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The amplitude of the coherent backscattering
intensity peak for discrete random media:
effect of packing density

The amplitude of the coherent backscattering intensity peak is computed for
a medium composed of densely packed, randomly positioned particles. The
cyclical component of the Stokes reflection matrix at exactly the backscat-
tering direction is expressed in terms of the ladder component, and the lad-
der component is rigorously computed by numerically solving the vector
radiative transfer equation. The effect of packing density is accounted for
by multiplying the single-scattering Mueller matrix by the static structure
factor computed in the Percus — Yevick approximation. It is shown that
increasing packing density can substantially reduce the amplitude of the
copolarized coherent backscattering peak, especially for smaller particles,
and can make it significantly lower than 2. The effect of packing density on
the amplitude of the cross-polarized peak is significantly weaker.

AMIITY][A 3BOPOTHOI'O KOI'EPEHTHOI'O [IIKY IHTEHCHUB-
HOCTI VI BUIIA/IKOBUX JIUCKPETHHUX CEPE/JOBULl]: EQEKT
HJIJIBHOI YITAKOBKH, Miwenxo M. 1. — Pospaxosano amniimyoy
360pOMHO20 KO2EPEHMHO20 NIKY IHMEHCUBHOCMI Olsl cepedosuyd, o
CKNA0AEMbCAL I3 WINbHO YNAKOBAHUX BUNAOKOB0 PO3MAUUOBAHUX YACMUHOK.
Lukniynuu komnonenm mampuyi 8iooumms y nooanni Cmokca y Hanpsam-
Ky MOYHO HA3A0 8UPAdlCeHo yepes Opadbunnull komnonenm. Ocmantii pos-
PAaxo8yEMbCs WAAXOM YUCTIOB020 PO36 A3KY BEKMOPHO20 DIGHAHHS nepe-
nocy. Egpexm wjinoHoi ynakosku 8paxo8ano wiisixom MHONCEHH Mampuyi
Mionnepa 00HOKpamno2o po3CisHHA HA CMAMUYHUL CMPYKMYPHUU pax-
mop, pospaxosanuu y nabaudcenni Ilepkyca — €sika. [lokazano, wo
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30INbUEHHS WIIbHOCIME YIAKOBKU MOMNCE 3HAYHO NOCAAOUMU NAPALETbHO
ROIAPUZ0BAHUTL KO2EPEHMHULL NIK 360POMHO20 PO3CISHHA MA 3MEHUUMU
1020 amnaimyoy 00 3HaA4eHb, 3HAYHO MeHwux 6i0 2. Bnaue winvnol yna-
KOBKU HA AMNAIMYOY NONEPEUHO NOAAPUZ08AHO20 NIKY BUABUBCS HADA2AMO
CaoKiuuM.

AMIIJINTYIA OFPPATHOI'O KOI'EPEHTHOI O ITMKA B MHTEHCHUB-
HOCTH JJJIA C/IVYAUHDBIX JIMCKPETHbBIX CPE[]: DPDEKT IT/IOT-
HOU VIIAKOBKH, Muwenko M. M. — Paccuumvieaemcs amnaumyoa
00pamHo20 KO2epeHMHO20 NUKA 8 UHMEHCUBHOCMU OJi Cpedbl, COCMO-
Awetl U3 NIOMHO YNAKOBAHHBIX CIVYALHO PACHON0dHCeHHbIX yacmuy. L{uk-
JIUYEeCKULl KOMIOHEHM Mampuysbl ompasxceHus 6 npeocmasnenuu Cmoxca 6
Hanpaenenuu mo4yHo HA3a0 BbIPANCEH uepe3 JeCMHUYHbIL KOMHOHEHM.
Tlocneonuii paccuumuvléaemes nymem YUCIEHHO20 PeuleHusi 6eKMOPHO20
ypasHenus nepeHoca. gghexm niomuou YnakosKu yuumvléaemcs nymem
YyMmHodcenus: mampuyvl Mioniepa 0OHOKpamuo2o paccesiHus Ha Cmamu-
yeckull CmpyKmypHulil (pakmop, paccuumannwlii 6 npubnusxcenuu Ilep-
kyca—Heeuxa. IToxazarno, umo yéenuuenue niomHOCHIU YRAKOBKU MONCEM
3HAYUMENLHO 0CIAOUMb NAPATNENbHO NOJIAPU0BAHHBIU KO2EPEeHMHbIU NUK
00pamHO20 paccesHus U YMeHbUUMb €20 AMNAUMYOY 00 3HAYeHUl, 3HA-
yumenbHo Menvuux 2. Bruanue niomHou Ynaxkoeku Ha amniumyoy no-
nepeuno noApU308AHHO20 NUKA OKA3blBAEMCsl HAMHO20 Dolee CladbIM.

INTRODUCTION

Coherent backscattering of light by discrete random media has been
intensively investigated during the last two decades both experimentally
and theoretically [2, 13, 16, 22, 26]. Moreover, it has been shown that this
phenomenon can be observed not only in laboratory conditions but also in
nature in the form of the photometric and polarization opposition effects [1,
10, 14, 17—20]. The primary theoretical tool for computing the
backscattering intensity peak has been the diffusion approximation [2].
However, although the diffusion approximation rather accurately predicts
the angular profile of the backscattering peak, it cannot be used to compute
the amplitude of the peak, i.e., the ratio of the intensity at the center of the
peak to the incoherent background intensity. An additional complexifying
factor is that accurate computations of the amplitude of the backscattering
peak must explicitly take into account the vector nature of light since
polarization effects have been shown to be extremely important in coherent
backscattering [8, 15, 16].

Reflection of polarized light by a discrete random medium can be fully
described by a 4x4 Stokes reflection matrix. In [8], Saxon’s reciprocity
principle [21] was used to derive a rigorous relationship between the
cyclical and ladder components of the reflection matrix at exactly the
backscattering direction. Two factors make this relationship very useful.
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First, in the derivation of this relationship the vector nature of light has been
fully taken into account. Second, the ladder component of the reflection
matrix can be rigorously computed by solving the vector radiative transfer
equation (VRTE) with one of the well established numerical techniques [7,
16]. Both spherical and nonspherical scattering particles can be treated [16].
Therefore, this relationship can be used to compute the cyclical component
of the reflection matrix in the center of the backscattering peak and, thus,
the amplitude of the peak. This approach has been used in [5, 6,9, 12, 16] to
extensively study the properties of the coherent backscattering effect for
different representations of polarization.

Numerical solutions of the VRTE used in [5, 6, 9, 12, 16] imply
sparsely distributed, “independently scattering” particles and hence are not
necessarily applicable to densely packed media, for example owing to
correlations among particle positions. Therefore, it is the aim of this paper
to extend the approach developed in [8] to media with nonzero packing
density and to examine the effect of packing density on the amplitude of the
coherent backscattering peak. Unlike the rigorous and sophisticated
approach pursued in [23—25], we will use a rather simple and inherently
approximate approach based on the so-called structure factor formalism.

THEORY AND COMPUTATIONS

Let the discrete scattering medium be a homogeneous semi-infinite slab
composed of sparsely and randomly distributed particles. The slab is illumi-
nated by a quasi-monochromatic parallel beam of light of infinite lateral ex-
tent incident in the direction of the unit vector i, = {6, > /2, ¢, }, where 0

is the corresponding zenith angle measured from the positive direction of
the z axis and @  1s the corresponding azimuth angle measured from the pos-
itive direction of the x axis in the clock-wise sense when looking in the posi-
tive direction of the z axis (Fig. 1). In what follows, we will assume for sim-
plicity that@ , = 0. The Stokes column vector has four Stokes parameters as
its components: I =[I QU V]" where T stands for “transposed”. Let R, be
the 4x4 Stokes reflection matrix for exactly the backscattering direction
n,= {0=m—0,,¢,=m}. This matrix yields the specific Stokes column vec-

tor of the backscattered light as follows:

~ 1

I, :;MORbIO’ (1)
wherep, = —cos0, and I, is the Stokes column vector of the incident beam
[16].

Under the simplifying assumption of a macroscopically isotropic and

mirror-symmetric particulate medium, the backscattering matrix R, has the
following block-diagonal structure [7, 16]:
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Fig. 1. Right-handed laboratory coordinate system with origin at the upper boundary of a
semi-infinite particulate slab. The direction of light propagation is specified by a unit vector n = {0,
@}. The slab is illuminated by a quasi-monochromatic parallel beam of light incident from above in
the direction of the unit vector n,

Ry Ry, 0 0
Ry, Ry, 0 0
0 0 Ry Ry ‘
0 0 Ry Ry

R, = (2)

In accordance with the microphysical theory of coherent backscattering
by sparse discrete random media [13, 16], the backscattering Stokes matrix
R, can be decomposed as follows:

R, =R, +R, +Rj{, 3)
where R is the contribution of the first-order scattering, R " is the diffuse
component consisting of all the ladder terms of scattering orders (n > 2), and
R¢ is the cumulative contribution of all the cyclical terms. The matrices R},
and R}’ can be found by numerically solving the VRTE [16]. Then the ma-
trix R, can be determined from the following exact relation derived in [8,
16]:

R, R), 0 0

R}f\]/[2 R1f22 O O
0 0 leS?a Rl?;[4
0 0 _R£4 R1f44

R = : (4)

where
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Ry, =05(R) +RM, — R, + R}, (5)
Ry, =05(R), + RY, + RM, —RM), (6)
Ry, =05(=R) +RY, +RY + R, (7)
Ry, =05(RY, =R}, + RY. +R},). (8)

Once all the components of the backscattering Stokes matrix are
computed, they can be used to calculate the amplitude of the coherent
backscattering peak for different states of polarization of the incident and
scattered beams [8, 16]. Specifically, if the incident light is fully linearly
polarized in the vertical direction, then the amplitudes of the copolarized
and cross-polarized peaks are expressed in terms of the backscattering
Stokes matrix as

1 1 M M M
— Rbll + Rb22 + 2]ebll + 4Rh12 + 216[;22

, 9
TR YR, R, 28] + R )
chV:Ril;n _R/l;22+R131/[1 —R%Z—R£3+Rﬁ4’ (10)

Rl

1 M M
b1l _szz + Rbll _szz

respectively. In the case of fully circularly polarized incident beam, we
have for the amplitudes of the helicity-preserving and opposite-helicity
peaks:
C_, _ R[1711 + R[1)44 + 2’Rl?lll + 2R[?444
hp
! Rll711 + R11744 + Rlﬁll + Rlﬁ4

) (11)

Coh — Rllm _R11;44 +R1ﬁ[1 +R£z _R;; _R:L‘ (12)

1 1 M M
Rbll _Rb44 + Rbll _Rb44

For spherical particles R,,, = R,,, and R,,, = —R,,,, which implies that

2R!
G, =2 el (13)

- 1 M M M
2Rb11 + Rbll + 2Rb12 + szz

M M
_ Rb33 — Rb44

Cp =1 , (14)
: lellil _Rzgz
Cyp =2, (15)
RM _RM
C;Uh :1 b22 b33 . (16)

+
1 M M
2Rb11 + Rbll _Rb44

To solve numerically the VRTE, one needs to know single-scattering
characteristics of particles comprising the medium. The single scattering of
polarized light by a particle is described by the 4x4 Stokes scattering matrix
F [16]. For spherical particles, the elements of the scattering matrix depend
on the particle refractive index and size parameter x (defined as x =2nr /A,
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where r is particle radius and A is the wavelength in the surrounding me-
dium) as well as on the scattering angle © (i.e., the angle between the
incidence and scattering directions). The (1, 1) element of the scattering
matrix is called the differential scattering cross section and is often denoted
as dC . /dQ. The scattering cross section C . is obtained by integrating

sca sca

the differential scattering cross section over all scattering directions:

C,, = [dQ Cus. (17)
. 4n dQ
The quantity
4t dC
0Q)=——% 18
p(O) C 40 (18)

sca

is called the phase function and satisfies the normalization condition
1
— | dp(®) =1. 19
i j »(©) (19)

Finally, the asymmetry parameter (or the mean cosine of the scattering
angle) is defined as

(cos@) = j dQ p(©)cos O. (20)
4r ;.

The standard techniques for computing the single-scattering matrix
(e.g., the conventional Lorenz — Mie theory for spherical scatterers and the
T-matrix method for nonspherical particles [16]) for discrete random media
imply that particles are widely separated and their positions are independent
of each other [13, 16]. However, in densely packed media both conditions
are violated. In particular, spatial correlations between particles may be-
come important. As has been suggested in [29], in the first approximation
the corresponding modification of the single-scattering matrix can be ac-
counted for via multiplying F by the so-called static structure factor S which
depends on the filling factor f'(i.e., the fraction of the scattering volume oc-
cupied by the particles) and the product

u=4xsin(@/2). Q1)

The computation of the static structure factor using the Percus—Yevick
approximation for hard, impenetrable, monodisperse spheres is described,
e, g., in [11]. Figure 2 shows the structure factor computed for several
values of the filling factor. It is seen that increasing packing density results
in an angular redistribution of the scattered intensity which is especially
pronounced at u < 10.

As follows from Egs. (13) and (16), the copolarized and opposite-
helicity amplitudes depend explicitly on the (1, 1) element of the single-
scattering component of the Stokes backscattering matrix R;,,. If this
component is neglected, which is the case in the framework of the diffusion

8



THE AMPLITUDE OF THE COHERENT BACKSCATTERING PEAK

S L !.‘
I
M
15[ 1
ST P
P
Fig. 2. Static structure factor S for dif- ”r\ ! ~,
ferent values of the filling factor /' L o \: L \\ = )
1 0 _'-, “-\. ./--37' A o __/. T
SNl
S \_s
[ f=0
05k /’ ; 0. eevnnerees
I Vi " 02 _——-—— =
L.~ / 04 —-—-—-=
L _/'
ot . .| | | l I
0 5 10 15 20 u

approximation, the copolarized amplitude becomes equal to 2. Therefore, it
is the deviation of R,,, from zero that makes the copolarized amplitude
smaller than 2. The single-scattering component of the Stokes back-
scattering matrix is in turn proportional to the backscattering phase function
p(180°). Specifically, in the case of a semi-infinite medium [7, 16],

r),, =280 (22)

8n

where @ is the single-scattering albedo (for nonabsorbing media considered
below, @ = 1).

Figure 3, a shows the backscattering phase function P =p(180°) vs. size
parameter x computed for monodisperse spherical latex particles in water
(relative refractive index 1.195) for several values of the filling factor rang-
ing from 0 to 0.4. In addition, Fig. 3, b shows the ratio R of p(180°) for
densely packed particles (> 0) to that for widely separated particles (f= 0).
It is seen that the effect of particle correlations can be strong and is espe-
cially pronounced for particles with size parameters smaller than about 2,
and that increasing packing density always increases p(180°). Note, how-
ever, that the phase function for Rayleigh particles (x << 1) remains intact
with increasing packing density. Interestingly, p(180°) is an oscillating
rather than a monotonically decreasing function of size parameter, and,
thus, one should not expect a monotonic dependence of the copolarized am-
plitudeC  onx [see Eq. (13)]. For comparison, Fig. 3, c shows the asymme-
try parameter vs. size parameter for the same values of the filling factor.
One sees that for filling factors not exceeding 0.4 and size parameters larger
than about 1.5, (cos ®) is a monotonically increasing function of size param-
eter. Therefore, we have to conclude that there is no direct correlation be-
tween the asymmetry parameter on one hand and the backscattering phase
function (and, thus, the copolarized amplitude) on the other hand.

Figures 4, a—c show the copolarized, { , cross-polarized, €, , and op-
posite-helicity, £ ,, amplitudes vs. size parameter computed for a semi-infi-

9
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P a R i b

Fig. 3. Backscattering phase function P =
p(180°), the ratio R of the backscattering
phase function for densely packed particles
(> 0) to that of sparsely distributed particles
(f=0), and the asymmetry parameter (cos ®)
vs. size parameter for monodisperse spheri-
cal particles with refractive index 1.195 and
different values of the filling factor /'

nite scattering medium which is composed of monodisperse spherical parti-
cles with the index of refraction 1.195 and is illuminated perpendicularly to
its boundary. For both sparsely and densely packed particles, the VRTE was
rigorously solved using the technique described in [3, 16]. For densely
packed particles, the single-scattering characteristics were modified by
means of the static structure factor.

It is clearly seen from Figs 4, a—c that increasing packing density af-
fects all the amplitudes. The effect is especially strong for small size param-
eters and is much more noticeable for{ , and, to a lesser degree, forC , be-
cause these amplitudes depend on the single-scattering component R, ex-
plicitly [Egs. (13) and (16)].

Not surprisingly, local maxima of €, (Fig. 4, a) exactly follow local
minima of the backscattering phase function p(180°) (Fig. 3, a). Since in-
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Fig. 4. Amplitude C , of the copolarized inten-
sity peak (a), the cross-polarized amplitude C,,
(b), and the opposite-helicity amplitude €, (c)
vs. size parameter for a semi-infinite medium
composed of monodisperse, randomly posi-
tioned spherical particles with refractive index
1.195 and different values of the filling factor /'
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creasing packing density always increases the backscattering phase func-
tion, it always reduces the copolarized amplitude and, for small particles,
can even make it lower than the Rayleigh-limit value of 1.752 [16]. On the
other hand, the size-parameter dependences of the amplitudesC,, andC , do
not quite follow that of R,,,. Apparently, this can be explained by the im-
plicit dependence of the ratio £, on the single-scattering matrix and by a
complicated size parameter dependence of the diagonal elements of the lad-

der component R ;" [see Eqs. (14) and (16)].
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DISCUSSION

The standard theories of radiative transfer and coherent backscattering are
based on the assumption that particles forming a discrete random medium
are widely separated and totally uncorrelated [13, 16]. The approach
pursued in this paper can only be considered to be a rather trivial
approximate “patch” intended to take into account the effect of spatial
correlations for closely spaced particles. It goes without saying that it
cannot replace a rigorous theory directly based on the Maxwell equations.
In fact, it will be very interesting to compare our approximate results with
exact computations when the latter have become available.

As mentioned above, the diffusion approximation predicts the
amplitude of the copolarized backscattering peak exactly equal to 2 [2].
However, some experimentalists have claimed that they found evidence for
an amplitude smaller than two. As a result, a discussion as to the actual
value of the copolarized amplitude has taken place (see, e.g., [4] and
references therein). In order to partially explain the discrepancy between
the prediction of the diffusion approximation and laboratory experiments,
the effect of the backscattering contribution from nonself-avoiding closed
light paths, in addition to the ladder and cyclical contributions, was studied
[27, 28].

As follows from Eq. (13), the amplitude of the copolarized peak is
never equal to 2 since, for real scattering particles, R,,, is never exactly
equal to zero but rather is a positive number. Moreover, it was shown in [16]
that  is always smaller than 2. The degree of deviation of the copolarized
amplitude from the value 2 depends primarily on the value of the
backscattering phase function. For latex particles in water p(180°) is
usually small (except for particles with size parameters less than about 1)
because the corresponding relative refractive index (1.195) is small.
However, for larger refractive indices p(180°) can be much larger, thereby
causing copolarized amplitude values significantly smaller than 2 [9, 12].

As follows from the calculations reported in this paper, spatial
correlations among scattering particles caused by nonzero packing density
can be an additional important factor which can substantially increase the
backscattering phase function and, thus, reduce the amplitude of the
copolarized backscattering peak. The effect is especially pronounced for
small particles (but not for Rayleigh scatterers) and weakens as the particle
size parameter becomes much greater than 1. On the other hand, the
amplitude of the helicity-preserving amplitude G, for spherical particles is
not influenced at all by increasing packing density and is identically equal
to 2 independently of the filling factor. Apparently, this can explain, at least
qualitatively, why in the measurements for latex particles in water reported
in [4] the amplitude of the helicity-preserving backscattering peak was
always equal to 2 (within the measurement accuracy), while the amplitude
of the copolarized peak was substantially smaller than 2, especially for
small particles.

12
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Finally we note that for spherical particles the equalities R,,, = R,,, and
R,,, = —R,,, do not, in general, hold. Therefore, the helicity-preserving
amplitude €, can explicitly depend on the single-scattering component of
the Stokes backscattering matrix R}, [Eq. (11)] and, thus, can be
appreciably smaller than 2 [5, 6, 16] and change with increasing packing
density. Therefore, unlike the case with spherical particles, the calculation
of the helicity-preserving amplitude for nonspherical particles should
explicitly take into account the effect of packing density.

The author is grateful to P. V. Litvinov, Yu. G. Shkuratov,
V. P. Tishkovets, and E. G. Yanovitskij for many fruitful discussions. Par-
tial funding for this research was provided by the NASA Radiation Sciences
Program managed by H. Maring.
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