyzed in [3] in the spe-
cial case of isotropic MHD turbulence. Indeed, the basic physical problem
arising in the MHD turbulence stability regime is that arising “rotor insta-
bilities” in MHD turbulence needs the creation of a large-scale magnetic
field, but then the MHD turbulence does not to be isotropic. For example,
the Alfvénic turbulence (weak forcing when the turbulence excitations are
small-amplitude disturbances propagating along the MF) is manifestly
anisotropic [33].

The stabilization of an instable system through the appearance of a
spontaneous mean field is a typical effect in field-theoretic models of vari-
ous phenomena. A typical example is the appearance of spontaneous mag-
netization below the critical temperature 7, in ferromagnetics. There, the
standard technical procedure can be used. However, in the present problem
this technique is not applicable (as was discussed in [3]). Here, we introduce
anonzero mean magnetic field already in origin problem to stabilize the tur-
bulent system.

In[10, 13] the dynamo coefficient o was derived using the quasilinear
MHD turbulent theory. They found that in the limit of large kinetic Re and
magnetic Re,, , the a-coefficient may be not small if the correlation time of
velocity field and magnetic field are shorter than the eddy turn over time of
the MHD turbulence and o depends intensively on the magnetic Prandtl
number. The opposite limit of small magnetic and fluid Reynolds numbers
was considered in [35]. In this case there is no small-scale dynamo action
and so the small-scale magnetic field is solely due to shredding the large-
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scale magnetic field. In general o has a tensor form, o, [22], which was
also used in numerical simulations [8, 9]. They showed rather fluctuating
value of the ai-effect tensor in all the components. Thus the general case of
an anisotropy presence is to be examined.

Here we will use the functional quantum field renormalization group
(RG) approach [1, 36]. It assigns a field action to the stochastic problem and
makes possible to use elegant and very well developed RG procedure in
quantum field theory to investigate infrared asymptotic regimes of a sto-
chastic system. This theoretic-field RG approach concerns to (describes)
stationary state of generated MF under equilibrium in the sense when the
state is the solution of self-consistent nonlinear MHD equations (in a helical
medium) with the helical injection of energy. (In the RG terminology the
stable regime is described by the fixed point of RG-equations.) Continuous
injection of helicity typically leads to a quasi-steady dynamical equilibrium
with self-generated MF as a stabilizing factor [18, 34]. But in the isotropic
developed MHD turbulence it is not possible to determine a direction of
generated homogeneous MF. This question is the goal of the present paper.
We use the theoretic-field RG approach to helical anisotropic MHD turbu-
lence which is stabilized by the self-generated MF. Its direction is con-
nected with unique existing vector n describing the anisotropic forcing (see
below) .

THE MODEL FORMULATION

The interaction of electrically neutral conductive turbulent incompressible
fluid (with the unit magnetic permeability) with the magnetic field in the
case of anisotropically driven MHD turbulence is described by the MHD
equations for the fluctuating part of the fields:

=—0,v+VAV+(VWV+(bV)b+ £ + 1" =T,
L, =-0,b+ V' Ab+(vV)b—(bV)v + 2 + T =0.

The first equation is the well-known Navier — Stokes equation for the
transversal velocity field v(x, ) with the additional nonlinear contribution
of'the Lorentz force (the longitudinal contribution is ascribed to pressure p).
The second equation for magnetic field b(x,?) (in the Alfven units b =
B/ \/4mnp, p isa fluid density) follows from the Maxwell equations for con-

> o

(1)

tinuous medium. The magnetic diffusion coefficient v'is connected with the
coefficient of molecular viscosity by relation v’ = uv with dimensionless
magnetic Prandtl number »~'. The terms ', are related to uniaxial aniso-
tropy and they have the following form [2]:

£ =Vv[x,(nV)’v+y,nV’(nv)+y,n(nV)’*(nv)]+
+A,b(nV)(nb)+A,n(nV)b* + 1 ,n(bV)(nb)+ A ,n(nV)(nb)*,
£’ =v'[t,(nV)’b+ 1,nV’(nv)+ t,n(nV)*(nv)].
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The parameters y, and t, characterize the weight of the individual
structures in Eqgs (2), and the unit vector n specifies the direction of the ani-
sotropy axis.

The large-scale random force per unit mass f corresponds to a kinetic
energy doping and it is assumed to have Gaussian statistics defined by the
averages:

(1) =0, (Fi(xpst)f,(Xau1)) = Dy (X, = X5ty =13). (3)

The two-point correlation tensor
D, (x,1) =8(1)[ di(2m)* D, (k)exp(ik - x) 4)
is convenient to parametrize in the following way:
D, (k) =20m"guv’ k" *[(1+ 0., E}P, (K)+ o, R, (K) +pQ; 1 (5)

as linear combination of both tensor and pseudotensor (in our helical case).
Here ¢ > 0 is dimensionless parameter of the model; its physical value is
¢ =2 which corresponds to the Kolmogorov energy pumping from infra-red
region of the small k. The value € = 0 corresponds to a logarithmic perturba-
tion theory for a calculation of Green functions when g, which plays the role
of a bare coupling constant of the model, becomes dimensionless [36]. The
problem of the continuation from € = 0 to the physical values was discussed

in [1]. The (3x3)-matrices P;, R, and O, are the transverse projectors.

Their explicit forms are defined by the relations (in the wave-number
space):

k k.
Py(k)=8, == 5 R,(K)= P, (K)nn,P, (K)

2 ritst oy

6
Qij(k) =1g, ©

where g, is the Levi — Civita pseudotensor and & is given by the equation
E=k:-n / k. The tensor D, , given by Eq. (5), is the most general form with

respect to the condition of incompressibility of the system under consider-
ation and contains two dimensionless free parameters o, and o ,. The posi-
tiveness of the correlator tensor D;; leads to restrictions on the above param-
eters, namely,o, >—1 and o, > — 1.

Itis mentloned in[l,3] that the system (1) (with zeroth both T ) is unsta-
ble and in QFT formulation the divergence proportional to the UV cutoff A
can appear in the Green function <b’ b>. It acquires the form of b'rotbA. The
A— UV divergence generates the instability of the theory, that causes an
exponential growth in time of the corresponding response function. There-
fore, its direct insertion into the action is not allowed and we have to find an
effective way to eliminate it. So, one must consider the new vacuum state
with a non-vanishing mean value of <b> =C#0.[1]. In QFT the appearance

of non-zero vacuum value of field is associated with spontaneous symmetry
breaking [34]. The value of spontaneous mean field is determined from re-
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quirement of minimum of potential energy at the tree level. The A-diver-
gence can be eliminated by means of the shift of' b by the value of spontane-
ous homogeneous magnetic field, namely b(x)— b(x)+ C. This shift in the
system (1) with zeroth both f produces the new non-vanishing terms

T’ =(CV)b+i,C(nV)(nb)+ A ,2n(nV)(Cb)+
+A,n(CV)(nb)+ A ,2n(nC)(nV)(nb),
7 =(CV)v

with new parameters A, (i=1, ..., 4) .

THE RENORMALIZATION

The complete unrenormalized action of the anisotropically forced MHD
turbulence [18, 19] with the shifted MF (b— b+ C) [3] can be obtained us-
ing f and f in the stochastic MHD equations (1). Using the standart formal-
ism, the stochastic problem (1) with correlator (4) can be transformed into
the field theoretical model of fields @ = {v, b, v/, b’} where v’, b’ are the aux-
iliary incompressible fields with the action (see [1, 36], for details):

S(®) = %V'DV'+V'£V +bL,. (8)

Hereafter in the similar expression the integration over corresponding
variables (x, ¢ in this case) and the traces over the vector indices are implied.
As itis usual in QFT, the action (8) is considered to be unrenormalized with
the bare constants marked by the subscript “0”. The basic objects of the
study are the Green functions of the fields @ (i. e., the correlation functions
and response functions in the terminology of the original problem (1)).
They can be determined as functional derivatives with respect to external
sources 4 = {A", A", A", A"} of the generating functional G(A4) =
J D®exp[S(®)+]+ AD], i. e., they are the functional averaged values of the

corresponding number of the fields ® with a weight exp[S(D)].
In the Fourie representation one obtains:

1 ~
S==v_DV +v' V.
2 i i i

!
iV Vi -V W

bbb Ubov, +
+%v'i [(io -k — Ky, &%)+ k(= 0, _X3‘t32”in,-)]v./ *
+%vi[(—iw—K—KX1§2)+ K(=x ,m,1; —Xzéznr”j )+

+%b’i [(io —ux —uxt %) + ux(=t,n,n, —1,&°n,n,)]b, +
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+%bi [(—io —ui —uxt, &%) + ux(=1t,m, —1,6°n, )b+

+%V',- [iy +i(yA, +20,7,Enn, + (A ECon; +20,En,C )b, +
2 By =1 + 207, 0,80 C + 20 EC I+

1., . 1 S
+5b vl +5v[[—lv]b ;
where « = vk?, y =(Ck), v, =(Cn) and the vertexes are:
Vi = i(kjsil + klsg; ) Uijl = i(kjsil - kls;'j ) VV;’;’I = V;’// +q

g
(M kE(n 8, + 10, )+2h,End ) +Ayn(k n, +n, )+2N,kEnn n)).

Inversion of the quadratic part of (9) leads to the Green functions (prop-
agators). In general, the Green functions (vv), (vb), (bv), (bb) are expected
to be linear combinations of the projectors P, R, =P, n.n P, P.C.nP,,
Piransst 4 P[rCrC‘st > QU H Qirnrnspsj > Qircrnspsj 4 Qiransst 4 QirCrCsst 2

S

P.n Q;,P.nCQO.,P.CnQ,; and P, C.CQ,. They all are necessary to
closing the group of projectors. Analogically, the Green functions <v’v>,
<V’ b>, <b’v>, <b’ b> are expected to be linear combinations of the first five
above projectors. In the case of the weak anisotropy limit one can remain
the terms of only the first order with respect to all parameters and one can
leave out all the terms containing the parameters i ,, t,, 75, and all A, be-

cause these vanish in the fixed RNG points [2]. As a result, one obtains:

+a, P, nnQ

<vivj>:a1Pij +a2Rij +a6Qij +(l7Q n.n ir Tt s

ir’trttsT s
(byv,)=bP, +b,R, + b0, +b,0,nnP, +b,P.nn0,,
<vl.bj )= P, + R, +c¢0; +¢,0

nnP.+c P nnQ
<bibj>:d1Pij +d,R, +dQ0; +d,0,nnP,+d P.nnQ

i rttsT o) irrits&= s
ir "t ttsT g irrits &0
<v’,. v, > =x,P, + x,R,,
<b’i v, > = ylPﬂ + y,R
<v'i b, > =z,P, +z,R,,
(U',b,)=t,P, +1,R,.

The coefficients in the set (10) have rather complicated form and they
linearly depend on five small parametersy ,, % ,, T,, 0,0 ,. All above Green
functions must be calculated for the gyrotropic MHD renormalization,
namely, their divergent parts of possessing poles ~& ' in & = 0. These parts
are needed for theory renormalization and they are proportional to the sec-

ond order in momentum unit. This question is not discussed here. In the dy-
namo theory the linear part of the Green function <bib i > plays a crucial role

[3].

i
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CONDITION FOR THE HOMOGENEOUS MAGNETIC FIELD

The calculation of the Feynman diagram set ( b,b . ), beside the second-order
part, gives also the linear part (in momentum unit) which corresponds to A
— UV divergent rotor part and it must be vanished. The calculation can be
performed only under the condition that the homogeneous magnetic field C
direction is parallel to the anisotropy direction n. It yields a strong require-
ment for possible C direction, C = n|C]|. Its absolute value follows from the
condition of the rotor part vanishing, namely, in the case of the weak aniso-
tropy limit one obtains:

k,  mgup
ke 12(1+ u)’u

+[57(1 + 3u)| Cl-16uvuAv]t, +[51(5 + 3u)| C—168/u2 + w)Avly, 1. (11)

(Vb)) ~ie, {(~10(1 + u) 31| -8~ uAv) +

As a result, the requirement of the vanishing of this term yields the
value of spontaneous field

. aJuAv
451t(1+ u)

= [BO(1+ u)+ (5+9u)t, + (13 +%u)y, ] (12)

Note that in isotropic turbulence the presence of arbitrary small
gyrotropy p in Eq. (5) leads to the mean field C generation [3], but its direc-
tion can not be determined (the direction is spontaneous). In contrary, the
presence of a small anisotropy of energy forcing into the helical turbulent
system leads to the determined direction of C, C || n. In the limit of zero ani-
sotropy (1, =%, =0), Eq. (12) holds only as scalar equation and |C|acquires
the known value C =8y uAv /3w [3].

CONCLUSIONS

In the paper, the phenomenon of the magnetic field generation in astrophys-
ical environment is studied. The statistical dynamo model is constructed for
helical weakly anisotropic full developed MHD turbulence in the frame-
work of the quantum field renormalization group approach. It is shown that
the renormalization leads to arising of ultra-violet divergence in rotor part
of the magnetic field Green function <b’ b, > which must be eliminated from

the theory. The weak helical anisotropic turbulence is then stabilized by the
self-generated magnetic field C whose value is calculated. The direction of
the magnetic field is connected with unique existing vector n describing the
anisotropic turbulence forcing, C||n.

Note that the renormalized Green function is obtained which is finite as
A— oo formally, as it is usual in the field theory. But in real problems a natu-
ral cutoff really exists. In the developed turbulence the Kolmogorov
dissipative length /, = A™' plays the role of a minimal scale. This length can
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be expressed in terms of basic phenomenological parameters — viscosity v
and energy dissipation rate €. Then from (13) and simple dimensional con-
siderations one obtains |C| oc (ve)"* — order of magnitude of the spontane-

ous field [36].

Acknowledgements. M. Stehlik gratefully acknowledges the hospitality of
the staff of the Main Astronomical Observatory of NAS of Ukraine (Kyiv). The
paper was prepared in the course of the realization of the project ITMS No.
26220120029 based on the supporting operational Research and development pro-
gram financed from the European Regional Development Fund and also supported
by SAS, VEGA project No. 2/0081/10 and 2/0173/09.

1. Adzhemyan L. Ts., Antonov N. V., Vasiliev A. N. The field theoretic renormalization
group in fully developed turbulence. — London: Gordon and Breach Sci. Publ.,
1999.— 202 p.

2. Adzhemyan L. Ts., Hnatich M., Horvath D., Stehlik M. Infrared properties of an anisotro-
pically driven MHD turbulence // Int. J. Mod. Phys. B.—1995.—9.—N 26.—
P. 3401—3419.

3. Adzhemyan L. Ts., Vasiliev A. N., Gnatich M. Turbulent dynamo as spontaneous symme-
try breaking // Theor. Mat. Phys.—1987.—72, N 3.—P. 940—950.

4. Blackman E., Field G. Constraints on the magnitude of alpha in dynamo theory // Astro-
phys. J.—2000.—534, N 2.—P. 984—988.

5. Blackman E., Field G. New dynamical mean-field dynamo theory and closure approach
// Phys. Rev. Lett.—2002.—89.—P. 265007.

6. Blackman E., Ji H. Laboratory plasma dynamos, astrophysical dynamos, and magnetic
helicity evolution // Mon. Notic. Roy. Astron. Soc.—2006.—369, N 4.—P. 1837—
1848.

7. Brandenburg A. The inverse cascade and nonlinear alpha-effect in simulations of isotro-
pic helical hydromagnetic turbulence // Astrophys. J.—2001.—550, N 2.—P. 824—
840.

8. Brandenburg A., Donner K. J. The dependence of the dynamo alpha on vorticity // Mon.
Notic. Roy. Astron. Soc.—1997.—288, N 2.—P. L29—L.33.

9. Brandenburg A., Sokoloff D. Local and nonlocal magnetic diffusion and alpha-effect
tensors in shear flow turbulence // Geophys. Astrophys. Fluid Dyn.—2002.—96.—
P. 319—344.

10. Chou H. The dependence of dynamo alpha-effect on Reynolds numbers, magnetic
Prandtl number, and the statistics of magnetohydrodynamic turbulence // Astrophys.
J—2001.—552, N 2.—P. 803—820.

11. Davidson P. A. Turbulence. — Oxford: University Press.— 2004.—657 p.

12. Donner R., Seehafer N., Sanjuan M. A. F., Feudel F. Low-dimensional dynamo model-
ling and symmetry-breaking bifurcations // Phys. D.—2006.—223.—P. 151—162.

13. Field G., Blackman E., Chou H. Nonlinear alpha-effect in dynamo theory // Astrophys.
J—1999.—513, N 2.—P. 638—651.

14. Field G., Rogers R. D. Radiation from magnetized accretion disks in active galactic nu-
clei / Astrophys. J.—1993.—403, N 1.—P. 94—109.

15. Galeev A. A., Rosner R., Vaiana G. S. Structured coronae of accretion disks // Astro-
phys. J.—1979.—229, N 1.—P. 318—326.

16. Haugen N. E. L., Brandenburg A., Dobler W. Is nonhelical hydromagnetic turbulence
peaked at small scales? // Astrophys. Lett.—2003.—597.—P. L141—L144.

17. Hnatich M., Horvath D., Stehlik M. Koncepciya krupno- i melkomasshtabnykh sto-
khasticheskikh silovykh polei v MGD turbulentnosti / Magnitnaya Gidrodinami-

35




B. A. SHAKHOV et al.

ka.—1997.—33.—P. 266—274. (In Russian)

18. Hnatich M., Jonyova E., Jurcisin M., Stehlik M. Stability of scaling regimes in d > 2 de-

19.

20.

21.

22.

veloped turbulence with weak anisotropy // Phys. Rev. E.—2001.—64.—P. 016312-
1-10.

Jurcisin M., Stehlik M. D-dimensional developed MHD turbulence: double expansion
model // J. Phys. A: Math. Gen.—2006.—39.—P. 8035—8050.

Kazancev A. P. Usilenie magnitnogo polya v provodyashchei srede // Zh. Eksper.
Theor. Fiz—1968.—26.—P. 457—460. (In Russian)

Kida S., Yanase S., Mizushima J. Statistical properties of MHD turbulence and turbu-
lent dynamo // Phys. Fluids A.—1991.—3.—P. 457—465.

Krause F., Radler K.-H. Mean-field magnetohydrodynamics and dynamo theory. —
New York: Pergamon Press, 1980.—320 p.

23. Lithwick Y., Goldreich P. Compressible magnetohydrodynamic turbulence in interstel-

24,

25.

26.

lar plasmas // Astrophys. J.—2001.—562, N 1.—P. 279—296.

Maron J., Goldreich P. Simulations of incompressible magnetohydrodynamic turbu-
lence // Astrophys. J.—2001.—554, N 2.—P. 1175—1196.

Martin P. C., Siggia E. D., Rose H. A. Statistical dynamics of classical systems // Phys.
Rev. A—1973.—8, N 1.—P. 423—437.

Moffart H. K. Magnetic field generation in electrically conducting fluids. — Cam-
bridge: Univ. Press, 1978.—339 p.

27. Montgomery D. C., Matthaeus W. H., Milano L. J., Dmitruk P. Apparent suppression of

28.
29.

30.

turbulent magnetic dynamo action by a dc magnetic field // http://lanl.arxiv.org/abs/
physics/0202027.—2002.

Parker E. N. Cosmical Magnetic Fields.—Oxford: Clarendon Press, 1979.—608 p.

Pouquet A., Frish U., Leorat J. Strong MHD helical turbulence and the nonlinear dy-
namo effect // J. Fluid Mech.—1976.—77, N 2.—P. 321—354.

Radler K.-H., Brandenburg A. Alpha-effect dynamos with zero kinetic helicity // Phys.
Rev. E.—2008.—77, N 2.—P. 026405.

31. Radler K.-H., Kleeorin N., Rogachevskii I. The mean electromotive force for MHD tur-

32.

33.

34.

35.

36.

37.

bulence: The case of a weak mean magnetic field and slow rotation // Geophys.
Astrophys. Fluid Dyn.—2003.—97, N 3.—P. 249—274.

Radler K.-H., Rheinhardt M. Mean-field electrodynamics: Critical analysis of various
analytical approaches to the mean electromotive force / Geophys. Astrophys. Fluid
Dyn.—2007.— (http://xxx.lanl.gov/abs/astro-ph/0606267)

Schekochihin A. A., Cowley S. C. Turbulence and magnetic fields in astrophysical plas-
mas // http://xxx.lanl.gov/abs/astro-ph/0507686.—2005.

Shakhov B., Stehlik M. The a-effect and proton acceleration in the solar wind // Kine-
matics Phys. Celestial Bodies.—2008.—24, N 1.—P. 28—34.

Sur S., Subramanian K., Brandenburg A. Kinetic and magnetic alpha effects in nonlin-
ear dynamo theory // Mon. Notic. Roy. Astron. Soc.—2007.—376, N 3.—P. 1238—
1250.

Vasiliev A. N. The field theoretic renormalization group in critical behavior theory and
stochastic dynamics. — Boca Roaton: Chapman and Hall/CRC, 2004.—774 p.

Verma M. K., Lessinnes T., Carati D., et al. Dynamo transition in low-dimensional
models // Phys. Rev. E—2008.—76.—P. 036409.

Received 27.10.12

36



